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Abstract

We consider the set ¥ (R, C) of all m x n matrices having 0-1 entries and prescribed row sums
R =(ry,...,rm) and column sums C = (cy, ..., cy). We prove an asymptotic estimate for the cardinal-
ity | X' (R, C)| via the solution to a convex optimization problem. We show that if X (R, C) is sufficiently
large, then a random matrix D € X' (R, C) sampled from the uniform probability measure in X' (R, C) with
high probability is close to a particular matrix Z = Z(R, C) that maximizes the sum of entropies of entries
among all matrices with row sums R, column sums C and entries between 0 and 1. Similar results are
obtained for 0—1 matrices with prescribed row and column sums and assigned zeros in some positions.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction and main results

Matrices with 0—1 entries and prescribed row and column sums is a classical object which ap-
pears in many branches of pure and applied mathematics. In combinatorics, such matrices encode
hypergraphs with prescribed degrees of vertices and related structures, see, for example, [25]. In
algebra, certain structural constants in the ring of symmetric functions and, consequently, in the
representation theory of the symmetric and general linear groups are expressed as numbers of 0—1
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matrices with prescribed row and column sums, see [21, Chapter 1]. In statistics, 0—1 matrices
with prescribed row and column sums are known as binary contingency tables, see [9].

Let R = (r1,...,ry) be a positive integer m-vector and let C = (cy, ..., c,) be a positive
integer n-vector such that

m n
Zr,- :ZCj =N and
i=1 j=1

O<ri<n fori=1,...,m and O<cj<m forj=1,...,n.

Let X (R, C) be the set of all m x n matrices (binary contingency tables) D = (d;;) such that

n m
Zdij:ri fori=1,...,m, Zd,j:cj forj=1,...,n
j=1 i=1
and d;; €10, 1}.
In words: X (R, C) is the set of 0—1 matrices with row sums R and column sums C. Vectors R
and C are called margins of a matrix D € X (R, C).

Our first main result provides an estimate of the cardinality of X' (R, C).

Theorem 1. Let us define the function

F(x,y) = (]"[x,-"') (H y,-“f') (1’[(1 +xiyj)>
i=1 j=1 ij

forxz('xlv"'axl’n) andy:(yla'--vyn)

and let
@(R,C) = inf F(x,y).
Xlsees Xip >
Viseees Y >0

Then for the number | X (R, C)| of m x n zero—one matrices with row sums R and column sums C
we have

| m oy no
a(R,C)>|Z(R,0O)| > (;”:l’;r)nn (q (n(n_rii)! )(H é)a(R, C).

j=1

Let us estimate the ratio between the lower and the upper bounds for | X' (R, C)| using Stir-
ling’s formula

sls ™% = e_sx/%(l + O(s_l)).

Since
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m n
e—mn(l_[en—ri) <l_[eCj> =1,
i=1 j=1

the “e™*” contributions from Stirling’s formula cancel each other out and we obtain
(R, C) > (R, ) > (mn) """ Ma(R, C)

for some absolute constant y > 0.

We note that in many interesting cases we have | X (R, C)| = 282(mn) " see also Section 3.1, in
which case the estimate of Theorem 1 captures the logarithmic order of | X' (R, C)|.

Let us substitute x; =%, y = e’ in F(x,y). Then In F(x,y) = G(s, t), where

m n
G(s, t)=— Zr,-si - chtj + Zln(l + et t)
i=1 j=1 ij

fors=(sy,...,sp)and t=(t1,...,1,).

One can observe that G (s, t) is a convex function on R™ x R”, hence to compute the infimum of
G (s, t) one can use any of the efficient convex optimization algorithms, see, for example, [23].

Suppose that margins R, C are such that the set X' (R, C) is not empty and let us consider
Y (R, C) as a finite probability space with the uniform measure. Let us pick a random matrix
D € ¥(R,C). What is D likely to look like? This question is of some interest to statistics:
a binary contingency table D = (d;;) may represent certain statistical data (for example, d;;
may be equal to 1 or O depending on whether or not Darwin finches of the i-th species can
be found on the j-th Galapagos island, as in [9]). One can condition on the row and column
sums and ask what is special about a particular table D € X' (R, C), considering all tables in
Y (R, C) as equiprobable, see [9]. To answer this question we need to know what a random table
D € Y (R, C) looks like.

We prove that with high probability D is close to a particular matrix Z with row sums R and
column sums C and entries between 0 and 1, which we call the maximum entropy matrix.

1.1. The maximum entropy matrix

For 0 < x < 1 let us consider the entropy function

1
Hx)=xIn—+4+ ({1 —x)In
X 1—x

As is known, H is a strictly concave function with H(0) = H(1) =0.
For an m x n matrix X = (x;;) such that 0 < x;; < 1 for all i, j, we define

H(X) :ZH(xij).
ij

Assume that X' (R, C) is non-empty. Let us consider the polytope P(R, C) of matrices X = (x;;)
such that
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n m
E Xij =i fori=1,...,m, E Xij =c¢j forj=1,...,n
j=1

i=1

and 0<x; <1 foralli,j.

Since H(X) is strictly concave, it attains a unique maximum Z = Z(R, C) on P(R, C), which
we call the maximum entropy matrix with margins (R, C).

