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Abstract

When people formulate sentences in a language, they follow a set of rules specific to that
language that defines how words must be put together in order to express the intended
meaning. These rules are called the grammar of the language. Languages have essentially
two ways of encoding grammatical information: word order or word form. English uses
primarily word order to encode different meanings, but many other languages change
the form of the words themselves to express their grammatical function in the sentence.

These languages are commonly subsumed under the term morphologically rich languages.

Parsing is the automatic process for predicting the grammatical structure of a sentence.
Since grammatical structure guides the way we understand sentences, parsing is a key
component in computer programs that try to automatically understand what people say
and write.

This dissertation is about parsing and specifically about parsing languages with a rich
morphology, which encode grammatical information in the form of words. Today’s
parsing models for automatic parsing were developed for English and achieve good
results on this language. However, when applied to other languages, a significant drop in
performance is usually observed.

The standard model for parsing is a pipeline model that separates the parsing process into
different steps, in particular it separates the morphological analysis, i.e. the analysis of
word forms, from the actual parsing step. This dissertation argues that this separation is
one of the reasons for the performance drop of standard parsers when applied to other
languages than English. An analysis is presented that exposes the connection between
the morphological system of a language and the errors of a standard parsing model. In a



xiv Abstract

second series of experiments, we show that knowledge about the syntactic structure of
sentence can support the prediction of morphological information. We then argue for an
alternative approach that models morphological analysis and syntactic analysis jointly
instead of separating them. We support this argumentation with empirical evidence by
implementing two parsers that model the relationship between morphology and syntax
in two different but complementary ways.
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Uberblick

Wenn Menschen Sétze in ihrer Sprache bilden, dann folgen sie einem sprachspezifischen
Satz an Regeln, in dem festgelegt ist, auf welche Weise Worter miteinander kombiniert
werden miissen, um eine gewiinschte Bedeutung auszudriicken. Diese Regeln nennt
man die Grammatik einer Sprache. Natiirliche Sprachen haben im Wesentlichen zwei
Moglichkeiten, grammatische Information zu kodieren: entweder durch die Reihenfolge
der Worter oder in der Form der Worter. Englisch verwendet hauptséichlich die Reihen-
folge von Wortern um unterschiedliche Bedeutungen zu kodieren. Viele andere Sprachen
markieren jedoch die grammatische Funktion von Wortern in ihrer Form. Diese Sprachen
werden gemeinhin unter dem Begriff morphologisch reiche Sprachen zusammengefafst.

Parsing nennt man das automatische Verfahren zur Vorhersage der grammatischen Struk-
tur von Siatzen. Die grammatische Struktur eines Satzes bestimmt, wie man den Satz
versteht. Aus diesem Grund ist Parsing ein wichtiger Bestandteil von Programmen, die
versuchen, die Bedeutung von dem, was Menschen sagen und schreiben, automatisch zu

verstehen.

Diese Dissertation beschéftigt sich mit Parsing, insbesondere mit dem Parsing von
Sprachen mit einer reichen Morphologie. Die aktuellen Modelle fiir Parsing wurden
tiir die englische Sprache entwickelt und erzielen gute Ergebnisse fiir Englisch. Wenn man
diese Modelle aber auf andere Sprachen anwendet, sind die Ergebnisse tiberlicherweise
deutlich schlechter.

Das Standardmodell fiir Parsing ist ein sogenanntes Pipeline-Modell, welches den Parsing-
prozess in verschiedene Schritte aufteilt, insbesondere trennt es die morphologische
Analyse, d.h. die Analyse der Wortformen, von der syntaktischen Analyse, also dem



xvi Uberblick

eigentlichen Parsing. Diese Dissertation stellt die Hypothese auf, dafs diese Trennung
von morphologischer und syntaktischer Analyse einer der Griinde fiir die schlechteren
Ergebnisse ist, die auf anderen Sprachen als Englisch erzielt werden. Wir zeigen in
einer ersten Analyse den kausalen Zusammenhang zwischen bestimmten Eigenschaften
des morphologischen System einer Sprache und den Fehlern, die das Standardmodell
fiir Parsing begeht. In einer zweiten Reihe von Experimenten zeigen wir dann, daf3
Zugang zu der vollen syntaktischen Struktur eines Satzes die automatische Vorhersage von
morphologischer Information verbessert. Wir diskutieren anschliefsend ein alternatives
Parsingmodell, in dem morphologische und syntaktische Analyse gemeinsam modelliert
werden. Wir belegen die Vorteile eines solchen Modells empirisch, indem wir zwei Parser
entwickeln, die die Beziehung zwischen Morphologie und Syntax auf verschiedene aber

komplementédre Weise nachbilden.
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Chapter 1

Introduction

In natural language, speakers express complex meaning that goes beyond the meaning
of single words by combining words into phrases and sentences. The rules that specify
how words must be combined in order to create well-formed sentences are defined in the
grammar of the language that is used. The grammatical structure of a sentence relates
the individual words to each other and thus defines how the meaning of the words must
be combined to derive the meaning of the sentence. When a sentence violates rules of
the grammar it may sound strange, mean something that was not intended, or become

entirely uninterpretable depending on the rule that is being violated.

Language has two! major means for encoding the grammatical structure of a sentence: it
can encode it in the order of the words or in the word forms. The grammar of English, for
example, encodes grammatical structure mostly through word order. A possible sentence
to express the situation in Figure 1.1a is the sentence a dog bites someone. The order of the
words in this sentence is important for its meaning, which becomes apparent when we
change it. The sentence someone bites a dog describes a different situation (Figure 1.1b) than
the first sentence even though the sentence uses exactly the same words. Other word

orders, e.g., the sentence bites someone dog a, may even mean nothing at all.

Other languages do not make use of word order like English but instead encode the

!This is of course a simplification. Spoken language, for example, can use intonation for this purpose.
However, this dissertation focuses on written language.
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= Tl o
(a) A dog bites someone. (b) Someone bites a dog.

7

Figure 1.1: Changing word order in English changes meaning. Sources: (a) “Duchess and Marina”
by David Burke, license CC BY-NC-ND 2.0, (b) “Man bites dog” by Jeff Noble, license CC BY 2.0.

information about the grammatical structure in the form of the words. Examples 1.1
and 1.2 show two sentences in Czech that both mean a dog bites a man. Changing the
word order as in English does not change the meaning of the sentence. In fact, all possible
orders of the three words result in a well-formed Czech sentence and basically have the

same meaning (barring potential stylistic differences or differences due to what is being

emphasized).

(1.1) pes  kouse cloveka (1.2) ¢loveka kouse pes
NOM ACC ACC NOM
dog bites man man  bites dog
A dog bites a man. A dog bites a man.

