186 research outputs found

    Dependency parsing of Turkish

    Get PDF
    The suitability of different parsing methods for different languages is an important topic in syntactic parsing. Especially lesser-studied languages, typologically different from the languages for which methods have originally been developed, poses interesting challenges in this respect. This article presents an investigation of data-driven dependency parsing of Turkish, an agglutinative free constituent order language that can be seen as the representative of a wider class of languages of similar type. Our investigations show that morphological structure plays an essential role in finding syntactic relations in such a language. In particular, we show that employing sublexical representations called inflectional groups, rather than word forms, as the basic parsing units improves parsing accuracy. We compare two different parsing methods, one based on a probabilistic model with beam search, the other based on discriminative classifiers and a deterministic parsing strategy, and show that the usefulness of sublexical units holds regardless of parsing method.We examine the impact of morphological and lexical information in detail and show that, properly used, this kind of information can improve parsing accuracy substantially. Applying the techniques presented in this article, we achieve the highest reported accuracy for parsing the Turkish Treebank

    The incremental use of morphological information and lexicalization in data-driven dependency parsing

    Get PDF
    Typological diversity among the natural languages of the world poses interesting challenges for the models and algorithms used in syntactic parsing. In this paper, we apply a data-driven dependency parser to Turkish, a language characterized by rich morphology and flexible constituent order, and study the effect of employing varying amounts of morpholexical information on parsing performance. The investigations show that accuracy can be improved by using representations based on inflectional groups rather than word forms, confirming earlier studies. In addition, lexicalization and the use of rich morphological features are found to have a positive effect. By combining all these techniques, we obtain the highest reported accuracy for parsing the Turkish Treebank

    Statistical parsing of morphologically rich languages (SPMRL): what, how and whither

    Get PDF
    The term Morphologically Rich Languages (MRLs) refers to languages in which significant information concerning syntactic units and relations is expressed at word-level. There is ample evidence that the application of readily available statistical parsing models to such languages is susceptible to serious performance degradation. The first workshop on statistical parsing of MRLs hosts a variety of contributions which show that despite language-specific idiosyncrasies, the problems associated with parsing MRLs cut across languages and parsing frameworks. In this paper we review the current state-of-affairs with respect to parsing MRLs and point out central challenges. We synthesize the contributions of researchers working on parsing Arabic, Basque, French, German, Hebrew, Hindi and Korean to point out shared solutions across languages. The overarching analysis suggests itself as a source of directions for future investigations

    Parsing the SynTagRus Treebank of Russian

    Get PDF
    We present the first results on parsing the SYNTAGRUS tree bank of Russian with a data-driven dependency parser, achieving labeled attachment score of over 82%and an unlabeled attachment score of 89%.A feature analysis shows that high parsing accuracy is crucially dependent on the use of both lexical and morphological features. We conjecture that the latter result can be generalized to richly inflected languages in general, provided that sufficient amounts of training data are available

    IMST: A Revisited Turkish Dependency Treebank

    Get PDF
    In this paper, we present a critical analysis of the dependency annotation framework used in the METU-Sabancı Treebank (MST), and propose new annotation schemes that would alleviate the issues we have identified. Later, we describe our attempt at reannotating the treebank from the ground up using the proposed schemes, and then compare the consistencies of the two versions via cross validation using a dependency parser. According to our experiments, the reannotated version of the original treebank, which we call the ITU-METU-Sabancı Treebank (IMST), demonstrates a labeled attachment score of 75.3% and an unlabeled attachment score of 83.7%, surpassing the corresponding scores of 65.9% and 76.0% for MST by a very large margin.Peer reviewe

    Modeling the interface between morphology and syntax in data-driven dependency parsing

    Get PDF
    When people formulate sentences in a language, they follow a set of rules specific to that language that defines how words must be put together in order to express the intended meaning. These rules are called the grammar of the language. Languages have essentially two ways of encoding grammatical information: word order or word form. English uses primarily word order to encode different meanings, but many other languages change the form of the words themselves to express their grammatical function in the sentence. These languages are commonly subsumed under the term morphologically rich languages. Parsing is the automatic process for predicting the grammatical structure of a sentence. Since grammatical structure guides the way we understand sentences, parsing is a key component in computer programs that try to automatically understand what people say and write. This dissertation is about parsing and specifically about parsing languages with a rich morphology, which encode grammatical information in the form of words. Today’s parsing models for automatic parsing were developed for English and achieve good results on this language. However, when applied to other languages, a significant drop in performance is usually observed. The standard model for parsing is a pipeline model that separates the parsing process into different steps, in particular it separates the morphological analysis, i.e. the analysis of word forms, from the actual parsing step. This dissertation argues that this separation is one of the reasons for the performance drop of standard parsers when applied to other languages than English. An analysis is presented that exposes the connection between the morphological system of a language and the errors of a standard parsing model. In a second series of experiments, we show that knowledge about the syntactic structure of sentence can support the prediction of morphological information. We then argue for an alternative approach that models morphological analysis and syntactic analysis jointly instead of separating them. We support this argumentation with empirical evidence by implementing two parsers that model the relationship between morphology and syntax in two different but complementary ways
    corecore