38,919 research outputs found

    Challenging Neural Dialogue Models with Natural Data: Memory Networks Fail on Incremental Phenomena

    Full text link
    Natural, spontaneous dialogue proceeds incrementally on a word-by-word basis; and it contains many sorts of disfluency such as mid-utterance/sentence hesitations, interruptions, and self-corrections. But training data for machine learning approaches to dialogue processing is often either cleaned-up or wholly synthetic in order to avoid such phenomena. The question then arises of how well systems trained on such clean data generalise to real spontaneous dialogue, or indeed whether they are trainable at all on naturally occurring dialogue data. To answer this question, we created a new corpus called bAbI+ by systematically adding natural spontaneous incremental dialogue phenomena such as restarts and self-corrections to the Facebook AI Research's bAbI dialogues dataset. We then explore the performance of a state-of-the-art retrieval model, MemN2N, on this more natural dataset. Results show that the semantic accuracy of the MemN2N model drops drastically; and that although it is in principle able to learn to process the constructions in bAbI+, it needs an impractical amount of training data to do so. Finally, we go on to show that an incremental, semantic parser -- DyLan -- shows 100% semantic accuracy on both bAbI and bAbI+, highlighting the generalisation properties of linguistically informed dialogue models.Comment: 9 pages, 3 figures, 2 tables. Accepted as a full paper for SemDial 201

    Hesitations in Spoken Dialogue Systems

    Get PDF
    Betz S. Hesitations in Spoken Dialogue Systems. Bielefeld: UniversitÀt Bielefeld; 2020

    Introduction to the Special Issue on Incremental Processing in Dialogue

    Get PDF
      A brief introduction to the topics discussed in the special issue, and to the individual papers

    Computational Models of Miscommunication Phenomena

    Get PDF
    Miscommunication phenomena such as repair in dialogue are important indicators of the quality of communication. Automatic detection is therefore a key step toward tools that can characterize communication quality and thus help in applications from call center management to mental health monitoring. However, most existing computational linguistic approaches to these phenomena are unsuitable for general use in this way, and particularly for analyzing human–human dialogue: Although models of other-repair are common in human-computer dialogue systems, they tend to focus on specific phenomena (e.g., repair initiation by systems), missing the range of repair and repair initiation forms used by humans; and while self-repair models for speech recognition and understanding are advanced, they tend to focus on removal of “disfluent” material important for full understanding of the discourse contribution, and/or rely on domain-specific knowledge. We explain the requirements for more satisfactory models, including incrementality of processing and robustness to sparsity. We then describe models for self- and other-repair detection that meet these requirements (for the former, an adaptation of an existing repair model; for the latter, an adaptation of standard techniques) and investigate how they perform on datasets from a range of dialogue genres and domains, with promising results.EPSRC. Grant Number: EP/10383/1; Future and Emerging Technologies (FET). Grant Number: 611733; German Research Foundation (DFG). Grant Number: SCHL 845/5-1; Swedish Research Council (VR). Grant Numbers: 2016-0116, 2014-3

    An integrated theory of language production and comprehension

    Get PDF
    Currently, production and comprehension are regarded as quite distinct in accounts of language processing. In rejecting this dichotomy, we instead assert that producing and understanding are interwoven, and that this interweaving is what enables people to predict themselves and each other. We start by noting that production and comprehension are forms of action and action perception. We then consider the evidence for interweaving in action, action perception, and joint action, and explain such evidence in terms of prediction. Specifically, we assume that actors construct forward models of their actions before they execute those actions, and that perceivers of others' actions covertly imitate those actions, then construct forward models of those actions. We use these accounts of action, action perception, and joint action to develop accounts of production, comprehension, and interactive language. Importantly, they incorporate well-defined levels of linguistic representation (such as semantics, syntax, and phonology). We show (a) how speakers and comprehenders use covert imitation and forward modeling to make predictions at these levels of representation, (b) how they interweave production and comprehension processes, and (c) how they use these predictions to monitor the upcoming utterances. We show how these accounts explain a range of behavioral and neuroscientific data on language processing and discuss some of the implications of our proposal

    Incremental Interpretation: Applications, Theory, and Relationship to Dynamic Semantics

    Full text link
    Why should computers interpret language incrementally? In recent years psycholinguistic evidence for incremental interpretation has become more and more compelling, suggesting that humans perform semantic interpretation before constituent boundaries, possibly word by word. However, possible computational applications have received less attention. In this paper we consider various potential applications, in particular graphical interaction and dialogue. We then review the theoretical and computational tools available for mapping from fragments of sentences to fully scoped semantic representations. Finally, we tease apart the relationship between dynamic semantics and incremental interpretation.Comment: Procs. of COLING 94, LaTeX (2.09 preferred), 8 page
    • 

    corecore