In the English sentence a dog bites someone, a dog is called the grammatical subject. In the
canonical case, the subject corresponds to the acting party in a situation, here it is the biter
in a biting event. In English, subjects are marked by placing them in front of the verb.
Similarly, the party that is being acted upon is called the object of the sentence, in the
example sentence it is the one being bitten (someone). The object of a sentence is marked in

English by placing it after the verb. It is because subject and object are defined by their


https://www.flickr.com/photos/cit_thmc/8420061864/in/photostream/
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://www.flickr.com/photos/journeyguy/15513861223/
https://creativecommons.org/licenses/by/2.0/

position relative to the verb that the meaning changes when the word order is reversed.

The Czech sentences also have a subject and an object, namely pes and ¢loveka, respectively.
However, it is not their position that encodes this information but it is their form. The word
pes stands in nominative case (marked as NOM in the examples) whereas the word ¢lovéka
stands in accusative case (marked as acc). Nominative case is used to mark subjects in
Czech whereas objects can be marked with accusative case (and others, but not nominative
case). Changing the word order in the Czech sentence does not change the meaning
because the word forms are the same regardless of their order. If we wanted to change the
meaning of the sentence to something close to Figure 1.1b, we need to change the forms of
the words rather than their order (Example 1.3).

(1.3) psa  kouse clovek
ACC NOM
dog bites man

A man bites a dog.

The simple example illustrates how languages make use of word order and word forms to
encode grammatical structure. Traditionally, the part of grammar that deals with word
order rules is called syntax and the part that deals with the form of words is called morphol-
0gy. Morphology can be further divided into the two subfields of derivation/composition
and inflection. The morphological rules for derivation and composition define how new
words can be formed from existing ones, whereas the rules for inflection define how a
word changes its form to signal grammatically relevant information. The Czech examples
show instantiations of inflection because the change in the form, i.e., changing the case
feature of the words, changes the grammatical structure. All languages in the world make
use of syntactic and morphological means to encode grammatical structure but they do
so to different extents. Some languages like English rely heavily on word order whereas
languages like Czech rely more on word forms.
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1.1 Parsing

This dissertation is about models for automatically predicting the grammatical structure
of sentences, in particular for languages like Czech, which encode grammatical structure
by morphological means. A program that is used to predict such structures is called a
parser and the process is called parsing. Since the grammatical structure defines the way
we construct the meaning of sentences from the meaning of its words, predicting such
structures automatically is an important component in systems that try to automatically
understand what people say and write. And since people speak and write in many
languages, the ultimate goal is to develop parsing models that can correctly predict the
grammatical structure for any sentence from any language.

The representation of grammar that we work with in this dissertation is called dependency
grammar. Dependency grammar represents the syntactic structure of sentences as directed
trees called dependency trees. Examples of such trees for the sentences discussed above
are shown in Figure 1.2. Dependency grammars are well suited to represent phenomena

typical for languages with rich morphology and free word order.

subject object object subject
the dog bites someone psa kouSe ¢lovék
ACC NOM
(a) Syntactic structure of an English (b) Syntactic Structure of a
sentence. Czech sentence.

Figure 1.2: Syntactic structure visualized as dependency trees.

The models that we will use are all data-driven models. Data-driven models do not use
rules that were hand-crafted by humans but instead learn a function for mapping input
to output by looking at large amounts of input-output examples. For example, data-
driven parsers are trained on treebanks, which are large collections of sentences for which
humans have manually annotated the correct syntactic structure. The model thus learns
to associate certain structures with certain patterns in the sentences and generalizes this

knowledge to predict new structures for sentences that it has not seen before.
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1.2 Claim and Contributions

The standard architecture in dependency parsing uses a pipeline setup, in which the pars-
ing process is separated into (at least) three steps: tokenization, morphological analysis,
and the actual parsing. During tokenization, a continuous input string is separated into
individual tokens, which roughly correspond to words. During morphological analysis,
the part-of-speech (and for other languages the morphological features) of each word are
predicted. During the parsing step, words are related to each other to form the syntactic
structure of the sentence. The output of each step forms the input to the next one and
the output of the parsing step is the final output of the system. This architecture is very
efficient because it breaks the task down into smaller ones that can be handled efficiently
on their own.

Note that we will use the term parsing ambiguously to refer to the actual parsing step
as well as the whole pipeline system. This is because parsing cannot reasonably be done
without tokenization and at least part-of-speech tags. We therefore consider the whole
process to constitute the task of parsing rather than just the last step in which words are
related to each other.

The pipeline model was developed for English and state-of-the-art parsing systems achieve
very good results for predicting the syntactic structure of English sentences (at least for
newspaper text). However, when these parsers are applied to other languages, a significant
drop in performance can be observed. It has been hypothesized that one of the main
reasons for this drop is the fact that other languages make use of morphological means to
encode grammatical structure and that the models that were developed for English are
not suited to parse languages with rich morphology (Tsarfaty et al. 2010).

In the introductory example, we have shown that languages like Czech encode the gram-
matical information in word forms rather than the word order. Specifically, we have
shown that particular forms are used to mark the grammatical function of a word. One
could think now that one simply needs to note down for each of these forms what function
they mark and parsing should work well also for these languages. However, language
is much more complicated. In many languages, the same word form can be ambiguous
between different interpretations and often a single interpretation is often used for more
than one function in the sentence. As we said before, most languages make use of both
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syntactic and morphological means to encode grammatical information. Because of this,
there are intricate interactions between syntax and morphology in many languages.

The claim that this dissertation starts from is that the separation of tokenization, mor-
phological analysis and syntactic analysis in the pipeline model is one reason why the
standard model does not perform as well for other languages as it does for English be-
cause the interaction between morphology and syntax cannot be modeled. We argue
for an alternative model in which tokenization, morphology, and syntactic structure are

predicted jointly. To this end, we ...

(I) ... conduct analyses and experiments that show that certain properties of the grammar
of languages with rich morphology violate the independence assumption that underlies
the separation of processing steps in the pipeline model. The experiments also highlight

differences between languages that all have rich morphology.

(IT) ... develop a simple model for integrating structural context into a model for predicting
morphological information and use it to show that access to the full structural context is
important for predicting morphology for languages with free word order. An additional
comparison shows that the contribution of structural context is complementary to the
information from large-scale lexicons.

(III) ... formulate a set of constraints that model morphosyntactic rules for three morpho-
logically rich languages. We show that using these models to restrict the search space of a
dependency parser leads to better prediction of argument structure.

(IV) ...present an efficient decoder for non-projective graph-based lattice dependency
parsing and show how word segmentation, morphological analysis, and syntactic analysis
can be modeled jointly. The parser is tested on Turkish and Hebrew and outperforms two
state-of-the-art baseline systems based on pipeline architectures. The results on Turkish
are the first published results for Turkish lattice parsing.
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Chapter 2
Background

The purpose of this chapter is to provide the general background on the topics that this
dissertation takes as given. We introduce dependency structures and dependency parsing
as well as the methods that we use for training our statistical models. The intention is to
give a brief overview and introduce the most important concepts. We provide pointers
whenever possible to other work that describes the discussed content in more detail.
Readers that are familiar with the concepts in this chapter can safely move on to the next.