For example, if all r; are equal, then by the symmetry argument we must have Z = (z;;) where
Zij =Cj/m for all i, J

The following observation characterizes the maximum entropy matrix as the solution to the
problem that is convex dual to the optimization problem of Theorem 1.

Lemma 2. Suppose that the polytope P(R, C) has a non-empty interior, that is, contains a matrix
Y = (yij) such that 0 < y;; <1 for all i, j. Then the infimum a(R, C) in Theorem 1 is attained
at a particular point X* = (&1, ..., &) and y* = (n1, ..., nn). For the maximum entropy matrix
Z = (zij) we have

&§inj .
Zij = foralli, j (D
Y 1+Ei7)]
and, moreover,
a(R,C) =D, )

Conversely, if the infimum a(R,C) in Theorem 1 is attained at a certain point X* =
¢1,....&n) and y* = (n1,...,np) then for the maximum entropy matrix Z = (z;;) Egs. (1)
and (2) hold.

The condition that the polytope P(R, C) has a non-empty interior is equivalent to the re-
quirement that for every choice of 1 <k < m and 1 </ < n there is a matrix Dlex (R, C),
DY = (dioj), such that d,?l =0 and there is a matrix D! € Y(R,C), D! = (dl.lj), such that d,ll =1.
One can take Y to be the average of all matrices D € XY (R, C). In other words, we require the
set X (R, C) to be reasonably large. We also observe that if r;c; < N for all i, j (recall that N is
the total sum of the matrix entries) one can choose y;; =ric;/N.

We prove that with high probability a random matrix D € X' (R, C) is close to the maximum
entropy matrix Z as far as sums over subsets of entries are concerned.

For a subset

Sc{G.jyi=1....m j=1,...,n}
and an m x n matrix A = (a;;), let us denote
os(A)= ) aij,
@,))es

the sum of the entries of A indexed by S.
In what follows, we are interested in the case of the density N /mn separated from 0. Without
loss of generality, we assume that n > m.
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Theorem 3. Let us fix numbers k > 0 and 0 < § < 1. Then there exists a number q = q(k, 3)
such that the following holds.

Let (R, C) be margins such that n > m > q and the polytope P(R, C) has a non-empty
interior, and let Z € P(R, C) be the maximum entropy matrix. Let S C{(i, j): i=1,...,m, j=
1,...,n} be a subset such that os(Z) > §mn and let

1
6282.

Jm

If e <1 then
Pr{D e X(R,C): (1 —€)os(Z) <os(D) < (1+€)os(Z)} >1—2n""".

Let us associate with a non-negative, non-zero m x n matrix A = (g;;) a finite probability
space on the ground set {(i, j): i =1,...,m, j=1,...,n} with Pr{(i, j)} = a;;/N, where
N > 0 is the total sum of matrix entries. Theorem 3 asserts that the probability space associated
with the maximum entropy matrix Z reasonably well approximates the probability space associ-
ated with a random binary contingency table D € X' (R, C) as far as events S whose probability
is separated from 0 are concerned.

The following interpretation of the maximum entropy matrix was suggested to the author by
J.A. Hartigan, see [4].

Theorem 4. Let Z = (z;;) be the m x n maximum entropy matrix with margins (R, C) and let us
suppose that the polytope P(R, C) has a non-empty interior. Let X = (x;;) be the random m x n
matrix of independent Bernoulli random variables such that

EX="Z.

In other words, Pr{x;j = 1} = z;j and Pr{x;; = 0} =1 — z;; independently for all i, j. Then the
probability mass function of X is constant on the set X (R, C) of binary contingency tables with
margins (R, C), and, moreover,

Pr{X=D}=¢H"9 forallDe X(R,C).
2. Extensions and ramifications

Our results hold in a somewhat greater generality. Let us fix an m X n non-negative matrix
W = (w;;), which we call the matrix of weights. Let us consider the following partition function

|Z(R,C;W)|= Z ]—[wij.

DeX(R,C) i,j
D=(d;j) dij=1

In particular, if w;; =1 for all 7, j then |X(R, C; W)| = | X (R, C)|. If w;; € {0, 1} then the
partition function counts binary contingency tables with zeros assigned to some positions: the
value of | X' (R, C; W)] is equal to the number of m x n matrices D = (d;;) such that the row
sums of D are R, the column sums of D are C, d;; € {0, 1} for all i, j, and, additionally, d;; = 0 if
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w;; = 0. In combinatorial terms, the set X' (R, C; W) can be interpreted as the set of all subgraphs
with prescribed degrees of vertices of a given bipartite graph. Binary contingency tables with
preassigned zeros are of interest in statistics, see [9].

We prove the following result.

Theorem 5. Let us define the function

F(x,y: W)= (]‘[x,-"") ( I1 yf") (H(l + wi,,xiy,-)>
j=1

i=1 ij

forx=(x1,...,xm) andy = V1, ..., Yn)

and let

a(R,C; W) = inf F(x,y;, W).
Xlyeeer Xy >0
Visees Y >0

Then for the partition function | X (R, C; W)| we have

a(R.C: W) > | S(R,C: )| > ) (]‘[ “""’”)(]‘[ %)a(R,C;W).

mn — 7))
(mn) i (n—r)! izl Cj

As before, the function obtained as the result of the substitution x; = €', y; = €% in
InF(x,y; W),

m n
GGt W)= _Zrisi - ZCjtj + Zln(l + wjje’ )
i=1 j=1 ij

fors=(sy,...,sm)and t= (1, ..., 1,)

is convex on R” x R", hence computing «(R, C; W) is a convex optimization problem.

Let us assume now that w;; € {0, 1} for all (7, j) and let us consider the set ¥ (R, C; W) of all
m x n binary contingency tables D = (d;;) with the additional constraint that d;; = 0 if w;; = 0.
Assuming that X' (R, C; W) is not empty, we consider this set as a finite probability space with
the uniform measure. We call matrix W the pattern. We are interested in what a random table
D e Y (R, C; W) looks like. We define the maximum entropy matrix as before.

2.1. The maximum entropy matrix

Suppose that the set X'(R, C; W) is non-empty. Let us consider the polytope P(R, C; W) of
m x n matrices X = (x;;) such that

n m
E Xij =i fori:l,...,m, E Xij =Cj f0rj=1,...,n,
j=1 i=1
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0<x;;<1 foralli,j and x;; =0 wheneverw;; =0.

Thus P(R, C; W) is a face of polytope P(R, C) of Section 1.1.

Let H(X) be the entropy function of Section 1.1. Since H (X) is strictly concave, it attains
a unique maximum Z = Z(R, C; W) on polytope P(R, C; W), which we call the maximum
entropy matrix with margins (R, C) and pattern W.

Lemma 6. Suppose that the polytope P(R, C; W) contains a matrix Y = (y;;) such that 0 <
vij < 1 whenever w;; =1, in which case we say that P(R, C; W) has a non-empty interior.

Then the infimum o (R, C; W) in Theorem 5 is attained at a certain point x* = (&1, ..., &) and
Y =1, ..., 0). The maximum entropy matrix Z = (z;;) satisfies
zij:ﬂ foralli, j such that w;j = 1. 3)
1+&n;
Moreover,
a(R,C; W) =@, “4)
Conversely, if the infimum a(R, C; W) is attained at a point X* = (&1,...,&y,) and y* =

(M1, ..., ), then for the maximum entropy matrix Z = (z;;) Eqs. (3) and (4) hold.

For P(R, C; W) to have a non-empty interior is equivalent to the requirement that for every
pair k, [ such that wy; = 1 there is a matrix De X(R,C; W), D" = (dl.oj), such that dl?l =0and
there is a matrix D! € X(R,C; W), D! = (dl.lj), such that d,:l = 1. In other words, we require
the set X' (R, C; W) to be reasonably large.

We prove an analogue of Theorem 3. We consider subsets

ScC {(i,j): wij = 1}
As before, we denote by og(A) the sum of the entries of a matrix A indexed by the subset S.

Theorem 7. Let us fix numbers k > 0 and 0 < § < 1. Then there exists a number q = q(k, 5)
such that the following holds.

Let (R, C) be margins such that n > m > q and the polytope P(R, C; W) has a non-empty
interior, and let Z € P(R, C; W) be the maximum entropy matrix. Let S C {(i, j): w;; =1} be a
subset such that os(Z) > dmn and let

Inn
€e=§——.

Jm

If e <1 then
Pr{De X(R,C;W): (1 —€)os(Z) <os(D) < (1+6€)as(Z)} >1—2n""".

The statement of the theorem is, of course, vacuous unless pattern W contains §2 (mn) ones.
There is an analogue of Theorem 4.
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Theorem 8. Suppose that the polytope P(R,C; W) has a non-empty interior and let Z €
P(R,C; W) be the maximum entropy matrix. Let X = (x;;) be the random m x n matrix of
independent Bernoulli random variables such that

EX =7,

that is, Prix;; = 1} = z;; and Pr{x;; = 0} = 1 — z;; independently for all i, j. Then the proba-
bility mass function of X is constant on the set X (R, C; W) and, moreover,

PriX=D}=e¢ 1P forallD e Z(R,C;W).
3. Comparisons with the literature

There is a vast literature on 0—1 matrices with prescribed row and column sums and with or
without zeros in prescribed positions, see, for example, [25, Chapter 16], [24,5,12], recent [8,13,
7,14] and references therein. A simple and efficient criterion for the existence of a 0—1 matrix
with prescribed row and column sums is given by the classical Gale—Ryser Theorem; in the case
of enforced zeros, the question reduces to the existence of a network flow, see, for example, [25,
Chapter 16]. Estimating the number of such matrices also attracted a lot of attention. Precise
asymptotic formulas for the number of matrices were obtained in sparse cases for which r; < n
and c; <« m [24,5,13], the regular case of all row sums 7; equal and all column sums c; equal
[7] and cases close to regular [7,14]. Formulas of Theorems 1 and 5 are not as precise as those of
[5,7,13,14,24] but they are applicable to a wide class of margins (R, C) and they uncover some
interesting features of the numbers | X' (R, C)| and | X' (R, C; W)|.

The following construction provides some insight into the combinatorial interpretation of the
number « (R, C) from Theorem 1.