2.1 Dependency Grammar and Dependency Trees

Dependency grammar is a grammar formalism that focuses on the nature of the relation
between two words within their sentential context. Each word in a sentence stands in an
asymmetric relation with another word, but unlike in constituency grammar no phrasal
nodes are postulated, i.e., the words in the sentence are the only nodes in the structure.
In a dependency relation, the word that influences the properties of the other word is
called the head (or governor) and the word that is influenced by the other is called the
dependent (or modifier, or governee). The dependent is said to depend linguistically’
on the head, hence the name dependency grammar. Complex structures emerge through

'Modern dependency grammar formalisms strive for a description of all linguistic aspects of natural
language, which encompasses phonology, morphology, syntax, semantics, and discourse.
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recursive application of dependency. The nature of the relation between two words is
typically classified into a set of predefined relations, e.g., for syntactic structure it would
contain relations like subject or adjunct. The invention of modern dependency grammar
is credited to Lucien Tesniere (Tesniere 1959, Tesniere et al. 2015) and several formalisms
have been introduced since then, e.g., Functional Generative Description (Sgall et al. 1986),
Meaning Text Theory (Mel’¢uk 1988), and Word Grammar (Hudson 1984).

In parsing literature, a dependency structure almost always corresponds to the syntactic
structure of a sentence. Figure 2.1 gives an example sentence with its syntactic structure
annotated according to the Universal Dependency Grammar (Nivre 2015). By convention,
we draw the dependency arcs such that the arrow points from the head to the dependent.
The type of a dependency relation is indicated by a label on the arc.

root

4 N

ROOT Ross Perot wire  vielleicht ein préachtiger Diktator .

Ross Perot would be perhaps a magnificient dictator

Figure 2.1: The syntactic structure of the first sentence in the TiGer treebank (Brants et al. 2002).

A well-formed (syntactic) dependency tree must fulfill three conditions:

1. There is one word that does not have a head (the root).
2. Each other word has exactly one head.

3. The tree does not contain cycles.

The formal graph structure that fulfills all three conditions is a directed rooted tree.
Rootedness is ensured by introducing an artificial node (ROOT) that acts as the root of the

tree.

We will denote dependency arcs formally as triples (h, d, [) with h being the head word,
d being the dependent word, and [ being the arc label denoting the dependency relation
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between h and d. When we use indices, we index the artificial root node with 0 and all real
words starting from 1 in the order they appear in the sentence. Furthermore, we will use
the term token to refer to the smallest unit of parsing, which in this chapter will usually
coincide with the intuitive meaning of a word in a sentence.

2.1.1 Projectivity

One recurrent problem in multilingual dependency parsing are non-projective arcs. An
arc in a dependency tree is said to be non-projective if there is at least one word in the
span of words covered by the arc that is not a direct or indirect descendant of the head
of the arc. Figure 2.2 gives an example for a non-projective arc. The arc (acl:relcl) covers
the span from Kandidaten to raucht. It is non-projective because gesehen is not a direct or
indirect descendant of the head Kandidaten.

acl:relcl

root

nsubj
aux punct
punct
[ det \ dobj f nsub]

ROOT Sie hat den Kandidaten gesehen , raucht
She has the candidate seen who smokes .

She saw the candidate who smokes.

Figure 2.2: Extraposed relative clauses in German can be represented with non-projective struc-
tures. The non-projective arc is bold-faced.

Formally, let — be the direct dominance relation defined by a dependency tree and let
—* be the transitive closure of —. h — d then denotes a dependency arc in the tree and
h —* d denotes a path from h to d along the arcs of the tree. A dependency arc h — d with
h < d (the head precedes the dependent in the sentence) is defined as projective iff

Vi h—*k forh<k=d 2.1)

otherwise it is non-projective. The case for d < h works analogously. A dependency tree
is called non-projective if it has at least one non-projective arc. Otherwise, it is called

projective. There are considerably more possible non-projective trees for a given sentence
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than projective trees, which significantly increases the space of possible solutions that a
parser needs to search through and thus the complexity of the parsing problem. While
English has only few cases that are commonly analyzed with non-projective structures
(e.g., wh-extraction), other languages show many such phenomena, especially languages
with unrestricted word order. Parsing such languages requires parsing algorithms that
can deal with non-projective edges.

Non-projectivity has also been studied with the aim to identify subclasses of non-projective
structures that can be parsed efficiently. Several such classes were identified and it turns
out that most of the structures (up to 99%) in today’s treebanks fall into one of these
subclasses (Havelka 2007, Gémez-Rodriguez et al. 2011, Kuhlmann 2013). Subsequently,
parsing algorithms were developed that derive restricted sets of non-projective structures

(see Section 2.2).

Most treebanks used in this dissertation contain non-projective structures since rich
morphology and free word order often go hand in hand. The parsers that we develop as
well as the baseline parsers therefore all derive non-projective structures either directly or

via additional processing.

2.1.2 Treebanks

Treebanks are collections of natural language utterances (usually sentences) that have been
annotated manually with their syntactic structure. The nature of the syntactic structure
thereby depends on the linguistic theory that underlies the annotation guidelines. One of
the oldest and perhaps the most influential treebank is the Penn Treebank (Marcus et al.
1993), which is annotated with constituency structures. With the creation of the Penn
Treebank, it was possible to learn statistical models for predicting the syntactic structures
of English sentences that are not in the treebank. This sparked extensive research on
statistical parsing for natural language and it also led to the creation of treebanks for many

other languages.

Some of the treebanks for other languages, e.g., the Prague Dependency Treebank Haji¢
et al. (2006), use dependency grammar as their underlying formalism. Training statistical
dependency parsers on these treebanks is straight-forward. However, for many languages,
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the treebanks are annotated with constituency structures and are thus not directly usable
for dependency parsing. However, for these languages it is common to convert the
constituency structures to dependency structures in order to have training data in the
right format. This is done with head percolation rules (Magerman 1995, Collins 2003),
which define for each constituent which one of their child nodes should be the head. For
example, the right-most noun in a noun phrase is the head of that noun phrase. All other
constituents are then attached as dependents to the selected head. The process is applied

recursively until all constituents are converted. Figure 2.3 illustrates the process.

S
NP VP

ey |
D N v [\Nf\

| | | D v
Der Kandidat raucht Der Kandidat raucht
(a) Constituency tree. (b) Dependency tree.

Figure 2.3: Conversion by head percolation rules. For each constituent, the head is selected among
its children.