3.1. Cloning the margins
Let us fix some margins R, C for which the set X (R, C) is not empty, and, moreover, the

polytope P(R, C) contains an interior point, so the conditions of Lemma 2 are satisfied. Let
R=(r,....,ryn) and C = (cy, ..., cy). For a positive integer k, let us define the km-vector

Rk=(krl,...,krl,...,krm,...,krm)

k times k times

and the kn-vector

Ck=(kcl,...,kcl,...,kcn,...,kcn).

k times k times

In other words, we obtain margins (R, Cy) if we choose a matrix Y € P(R, C) and then create a
new block matrix Y} by arranging k* copies of Y into a km x kn matrix. Then Ry is the vector of
row sums of Y and Cy is the vector of column sums of Y. Clearly, the conditions of Lemma 2
are satisfied for (Rg, Cg).
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Theorem 1 then implies that
. 1/k?
lim |Z(Re, C)|'" =a(R,C). (5)
k—+o00
Indeed, the infimum « (R, C) is attained at a certain point

X'=(,....60) and y'=(1,.... 7).

It is not hard to see that the infimum o (R, Cy) is attained at
XZ:(&1,...,51,...,5,,,,...,ém) and y,’g:(m,...,771,...,77,,,...,17,,).
—_———— S —— ——— ————

k times k times k times k times

3.2. Asymptotic repulsion in the space of matrices

A natural candidate for an approximation of | X' (R, C)| is the “independence estimate”

mn\ "' 0\ o (m
rao=(V) TIC)TIE) ®
N E T /ljll Cj
see [12,13,7].

The intuitive meaning of (6) is as follows. Let us consider the set of all m x n matrices with
0-1 entries and with the total sum of entries equal to N as a finite probability space with the
uniform measure. Let us consider the two events in this space: the event R consisting of the
matrices with row sums R and the event C consisting of the matrices with column sums C. One

can see that
mn\ ! n mn\ "' 2 (m
pr(m:( ) () and Pr(C):( ) ( )
N nlle T N e Cj

i= j=

and that
mn
|Z(R,0)|= (N )Pr(RﬂC).

Thus the value of (6) equals | ¥ (R, C)| if the events R and C are independent. It turns out that (6)
indeed approximates | X (R, C)| reasonably well in the sparse and near-uniform cases, see [13]
and [7].

However, for generic R and C, the independence estimate I (R, C) overestimates |~ (R, C)|
by a 220" factor. To see why, let us fix some margins R = (r,...,r,) and C = (c1, ..., cn)
such that not all row sums r; are equal and not all column sums c; are equal and the conditions
of Lemma 2 are satisfied. Let us consider the cloned margins Ry and Cy as in Section 3.1.
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Applying Stirling’s formula, we get

m n
; /K2 _ _ N Ti cj
kETmI(Rk’C") _exp{ mnH(m—n)+nElH(n)+m.EIH<m , @)
1= j=

where H is the entropy function, see Section 1.1. To compare (7) and (5), we use Lemma 2 and
the multivariate entropy function

k
1
H(pi,...,pr) = E prln—,
P Dk

where pi, ..., px are non-negative numbers such that p; 4+ --- 4+ p;y = 1. Thus H (x) = H(x,
1 —x) for 0 < x <1 and we rewrite (7) as

r 'm

lim - InI(R.Cy)=NH T MH( 2= n =
im —In , = — ., — - ey
k— 400 k2 ko Tk N N i mn — N mn — N

+ NH C1l Cp +( N)H m —Cy m —cy
— ., — mn — e
N N mn — N mn — N

— NInN — (mn — N)In(mn — N).

On the other hand, applying Lemma 2, we can rewrite (5) as

lim l1n|2(1e co|=NH(2L) 4+ (mn — N)H 1759 ) N
k—>-+o0 k2 o M= N mn — N

— (mn — N)In(mn — N),
where Z = (z;;) is the maximum entropy matrix for margins (R, C).

We now use some classical entropy inequalities, see, for example, [19]. Namely, by the in-
equality relating the entropies of two partitions of a probability space and the entropy of their

intersection, we have
H( ) <u(2, )y m(E, &
N N N N N

with the equality if and only if
Zij = 55 forall i, (8)
/ N /

and

T { Rl W (ks U ek T Y (Lt
mn — N mn — N mn — N mn — N mn— N

with the equality if and only if
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(n—ri)(m—cj) .
—ZU:W for all il J. (9)

However, if we have both (8) and (9), we must have (r;m — N)(cjn — N) =0, so unless all
row sums r; are equal or all column sums c; are equal, we have

2
lim |Z(Ri, Col"* < tim I(Ry, C)V¥.
k—+o00

k— 400

Therefore, as k grows, the independence estimate (6) overestimates the number of 0—1 matrices
with row sums Ry and column sums Cy by a factor of 2 ) n probabilistic terms, as k grows,
the event Ry consisting of the 0-1 matrices with row sums Ry and the event Ci consisting of
the 0—1 matrices with column sums Cj repel each other (the events are negatively correlated),
instead of being asymptotically independent.

The procedure of cloning described in Section 3.1 produces margins of increasing size with
the following features: the density remains separated from O and 1, and if the margins were non-
uniform initially, they stay away from uniform. One can show that for more general sequences of
margins that share these two features, we have the asymptotic repulsion of the event consisting
of the 0—1 matrices with prescribed row sums and the event consisting of the 0—1 matrices with
prescribed column sums. This is in contrast to the case of contingency tables (non-negative inte-
ger matrices with prescribed row and column sums), where we have the asymptotic attraction of
the events [3].

3.3. Randomized counting and sampling

Jerrum, Sinclair, and Vigoda [18] showed how to apply their algorithm for computing the
permanent of a non-negative matrix to construct a fully polynomial randomized approximation
scheme (FPRAS) to compute | X (R, C)| and, more generally, | X' (R, C; W)|, where W is a 0-1
pattern, see also [6]. Furthermore, they obtained a polynomial time algorithm for sampling a
random D € ¥ (R,C) and D € ¥ (R, C; W) from a “nearly uniform” distribution. This problem
arises naturally in statistics, see, for example, [9]. The estimates of Theorems 1 and 5 are not
nearly as precise as those of [18], but they are deterministic, easily computable, and amenable
to analysis. Similarly, we do not provide a sampling algorithm but show instead in Theorems 3
and 7 what a random matrix is likely to look like.

3.4. An open question

Theorem 4 allows us to interpret Theorem 3 as a law of large numbers for binary contingency
tables: with respect to sums og(D) for sufficiently “heavy” sets S of indices, a random binary
contingency table D € X (R, C) behaves approximately as the matrix of independent Bernoulli
random variables whose expectation is the maximum entropy matrix Z = (z;;). Similar concen-
tration results can be obtained for other well-behaved functions on binary contingency tables.
One can ask whether the distribution of a particular entry d;; of a random table D € X'(R, C)
converges in distribution to the Bernoulli distribution with expectation z;; as the dimensions m
and n of the table grow in some regular way, for example, when the margins are cloned as in
Section 3.1.
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Our approach, based on estimating combinatorial quantities via solutions to optimization
problems, reminds one of that of Gurvits [16]. The appearance of entropy in combinatorial count-
ing problems reminds one of recent papers of Cuckler and Kahn [10,11], although methods and
results seem to be quite different.

In the rest of the paper, we prove the results stated in Sections 1 and 2.

4. Preliminaries: permanents and scaling

Let A = (a;;) be an n x n matrix. The permanent of A is defined by the expression

n
perA = Z l—[aia(i),

oeS,i=1

where S, is the symmetric group of all permutations of the set {1, ..., n}. The relevance of per-
manents to us is that both values of | X' (R, C)| and | ¥ (R, C; W)| can be expressed as permanents
of mn x mn matrices. This result is not new, for | X' (R, C)| it was observed, for example, in [17].
For | ¥ (R, C; W)|, where W is a 0—1 pattern, a construction is presented in [18]. We give a gen-
eral construction for | X' (R, C; W)|, where W is an arbitrary matrix, which is slightly different
from that of [18].

Lemma 9. Let us choose margins R = (ry1,...,ry), C =(c1,...,cy) and an m x n matrix W =
(w;j) of weights. Let us construct an mn x mn matrix A = A(R, C; W) as follows.
The rows of A are split into disjoint m blocks having n — ry, ...,n — ry rows respectively

(blocks of type 1) and n blocks having cy, ..., ¢, rows respectively (blocks of type II).

The columns of A are split into m disjoint blocks of n columns in each.

Fori=1,...,m the entry of A that lies in a row from the i-th block of rows of type I and in a
column from the i-th block of columns is equal to 1.

Fori=1,...,mand j=1,...,nthe entry of A that lies in a row from the j-th block of rows
of type 1l and the j-th column from the i-th block of columns is equal to w;;.

All other entries of A are Os.

Then

= 1 S|
|Z(R,C; W)| = (D—(” _rl_)!> (]]:[1 a) perA.

Proof. First, we express | X (R, C; W)| as a coefficient in a certain polynomial. Let xq, ..., x,
be formal variables and let

er(X1,...,xy) = Z Xiy + o Xi,

I<ip<<ir<n

be the elementary symmetric polynomial of degree r. Thus e, (x1, ..., Xx;) is

n
the coefficient of #*~" in the product 1—[ (t+xj).
j=1
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We observe that | X' (R, C; W)| is

n m
the coefficient of l_[ x;j in the product 1_[ er, (Wi1X1, ..., WinXp).
j=1 i=1

Summarizing, we conclude that | ¥ (R, C; W)| is
m n m n
. n—r; Cji .
the coefficient of ]_[ t l_[ X j’ in the product ]_[ H(ti + wijx;j).
i=1 j=1 i=1j=1

To express the last coefficient as the permanent of a matrix, we use a convenient scalar product
in the space of polynomials, see, for example, [1] and [2]. Namely, for monomials

x4 =x{"-xf" wherea=(ai,...,a,) and X = (x1, ..., X,)
we define
(x“ Xb)z oyl ifa=b=(ay,...,a,),
0 ifab

and then extend the scalar product (-, -) by bilinearity. Equivalently, the scalar product can be
defined as follows: let us identify R” @ R" = C" via x 4+ iy = z and let v, be the Gaussian
measure on C" with the density

_ _ 2
n o~ llzll

w where [|z]1> = ||x[|* 4 [|y||* for z = x + iy.