There exist several automatic dependency conversions of the Penn Treebank (Yamada
and Matsumoto 2003, de Marneffe et al. 2006, Johansson and Nugues 2007a, Choi and
Palmer 2010). Although the automatic conversion can make mistakes, the quality of the
conversion is very high and the converted treebanks are the accepted gold standard for
training dependency parsers for English. Conversion procedures like this exist for many
languages. In some cases, additional effort was spent to correct conversion errors by
manually checking the resulting dependency structures (see for example the Hungarian
dependency treebank (Vincze et al. 2010)).

In this dissertation, experiments on German are conducted on our own conversion of
the TiGer Treebank (Brants et al. 2002). The conversion is performed semi-automatically
by defining the head percolation rules such that they can fail (Seeker and Kuhn 2012).
Failures were then inspected manually, which either led to more refined rules or to a
correction of the original treebank. In a few cases, the heads were selected manually in
order to treat exceptional cases that do not warrant their own rule and are not due to

annotation errors in the original treebank.
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Currently, there is an effort to create a unified dependency annotation for many lan-
guages. The Universal Dependency Treebank (Nivre 2015) aims at providing a common
dependency analysis for many different languages in order to facilitate multi- and cross-
lingual research. The example dependency trees shown in this dissertation are annotated
according to these guidelines.

2.2 Dependency Parsing

Dependency parsing is the task of predicting a dependency tree for a given sentence. Sta-
tistical dependency parsers usually consist of three components. The first one is a parsing
algorithm or decoder, which is a search algorithm that derives the dependency tree for a
given sentence. The second component is a feature model that maps the input sentence
along with potential parsing actions or dependency structures into a high-dimensional
vector space. The third component is a statistical model that is trained on a treebank and
uses the learned weights to score the high-dimensional vector representations.

There are currently two major paradigms in dependency parsing, transition-based parsing
and graph-based parsing. The two paradigms approach the problem of dependency
parsing from two different sides. Transition-based parsers uses rich feature representations
but approximate search algorithms to find the best dependency tree, while graph-based
parsers restrict their feature space to be able to efficiently perform global search thus
having a guarantee to find the optimal structure. We discuss both of them in turn.

2.21 Transition-based Parsing

Transition-based parsers build the syntactic structure of a sentence incrementally by
starting from an initial configuration and then repeatedly transitioning into different
configurations by performing one of a set of predefined operations. The parsing process is
finished when the parser ends in a defined final configuration. The sequence of operations
(the transition sequence) that the parser performs to transition from the initial configuration
to the final configuration encodes the syntactic structure of the input sentence.
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As an example, Figure 2.4 shows the Arc-Standard transition system as formalized by
Nivre (Yamada and Matsumoto 2003, Nivre 2004). A configuration in this system consists
of three components:

1. B, an input buffer that holds the words of the input sentence, indexed from 0 to n

with 0 representing the artificial root node
2. 0, a stack that serves as a memory and stores unfinished substructures

3. A, the set of arcs that form the output structure

The parser starts with the root node on the stack, all other tokens stored in the buffer,
and an empty arc set. It then applies one of the three operations shown in Figure 2.4 to
transition into a new state and repeats the procedure until it ends in the final configuration.
The final configuration is reached when the buffer is empty and the only symbol on the
stack is the artificial root node. At this point, the arc set holds all arcs that the parser has
introduced between the words of the sentence.

Left-Arc; introduces an arc between the front of the buffer and the top of the stack with
the front of the buffer being the head. The token on top of the stack is then discarded.
Right-Arc; introduces an arc between the same items but makes the top of the stack the
head. The token in front of the buffer is discarded and the top of the stack is put back onto
the buffer. The third operation, Shift, simply pushes the token in front of the buffer onto
the stack. Left-Arc; and Right-Arc; are additionally parameterized for the label that they
introduce on the arc.

Transition Precondition
Left-Arc;  (o|w;, w;|B,A) = (o,w;|8, AU {{wj,w;,1)}) i#0
Right-AI‘Cl (U”wi, w]"B, A) = (U, ’U)Z"B, AU {(wi, Wi, l)})
Shift (o, wi|B,A) = (o|w;, B, A)

Figure 2.4: The Arc-Standard transition system adapted from Kiibler et al. (2009: fig. 3.1).

A statistical multiclass classifier is used to decide at each step, given the current config-
uration, which of the three operations the parser should apply. The classifier is trained
on oracle transition sequences. Oracle transition sequences are derived from manually

annotated treebanks by running the transition system on a sentence such that it derives
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the treebank tree for this sentence. It is possible that there is more than one oracle tran-
sition sequence for a given sentence. A canonical sequence can be defined by ranking
the operations in the transition system, preferring higher-ranked ones in case multiple
are allowed. Ranking the operations as in Figure 2.4 (Left-Arc > Right-Arc > Shift), the
canonical oracle transition sequence for the example sentence in Figure 2.1 would be Shift,
Right-Arc,,qme, Shift, Shift, Shift, Shift, Shift, Left-Arc,,04, Left-Arcge, Left-Arcaqumod,
Left-Arc.op, Left-Arc, g, Shift, Right-Arc,ynct, Right-Arc,0, Shift.

In order to predict the next transition, the parser extracts features from its current con-
figuration. These features include information about the next items in the buffer and the
partially processed items on the stack. By accessing the stack, the feature model has access
to the entire structure that has been build so far. As the parser advances, more structure is

build and becomes available to the feature model.

There are several different flavors of transition-based parsers, all of which have in common
that they build the output structure incrementally at each step predicting the next one
based on the current configuration. Nivre (2008) makes a distinction between stack-based
and list-based algorithms. Stack-based algorithms are e.g., the Arc-Standard algorithm
shown above (Yamada and Matsumoto 2003, Nivre 2004) and the Arc-Eager algorithm
(Nivre 2003). List-based algorithms are proposed in Covington (2001). Instead of a
stack, they use one or more lists to store partially processed tokens. Non-directional
parsers (Shen and Joshi 2008, Goldberg and Elhadad 2010b) abandon the strict left-to-right
processing and instead allow introducing arcs between neighbouring tokens anywhere in
the sentence. The statistical models guiding these parsers not only learn which tokens to
connect but also which tokens should be processed before others.

Most of the transition-based algorithms derive projective trees only (with the exception
of some of the list-based algorithms in Covington (2001) and the parser in Shen and
Joshi (2008)). Modifications in different directions have been proposed to deal with non-
projectivity: Nivre and Nilsson (2005) propose a preprocessing step that projectivizes
trees prior to parsing and reintroduces non-projective edges afterwards. Nivre (2009),
Nivre et al. (2009) add a swap operation to the transition-system that reorders tokens
during parsing in order to create a projective parsing order. The swap operation was
applied in non-directional parsing by Tratz and Hovy (2011). With the swap operation
transition-based algorithms are able to derive any possible non-projective structure for

a given sentence, but it comes with an increased time complexity. Other approaches
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avoid the increase in complexity by restricting the set of non-projective structures that
can be derived (Attardi 2006, Gémez-Rodriguez and Nivre 2010, Pitler and McDonald
2015). These subsets can be parsed efficiently and are shown to include almost all of the

non-projective arcs that can be found in the treebanks.