Then, for polynomials f and g we have

<ﬁm=/f@55wm
Cn

where g is the complex conjugate of g, see, for example, [2, Section 4].
The convenient property of the scalar product is that if

m n m

pO =[] buxx and g =[] cux

1=1k=1 I=1k=1

are products of linear forms, then

(p.q) =perD,

where D = (d;;) is the m x m matrix defined by

n
dij = Zbikcjk for all i, j,
k=1
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see [2, Lemma 4.5] or, for a more general identity, [15, Theorem 3.8]. Thus we may write

m 1 n 1 m ner; n C]. m n
|Z(R.C:W)| = (H m) (l_[l §)<Et" Exf T +w,-,-x,->>

i=1 Jj= i=1j=1

- 1 o1
i=1 ! j=1 7

4.1. Matrix scaling and the van der Waerden bound

Let B = (b;j) be an n x n matrix. Matrix B is called doubly stochastic if

n n
Zbuzl fori:l,...,m, Zbl}zl fOI'j:l,...,n
j=1 i=1

and b;; >0 foralli, j.

The classical bound conjectured by van der Waerden and proved by Falikman and Egorychey,
see [25, Chapter 12] and also [16] for exciting new developments, states that

n!
perB > o

if B is a doubly stochastic matrix.

Linial, Samorodnitsky, and Wigderson [20] introduced the following very useful scaling
method of approximating permanents of non-negative matrices. Given a non-negative n X n ma-
trix A = (a;;) one finds non-negative numbers Ay, ..., A, and iy, ..., i, and a doubly stochastic
matrix B = (b;;) such that

aijj Z)\iﬂjbij for all i, ]

Then

n n
perA = (HM) (1_[ ,bLj) per B
i=1 j=1

and an estimate of per B (such as the van der Waerden estimate) implies an estimate of per A. If
A is strictly positive, such doubly stochastic matrix B and scaling factors A;, i ; always exist. In
our situation, matrix A constructed in Lemma 9 is only non-negative. We will not always be able
to scale it to a doubly stochastic matrix B exactly, but we will scale it approximately.

We restate a weaker form of [20, Proposition 5.1] regarding almost doubly stochastic matrices.
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Lemma 10. For any n there exists an ey = €p(n) > 0 and a function ¢ (€), 0 < € < €, such that

lim ¢(e) =1
e—>0+

and for any n x n non-negative matrix B = (b;;) such that
n
Zbijzl forj=1,...,n
i=1
and

n
1—6<Zb,~j<1+e fori=1,...,n
j=1

for some 0 < € < €y, we have

n!
per B > —nqb(e).
n
From [20], one can choose €g = 1/n and ¢ (¢) = (1 — en)".
5. Proofs of Theorems 1 and 5

We prove Theorem 5 only since Theorem 1 is a particular case of Theorem 5. We start with a
straightforward observation.

Lemma 11. We have

[Ta+wiyxivp =D |Z®R, C: W)[xFyC,
ij (R,C)

where xR = x{l .

I C — c
2 YO =y
and the sum is taken over all margins R, C.

Next, we need a technical lemma.

Lemma 12. Let W = (w;;) be an m x n non-negative matrix such that
a(R,C; W) >0.

Then, for any € > 0 there exist points X = x(¢) and y = y(€), X = (X1,...,Xpy) and y =
(Y15 --+» Yn), such that
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<€ fori=1,...,m,

WijXiyj . ..
—ci + <€ forj=1,...,n and x;,y; >0 foralli,j.
‘ J Z I+ wixiy; for j i»Yj fe J

Proof. Let us consider the function

m n
G(Svt; W) = —Zrisl- — ch[j + Z]n(l + wijes,'+lj)
i=1 j=1 ij

fors=(sy,...,sm)and t= (t1,...,1,).

Then G (s, t; W) is convex and

inf G(s,t) =Ina(R,C; W) > —o0.
seR™
teR”

Hence G (s, t) is bounded from below, it is also easy to check that the Hessian of G remains
bounded on R™ x R". Therefore, the gradient of G (s, t) can get arbitrarily close to 0. That is, for
any € > 0 there are points

s(e) = (sl(e), ey Sm (e)) and t(e) = (tl(e), R (e))

such that

<e€ fori=1,...,m and

d
—G(s, t)|s— —
‘8&- (S, O ls=s(e),t=t(e)

<e forj=1,...,n

J
' a G (s, t)[s=s(e),t=t(e)

(it suffices to choose s(¢) and t(e) so that the value of G(s(¢), t(€)) is sufficiently close to the
infimum). In other words,

w; eS,(é)—H](G) .
—rl+2m forl=1,...,m
and
w; es,(e)+tj(e) .
’_C]+ZW fOI‘]=1,...,I’l.
We now let
xi=xi(€)=e"© fori=1,...,m and

yjzyj(e)ze’f(é) forj=1,...,n. a



332 A. Barvinok / Advances in Mathematics 224 (2010) 316-339

5.1. Proof of Theorem 5

The upper bound
a(R,C; W)= |Z(R,C; W)

follows from Lemma 11. Let us prove the lower bound.