Transition-based parsers are fast due to their low time complexity. The stack-based variants
find a tree in linear time with respect to the length of the input sentence and the list-based
algorithms have quadratic complexity (for proofs, see e.g. Nivre 2008). The complexity of
non-directional parser by Goldberg and Elhadad (2010b) is O(nlog(n)). Introducing the
swap operation increases the complexity of the stack-based parsers to O(n?).

Another aspect that makes transition-based parsers fast and efficient is that they search
for the best tree greedily, i.e., they always go with the locally best decision under the
assumption that this will usually also lead to the globally best output. This is one of the
fundamental differences to graph-based parsers, which perform global optimization to
find the best tree. However, greedy search suffers from error propagation because once
the parser has made an incorrect attachment it cannot correct it anymore. For this reason,
transition-based parsers used to perform worse than graph-based parsers in terms of
parsing accuracy. Since then, techniques like beam-search (Johansson and Nugues 2007b,
Zhang and Clark 2008a) and dynamic programming (Huang and Sagae 2010), which
allow the parser to pursue several derivations in parallel, closed that gap while increasing
runtime by a constant factor only. At the same time, error propagation in greedy parsers
has been mitigated with the help of dynamic oracles, which allow the parser to learn how
to recover from past mistakes (Goldberg and Nivre 2012, 2013).

2.2.2 Graph-based Parsing

In contrast to transition-based parsers, graph-based parsers do not build dependency
trees incrementally. Given a statistical model that assigns scores to dependency trees,
graph-based parsers search through the space of all possible dependency trees for a
sentence returning the one to which the statistical model assigns the highest score. This
approach guarantees that the returned tree is indeed the optimal given the statistical
model. However, since there are exponentially many trees for a given sentence, one

cannot simply look at each possible tree individually and compare their scores. Instead,
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algorithms were developed that efficiently search through the space without having to

create every single tree.

Eisner (1997, 2000) develops a dynamic programming algorithm that finds the optimal
dependency tree for a given sentence in cubic time, but is restricted to projective trees. The
algorithm works like the chart parsers known from constituency parsing and uses the fact
that subtrees of a dependency tree are also dependency trees. Alternatively, McDonald
et al. (2005) propose to use spanning tree algorithms to find the optimal dependency
tree for a given sentence. The particular algorithm used in McDonald et al. (2005) is
the Chu-Liu-Edmonds algorithm. It is not restricted to projective trees and with clever

implementation it runs in quadratic time with respect to the length of the input sentence.

The Chu-Liu-Edmonds Algorithm

The Chu-Liu-Edmonds algorithm (Chu and Liu 1965, Edmonds 1967) is a maximum
spanning tree algorithm. Given a graph with arc weights, it searches for the spanning tree
that connects all vertices in the graph and has the maximum sum of arc scores. We make
use of this algorithm in several places in this dissertation, e.g., to enforce tree properties
(Chapter 7). For this reason, we present the algorithm in this section, following the
description in Kiibler et al. (2009: 48). We demonstrate the algorithm by using an example.
Proper pseudocode and a longer discussion can be found in McDonald et al. (2005) and
Kibler et al. (2009:47).

Figure 2.5 shows an example run of the algorithm on a small graph with four nodes. The
nodes represent the sentence (ROOT John saw Mary). The algorithm starts from a fully
connected graph (Figure 2.5a) whose arcs are weighted, e.g., by a statistical parsing model.
The first step is to make a greedy selection by choosing the highest-scoring incoming
arc for each word (Figure 2.5b). The algorithm would stop at this point if the resulting
structure is a proper tree since this tree would be the maximum spanning tree over the
original graph. However, greedy selection can create cycles as shown in the example
between John and saw. In such a case, the algorithm contracts the cycle into a single
node and recomputes the arc scores for each arc that enters or leaves the contracted cycle
(Figure 2.5¢). The new arc scores are computed depending on the score of the cycle and the

scores of the incoming/outgoing arcs (see Kiibler et al. 2009: 47 for the exact procedure).
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Once the cycle is contracted and the new arc scores are computed, the algorithm calls itself
recursively on the new smaller graph starting again with a greedy selection. If another
cycle is found, the contraction procedure starts again and the recursion continues. Since
each recursive call reduces the number of nodes in the graph due to the contraction, the
algorithm eventually finds a tree structure without a cycle. This is shown in Figure 2.5d.
From there, the contractions are resolved until an acyclic tree structure is obtained for the

original graph (Figure 2.5e).

Arc-factored Model and Higher-order Factors

Eisner’s algorithm and the Chu-Liu-Edmonds algorithm both rest on the assumption that
the individual arcs in the tree are independent of each other. The underlying statistical
model assigns a score to each arc and the score of a tree is the sum of all arc scores. The
score of an arc is thereby independent of any other arc in the tree, i.e., it does not change if
the other arcs in the tree change. This model is called the arc-factored model, since the

parameters of the model factor over single arcs.

Arc-factorization makes the search for the best dependency tree tractable but it is an
unrealistic model from a linguistic point of view. To see its limitations, consider the two
German sentences in Figure 2.6. Both sentences contain a dependent clause, the upper one
contains a relative clause, the lower one contains a subordinate clause expressing a clausal
relationship. The crucial difference here is that the relative clause depends on the object of
the matrix clause whereas the subordinate clause depends on the verb (red arcs in both
trees). The head of both dependent clauses is the same verb bellt. An arc-factored model
now has to decide the attachment of this word without knowing any of the other arcs in
the tree. In particular it does not know the arcs marked in blue. In the upper sentence,
the blue arc attaches the relative pronoun to bellt, in the lower sentence, it attaches the
subordinating conjunction. Linguistically, this information makes the attachment decision
trivial, but the arc-factored model cannot access it. In short sentences like the examples in
Figure 2.6, this information can be approximated by looking at the surrounding words. The
relative pronoun in the upper sentence is the immediate left neighbor of bellt. However,
German syntax allows for any number of other words to occur between bellt and the
relative pronoun/subordinating conjunction, which makes surrounding context a rather

unreliable source of information for this purpose.
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coming arc for each node.

root root
9+20 9+20

te //5/ t. //g/ v

‘. John ‘. John

) 3 ) 3
(c) Contract cycles and recompute scores. (d) Run Chu-Liu-Edmonds on the contracted
graph.
root
9
9:
30 o
30
-, 20 - 0
ohn L . Mar
J 11+20 Y

(e) Resolve contractions.

Figure 2.5: The Chu-Liu-Edmonds algorithm in five steps (see also Kiibler et al. 2009: 48).
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punct

acl:relcl
dobj punct
nsubj det nsubj

SN

Sie streichelt den Hund , der bellt
She pets the dog  that barks .

punct

adocl

punct
dobj mark
nsubj det nsub
Al I A

Sie streichelt den Hund , weil er bellt
She pets the dog because it barks .

Figure 2.6: Attachment of dependent clauses to illustrate second-order dependencies.

Figure 2.6 shows that modeling dependencies between arcs opens access to relevant
information that is hidden from the arc-factored model. Unfortunately, higher-order
models? come with increased complexity. Full non-projective parsing with more than
first-order models was proven to be NP-hard (for the proof, see McDonald and Pereira
2006), but Eisner’s algorithm, which derives projective trees only, can be extended to
higher order models while keeping its polynomial complexity. McDonald and Pereira
(2006) propose a variant of Eisner’s algorithm that uses factors of consecutive siblings
(Figure 2.7a), to which Carreras (2007) adds factors over grandchildren (Figure 2.7b).
While the variant with consecutive siblings retains its cubic time complexity, Carrera’s
decoder already runs with O(n') with n being the length of the input sentence. Koo and
Collins (2010) go one more step and introduce third-order features while at the same time
keeping the runtime at O(n*). Zhang and McDonald (2012) generalize Eisner’s decoder to
any-order models, reporting a time complexity of O(n372¥) where z is the number of free

variables in their parsing rules.

*Models that consider dependencies between two arcs are called second-order models. If they model
dependencies between three arcs they are called third-order models. The arc-factored model is hence called a
first-order model.
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(a) Consecutive siblings. (b) Grandchildren. (c) Arbitrary siblings.

Figure 2.7: Second-order factors. Solid lines show one factor.

Factorization restricts the type of features that the feature model has access to. In the
arc-factored case, features can only be extracted from single arcs, in higher-order models,
sibling or grandchild features can be added. However, structural features can never go
beyond the information retained in a factor. This is one of the fundamental differences
between graph-based and transition-based parsers as the latter have access to their entire
parse history, can extract structural features of any complexity, and are restricted only be
the fact that some structure may not have been built yet.

Eisner’s algorithm allows for efficient higher-order models, but (and because) it can
derive projective trees only. In order to derive non-projective trees, different modifications
have been proposed. McDonald and Pereira (2006) propose a hill-climbing algorithm for
postprocessing that starts from the highest-scoring projective tree and reattaches edges
until the overall score does not increase anymore. Pitler (2014) extends Eisner’s algorithm

3

to directly derive 1-Endpoint-Crossing trees,” a subset of all possible non-projective

structures (see also Pitler et al. 2013).

While clever factorization keeps the parsing algorithms tractable, they are still rather
slow, especially compared to greedy transition-based parsers. Many graph-based parsers
therefore run a pruning step first that uses a simple method for cutting of arcs that are
unlikely to be chosen by the parser. For example, a sentence with 100 words requires
the parser to consider 99 heads for each word (in the non-projective case). Cutting this
number down to 10 heads per word makes the combinatory problem considerably smaller
and leads to faster parsing time. Of course, if the pruning step cuts off a correct arc, it

cannot be recovered by the parser. A popular method to decide which arcs to keep is to

*In 1-Endpoint-Crossing trees, a non-projective arc is crossed by arcs that all have the same endpoint.
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use the marginals of a probabilistic arc-factored model (McDonald and Satta 2007, Smith
and Smith 2007, Koo et al. 2007). Rush and Petrov (2012) use cascades of models with
increasing complexity so that the simpler models narrow down the search space for the
more complex models. Zhang and McDonald (2012) show how any kind of higher-order
model can be kept tractable by using cube pruning to restrict the number of arcs that are
considered between two words.

Parsing as an Integer Linear Program

Parallel to the effort of extending Eisner’s decoder, other methods of finding the optimal
tree were investigated, for example dependency parsing as solving an integer linear
program. Integer linear programming is a mathematical tool to describe constrained
optimization problems. It consists of an objective function that is being optimized and
a set of constraints over the variables in the objective function that need to hold in the
optimal solution.

The general idea is the following: each possible arc between the tokens of a given sentence
is represented by a binary variable that marks the presence or absence of this arc in the
output tree (recall the representation of dependency trees as indicator vectors from above).
Each of these binary variables is weighted by an arc score from a statistical model. The
objective function of the integer linear program is then to optimize the overall score of the
tree by finding the combination of binary variables whose weights sum up to the highest

score.

Without any constraints, the solution to this optimization problem is to set all variables to
1 that have a positive arc weight. However, this will most likely not result in a well-formed
dependency tree. Therefore, some constraints are added to the integer linear program that
only allow solutions which are well-formed dependency trees. The conditions that need
to be met are listed in the beginning of this section (root has no head, one head for each
token, no cycles). Riedel and Clarke (2006), who proposed the first parser based on integer
linear programming, defined constraints for the first two conditions, but had to resort to
an iterative method to enforce acyclicity. They first compute a solution, and if the solution
contains a cycle, they add a constraint that explicitly excludes this particular cycle. They
then run the solving process again, possibly ending up with another cycle, until finally
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an acyclic solution is found. Obviously, this iterative process makes the approach very
inefficient. Martins et al. (2009) find a concise formulation that directly enforces acyclicity
without the need for an iterative process (see also Martins et al. 2010b). Their parser
ensures cycle-freeness by employing a single-commodity flow formulation (Magnanti and
Wolsey 1995). It models a flow from the root to each of the tokens in the sentence along
the arcs of the tree. Together with the single-head constraint, only acyclic trees can fulfill
this constraint.

Solving the integer linear program with the described constraints outputs a well-formed
dependency tree that is optimal with respect to the scoring function. Any general-purpose
constraint solver for (integer) linear programs can be used to find the optimal solution. This
parser is attractive from a modeling point of view, because any kind of other constraints
can be added to the formulation. We make use of this property in this dissertation to
model dependencies between morphology and syntax. A formal definition of the parser is
therefore deferred to Chapter 6. Higher-order features can be added through the definition
of additional variables that are linked to the arc variables via constraints. The higher-order
dependencies are scored by the statistical model and their corresponding variables are
included into the objective function. Martins et al. (2009) propose several second-order
features, e.g., the already mentioned consecutive siblings, grandchildren, or arbitrary
siblings Figure 2.7c.