If a(R,C; W) =0 then | ¥ (R, C; W)| =0 and the lower bound follows. Hence we assume
that (R, C; W) > 0.

Let A= A(R, C; W) be the mn x mn block matrix constructed in Lemma 9. Let us consider
the mn x mn block matrix B(¢) obtained from A as follows. For € > 0, let x(¢) = (x1, ..., Xp)
and y(¢) = (y1, ..., yn) be the point constructed in Lemma 12.

Fori =1,...,m we multiply every row of A in the i-th block of type I by

1

xi(n—r;)

For j =1, ..., n we multiply every row of A in the j-th block of type II by

Y forj=1,...,n.
€j
Fori=1,...,mand j =1,...,n we multiply the j-th column in the i-th block of columns
of A by
X
1+ wijxiy;

This choice of scaling factors is, basically, a lucky guess made in the hope to match the structure
of the function F(x,y; W).
Thus we have

perA = (l_[xl.”_r" (n— r,-)"_r’) (1_[ yj_cjc;’) <l_[x,.1(1 + wijxiyj)) per B(€)
i=1

j=1 ij

and hence
m (n — rp)n =i n C‘jj
. —_ ! .
|Z(R,C;W)| = (]‘[W>( F)F(x(e),y(e), W) per B(e)
i=1 j=1"J
m . n Cj
(n—r)""i ¢ .
> (]_[ oo [ & a(R, C; W)per B(e). (10)
i=l Jj=1"]J
Finally, we claim that B(¢) is close to a doubly stochastic matrix. Indeed, for i =1,...,m

and j =1,...,n the entry of B(¢) that lies in a row from the i-th block of rows of type I and in
the j-th column from the i-th block of columns is equal to
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1
(n—ri)(1+wjjxiy;)

Fori=1,...,mand j=1,...,n the entry of B(e) that lies in a row from the j-th block of
rows of type II and the j-th column from the i-th block of columns is equal to
WijXiyj
c;j(1+wijx;yj) ’
All other entries of B(e) are Os. Let us compute the row sums of B(e).
For a row in the i-th block of rows of type I the sum equals

" 1
“=X G
j

— (n—ri)(1+ w;jxiyj)

Since

_Zl+wzszy] _ - WijXiyj
1~|—wl]xly] j:11+wijxiyj"

Z

1+ WijXiYj

by the inequalities of Lemma 12, we have

For a row in the j-th block of rows of type II the sum equals
m

WijXiyj
bj=)

izl Cj(l + wljxiyj) ’
By the inequalities of Lemma 12, we have

€
bj—1l<—<e forj=1,...,n
c:
J

Let us compute the column sums of B(e).
For the j-th column from the i-th block of columns the sum equals
1 WiiXiVi
y ijXi)j _
(n—ri)(d +wijxiy;) (L4 wijxiy;)

(n—ri)

Clearly, B(¢) is non-negative and hence by Lemma 10, we have

(mn)!
( )mn

per B(e) > ¢(e) where hm Ppe)=1.

The proof now follows by (10) as € — 0+. O
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6. Proofs of Lemmas 2 and 6

We prove Lemma 6 only since Lemma 2 is a particular case of Lemma 6.
Proof of Lemma 6. Since H'(x) =In(1 — x) — Inx, the value of the derivative at x = 0 is +00
(we consider the right derivative there), the value of the derivative at x = 1 is —oo (we consider
the left derivative there) and the value of the derivative is finite for any 0 < x < 1. Suppose

that for the maximum entropy matrix Z we have z;; € {0, 1} for some i, j such that w;; = 1. If
Y € P(R,C; W), Y = (y;j),1s a matrix such that 0 < y;; < 1 whenever w;; = 1 then

H(eY +(1— e)Z) > H(Z) for a sufficiently small € > 0,
which contradicts to the choice of Z. Hence
0<zjj <1 wheneverw;; =1.

Therefore, the gradient of H(X) at X = Z is orthogonal to the affine subspace of matrices X =
(x;;) having row sums R, column sums C, and such that x;; = 0 whenever w;; = 0. Hence

1—z;;
ln—l'/=)»i+uj for all i, j such that w;; =1 (11)
Zij
and some Aq,..., Ay and w1, ..., u,. Hence
e hieTHj " .
Zij = m whenever w;; = 1.
Therefore
e MieTHi
Z ——— =rn fori=1,....m,
1+erie M
Jiwij=1
e for j =1
Z m—cj orj=1,...,n.
i w;_/:l
Therefore,
S =(=A1,...,=Am) and t'=(—p1,..., —un)

is a critical point of
m n
G(s, t; W):—Zrisi —chtj—i— Z ln(l—i—esithf).
i=1 j=1 @,)): wij=1

Since G is convex, (s*, t*) is also a minimum point. Therefore, the point x* = (&, ..., &,) and
y*=(@n,...,nn) where
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g=e fori=1,....m and n;j=e ™ forj=1,....n
is a minimum point of
m n
- —¢;
F(x,y;W>=<l_[x,-"><1_[yj ) [T a+xyp
i=1 j=1 @,)): wij=1

and satisfies

Z Eln] =r forizl,...,m7

Jrwij=1 I+&nj
3 léi:cj forj=1,....n. (12)
i w;j=1 +%-l nj
Conversely, if x* = (&1,...,&,) and y* = (n1,...,n,) is a point where the minimum of