As with all graph-based parsers, the disadvantage of integer linear programming parsers
is their complexity. Dropping the integer constraint, i.e., allowing for the variables to take
any real value, creates a linear program, for which solvers exist that run in polynomial time.
However, relaxing the problem in this way forfeits the guarantee to get a well-formed
dependency tree since some of the variables in the solution may end up with fractional
values. Martins et al. (2009) postprocess such fractional solutions by projecting them to
the nearest integer solution. This is done by running the Chu-Liu-Edmonds algorithm
on the first-order output graph with the fractional assignments as arc weights. However,
they find that in the vast majority of cases the projection is unnecessary since the original
solution already only contains integers.
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Lagrangian Relaxation and Dual Decomposition

Lagrangian relaxation is another method for solving constrained optimization problems
that trades the guarantee for an exact solution for more efficient decoding. Rush et al.
(2010) introduced this method to perform efficient inference in complex models for natural
language processing. The idea of Lagrangian relaxation is to solve a hard constrained
optimization problem by moving some or all of the constraints into the objective function
and then searching for the solution that maximizes the original function while at the same
time violating the constraints as little as possible. The following part is based on Rush and
Collins (2012).

Assume that we have a problem where we wish to maximize a set of variables x given a

set of parameters 6. Additionally, we have a set of constraints on the values of x.

argmaxx - 0 (2.2)

xr

subjectto Ax =1b

We assume now that we can solve the unconstrained problem efficiently, but with the
constraints it is very difficult to do so. The idea of Lagrangian relaxation is to circumvent
the constraints that make the problem difficult to solve by moving them into the objective
function together with a set of Lagrangian multipliers ().

Lxxz)=x-0+X-(Ax —b) (2.3)

The dual objective of the original problem is still to find the maximum values of x

L(X\) = argmax L(A, x) (2.4)

T

and the dual problem is to minimize the value of the Lagrangian multipliers

arg min L(X) (2.5)
A

Solutions to the dual objective are upper bounds to the solution of the original function and
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by minimizing the dual problem, the upper bound is moved closer to the optimal solution.
Rush and Collins (2012) show how to use subgradient descent for the optimization. The
solution that is output in the end is not guaranteed to be identical to the optimal solution
of the original problem. However, if at any point in the optimization the constraints are
not violated, i.e., Ax — b = 0, then the upper bound and the optimal solution coincide and
the « at this point is guaranteed to be optimal.

Dual Decomposition is a special case of Lagrangian relaxation in which the constrained op-
timization problem can be decomposed into two or more sub-problems and the constraints
connect the sub-problems in some way. As before, it is assumed that the sub-problems
can be solved efficiently when the constraints are ignored.

Let the original problem be

argmax =« - 01 + z - 62 (2.6)

x,z

subjectto Ax + Bz =c

where x and z are the variables for the two sub-problems and 0! and 62 are the corre-
sponding sets of parameters. A, B, and c define the constraints over « and z.

The constraints are integrated into the objective function as before
L\ z,z)=x-0'+2-02+ X (Ax+ Bz —¢) (2.7)
and the dual objective is to maximize  and z.

L(A) = argmax L(A\, x, z) (2.8)

x,z

The dual problem is as before to minimize the value of the Lagrangian multipliers.

argmin L(\) (2.9)
A

Rush et al. (2010) illustrate the use of dual decomposition with two problems. In the
first, they show a model for joint phrase-structure parsing and part-of-speech tagging,
in the second they combine a phrase-structure parser with a dependency parser. They
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derive simple subgradient algorithms to optimize the complex models. In the case of joint
phrase-structure parsing and part-of-speech tagging, the complex problem is decomposed
into two problems, namely phrase-structure parsing and part-of-speech tagging. Both
tasks alone are well-studied and can be solved efficiently with known algorithms. The
difficult problem of the joint task is to enforce the equality constraints that postulate that
the part-of-speech tags assigned by the parser should be the same as the ones assigned by
the tagger. They can solve this problem efficiently with the described dual decomposition
approach.

Rush et al. (2010) show that their algorithms solve a linear programming relaxation of the
joint problem, making the method equivalent to the relaxed version of the parser based
on integer linear programming described in the previous section. The same method can
also be used not to solve a joint problem but rather to keep a complex problem tractable.
Koo et al. (2010) develop a dependency parser that models second-order features with
head automata. The head automata are used to model the right and left dependent of each
individual word in the input sentence. However, since all head automata are optimized
independently of each other, it is likely that different automata contradict each other and
thus their union will not lead to a well-formed dependency tree. To make the automata
agree on a common dependency tree, Koo et al. (2010) use a dual decomposition algorithm
that alternatingly optimizes the head automata and the Chu-Liu-Edmonds algorithm. The
purpose of the latter is to enforce a tree structure since it always outputs a spanning tree

over the input sentence.

We make use of head automata in Chapter 7 to model second order features in our lattice
parsing model. The lattice parser uses dual decomposition to find the optimal tree and
segmentation for a given morphological lattice. However, we do not use a subgradient
algorithm like Rush et al. (2010) to find the optimal solution. Instead, we use Alternating
Directions Dual Decomposition or AD?® (Martins et al. 2010a, 2011a,b, 2015). AD? is a
form of augmented Lagrangian relaxation, where a regularization term is added to each
subproblem in order to facilitate faster convergence to a common solution. In essence,
this method does the same as the subgradient algorithms of Rush et al. (2010) only more
efficiently. It is, however, also better suited to deal with situations where there are many
sub-problems. For example, we use multiple logic constraints in Chapter 7 to enforce well-
formed output structures.These logic constraints are treated as additional sub-problems in
the problem formulation increasing the number of sub-problems considerably.
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2.2.3 Transition-based or Graph-based Parsing?

Both parsing paradigms have different strengths and weaknesses and are often even
complementary to each other (see e.g. Nivre and McDonald 2008). Transition-based
parsers are fast and can tap into rich feature representations but rely on inexact search
and may suffer from error propagation. Graph-based parsers are guaranteed to find
the globally optimal structure, but do so with restricted feature sets and complex (and
therefore slow) decoding algorithms. While global optimization initially gave an edge to
the graph-based parsers, transition-based parsers have since caught up and both types are

reaching state-of-the-art performance.

Zhang et al. (2014b) have recently shown with their sampling-based parser that greedy
decoding can be as good as global optimization. One of their motivations comes from the
observation that relaxation methods (e.g. Koo et al. 2010) most of the time still arrive at
an exact solution when used for dependency parsing. The search space in dependency
parsing might be structured in a way that it is essentially unnecessary to search the full
space in order to find the best tree. This hypothesis seems even more plausible if one
thinks about the simple models that are commonly used for pruning the search space
before parsing. Given these developments, a rich set of features that model the underlying
data well seems to be more important than a search algorithm that searches the entire
space of possible dependency trees to give a guarantee for optimality.

2.3 Training the Statistical Models

In this dissertation, we use supervised learning to learn the statistical models. Supervised
learning means that we train the model on data for which we already know the correct
solution. In Chapter 5, we predict the morphological features of words. The training data
is therefore a corpus for which the morphological features have been manually annotated.
Analogously, when we train parsers, we train them on treebanks. In this case, the model is

used to predict dependency trees given an input sentence.