F(x,y; W) is attained, then, setting the gradient of In F to 0, we obtain Eqgs. (12). Letting

when w;; =1

and z;; = 0 when w;; = 0, we obtain a matrix Z € P(R, C; W). Moreover, the gradient of H (X)
at X = Z satisfies (11) with A; = —1n§; and u; = —In#;, so Z is the maximum entropy matrix.
‘We now check:

H(Z)=- Z zijInz;j — Z (I —2zij)In(1 —z;;)
(i, j): wij=1 (@) wij=1
=" Z 1€ln.].ln1$ln.]._ 1 441n1 .
i.j): wij=1 +‘§an +$l77] (i.j): wij=1 + & n; +&; nj
< Enj Emj
—Yns( T ) ¥ )
i=1 ji et LS = i et LTSN
+ > In(l+&n)
(i,j): w,-j=1
——Zr, Ing — Zc] Innj+ Y In(l+&n))

@, )): wlj_l

by (12). Hence
H(Z)=InF(x*, y*; W)

and the proof follows. O
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7. Proofs of Theorems 4 and 8

We prove Theorem 8 only, since Theorem 4 is a particular case of Theorem 8.
From formula (11), we have

1 _Zij ze)ui-H/Lj

for all i, j such that w;; =1

Zij

and some Aq,..., A, and w1, ..., u,. Then, for all i, j such that w;; =1 and any d;; € {0, 1},
we have

dij —d;; =z
PI'{Xij:d[j}:Zij](l—Zij)l dlj:(l—zij)( Z U)
ij

=(1— Zij)e—()ti‘f‘llj)dij'
Consequently, for any D € X(R, C; W), D = (d;;), we have

Pr{X =D} = 1_[ (1-— Zl.j)e—()w-i-ﬂj)du

i,j: w,'j:l

m n
— ( [T a- z,~‘,~)> (He*f’f) (]_[eﬂf"f)
i,j: wij=1 i=1 j=1
On the other hand,

_ Zij I
e HZ) = 1—[ Zijj(l—Zij)l i

i,j: w,-j=1

( 1_[ (1 - Zij))( 1_[ (1 _“Zi/)mj)

ij: wij=1 ij: wij=1 2ij

Z( 1_[ (l—Z,’j))(HeAiri)(ne“jcf)
i,j: wij=1 i=1 j=1

which completes the proof. O

8. Proofs of Theorems 3 and 7

We prove Theorem 7 only since Theorem 3 is a particular case of Theorem 7.
We will use standard large deviation inequalities for bounded random variables, see, for ex-
ample, [22, Corollary 5.3].

Lemma 13. Ler Yy, ..., Y, be independent random variables such that 0 < Y; <1 for i =
l,....,k.LetY =Y+ -+ Yy and let a = EY. Then, for 0 < € < 1 we have
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1, 1
Pr{Y > (1 +¢e)a} <exp —3€a and Pr{Y < (1—e€)a} <exp —5€ar.

8.1. Proof of Theorem 7

Let X = (x;;) be the m x n matrix of independent Bernoulli random variables such that EX =
Z, as in Theorem 8. By Theorem 8, the distribution of X conditioned on X' (R, C; W) is uniform
and hence

Pr{D e X(R,C;W): o5(D) < (1 —€)os(Z)}
_ Pr{X: 05(X) < (1 —€)os(Z) and X € Z(R, C; W)}
- Pr{X: X € X(R,C; W)} '

Similarly,

Pr{D e X(R,C;W): o5(D) > (14 €)as(Z)}
_ Pr{X: o5(X) > (14+€)os(Z)and X € X(R,C; W)}
B Pr{X: X € X(R,C; W)} '

By Theorem 8, Lemma 6 and Theorem 5, we get
Pr{X e X(R,C; W)} =e @ | D (R, C; W)|

(mm)! (5 =\ (e
>(mn)m” (E (n—rp)! )(l—[cj!>

j=1

> (mn)_y(m"'”)

for some absolute constant y > 0.
Therefore,

Pr{D e X(R,C;W): o(D) < (1 —€)os(Z)}
< (mn)? " PE{X: 05(X) < (1 - €)os(2)]

and similarly

Pr{De X(R,C;W): (D) > (1+€)os(Z)}
< (mn)? "IPE{X: 0g(X) = (1+€)os(2)}. (13)

By Lemma 13,

Pr{X: o5(X) < (1 —€)os(2)} < exp{—%ezas(Z)}

and
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1
Pr{X: og(X) > (1 +€)os(2)} <exp{—§ezaS(Z)}. (14)
Hence for
s hd 0s(Z) > 8
=0—— an o = omn
Jm °
we have

205(Z) > 83nin’n. (15)

Combining (13)—(15), we conclude that for any « > 0 and all sufficiently large n > m > g(x, 8)
we have

Pr{De X(R,C;W): o5(D)< (1 —€)as(Z)} <n™*"
and

Pr{D e Z(R,C; W): o5(D) > (1 +€)as(Z)} <n™*"
asrequired. O
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