Let X be the set of inputs and Y be the set of outputs. For example, x € X could
be a word in morphology prediction or a sentence in parsing, and y € Y could be a
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morphological feature label or a dependency tree. A training set for supervised learning
then consists of elements from the input set labeled with elements from the output set,
ie, T = {(z,y),...} is a set of input-output pairs. The y’s in T are also called the gold

standard and are assumed to be correct.

Throughout the dissertation we use linear models to obtain a score for an input-output
pair. In prediction, the score is used to find the optimal y for a given . The input is first
mapped into a high-dimensional feature space using a feature function ¢. Most of the
features that we work with are binary, i.e., the value of a single feature can be either 0 or 1.
The statistical model is a function that takes the features as input and computes a score.
It is called linear because the score depends linearly on the feature values. Training the

model means to learn a weight for each feature.

d
score(x,y) = w- d(z,y) = > _ wa * pa(x,y) (2.10)
=0

Equation (2.10) shows the general scoring function. Given a pair (z, y) and a weight vector
w, the score is computed by taking the dot product of w and the feature vector produced
by the feature function ¢(x, y). The dot product is the sum of the pairwise multiplication
of each weight with its corresponding feature. d is the number of different features, i.e.,
w € R?and ¢(z,y) € R

The models in this dissertation are trained with a general online learning algorithm as
shown in Algorithm 1. It takes a labeled training set and a predefined number of iterations
(usually set to 10). The algorithm goes through the training data one instance after the
other, each time making a prediction (Line 6). The weight vector then updated with respect
to the prediction (Line 7). We furthermore use averaging to prevent overfitting and to
obtain models that generalize better to unseen data (Freund and Schapire 1999, Collins
2002).

We train models for two purposes: multiclass classification and structured prediction
(Collins 2002). The first case is used for example in Chapter 5 to predict morphological
feature values for words. The input are words in their context and the output is a label
from a set of morphological feature descriptions. For each word, the statistical model

takes a feature representation of the word in its sentential context and outputs the feature
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Algorithm 1 Online Learning with Averaging

Require: 7' = {(xo,v0),-.., (T, yt)} > The labeled training set
Require: number of iterations /
1 w=0 > Initialize the weight vector
2: we =0 > Keep a second vector for averaging
3: fori =1to 1 do
4: SHUFFLE(T) > Shuffle the training data
5: forall (x,y) € T'do
6: 9 = PREDICT(w, x) > Make a prediction
7: UPDATE(w, x, 9, y) > Update the weights according to prediction
8: Wg = Wq + W > Store the current weight vector
9: end for
10: end for
11: W =wea/(T x1I) > Average the weights
12: return w

label with the highest score.

g = argmaxw - ¢(x,y) (2.11)
yey

The parsers developed in this dissertation belong to the graph-based paradigm and
are trained with structured prediction. Unlike in the multiclass prediction case, the
output values Y have an internal structure, i.e., they are dependency trees. As there are
exponentially many dependency trees for a given sentence, it is not feasible to simply
do an argmax over all possible output values as in Equation (2.11). However, since we
are only interested in the highest-scoring dependency tree, we can use one of the parsing
algorithms from above, say Chu-Liu-Edmonds, to find the highest-scoring dependency
tree efficiently without having to go through exponentially many trees one after the other.
Recall that this is efficient because the amount of information to which the statistical model
has access is limited.

¢ = Chu-Liu-Edmonds(w, ¢, x) (2.12)

Equations (2.11) and (2.12) are the instantiations of Line 6 in Algorithm 1 for multiclass
prediction and structured prediction, respectively. For adjusting the weights of a model
during training (Line 7 in Algorithm 1), we use the passive-aggressive update rule by
Crammer et al. (2003, 2006) which is shown in Equations (2.13) and (2.14). The model is
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updated only if the prediction is incorrect with respect to the gold standard. The update
changes the weight vector just as much as it needs to make a correct prediction for the
current input, but not more because the model should stay good on the examples where
it made correct predictions. The name passive-aggressive describes this behaviour: it is
passive when the model made a correct prediction, but in the other case it aggressively
changes the weights to get a correct prediction next time.

w - ¢($7 Z)) —w- ¢($7 y) + LOSS(Q,y)
||q5(at,y) - ¢($7Q)H2

5= (2.13)

In Equations (2.13) and (2.14), ¢(z, y) is the feature vector of the gold standard and ¢(z, 9)
is the feature vector of the best prediction. Note that in the multiclass case, § is a single label
whereas in the structured prediction case, it is a complete dependency tree. Equation (2.13)
computes the amount § by which the weight of each feature in the prediction and the
gold standard is changed. In Equation (2.14), the weights for features in the gold standard
are increased whereas the feature weights of the best prediction are decreased. After the
update, the gold standard should get a higher score than the best prediction. Additionally,
the passive-aggressive update enforces a margin between the score of the best prediction
and the score of the gold standard that must be at least as big as the loss between the
two. We use a zero-one loss in the multiclass prediction meaning that the loss is one if
the predicted label is incorrect and otherwise 0. For parsing, the loss is a function of the
number of tokens that did not get the correct head. Note that in structured prediction, the
feature vectors in Equations (2.13) and (2.14) are the sum of the feature vectors for each
factor in the structure, for example in the arc-factored model, it would be the sum of the

feature vectors for each arc in the tree.
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Chapter 3

Motivation

In this chapter, we develop the hypotheses and research questions of this dissertation. We
first present morphological and syntactic phenomena of morphologically rich languages.
We then examine the models that are commonly used in parsing and show that some
of the assumptions that are built into these model do not hold for languages with rich
morphology. This chapter sets the scene for the following chapters, in which we test the
developed hypotheses empirically.

3.1 Morphology and Syntax

In English, the syntactic structure of a sentence is mainly expressed by the order in which
the words appear in the sentence. Consider the example! by Bresnan (2001) in Figure 3.1.
The fact that children comes before are chasing in Figure 3.1 determines the subjecthood of
the word. In the same way, dog is the direct object because it follows the verb. Switching
the positions of these words would result in a change of meaning, as now, dog would be
subject and children would be the direct object.

Consider now the example in Figure 3.2, also by Bresnan (2001). This sentence is from the

!The original examples come with a phrase structure analysis which we changed to dependencies since
the argument we want to make does not depend on the syntactic theory.
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det

[ r=rAar-

the two small children are chasing that dog

Figure 3.1: English syntactic structure is mostly expressed through word order. Example taken
from Bresnan (2001: 5).

Australian language Warlpiri and expresses the same semantic concept as the sentence
in Figure 3.1. According to Bresnan, any other order of the words in this sentence are
also acceptable to express the same meaning as long as the auxiliary occupies the second
position in the sentence. In Warlpiri, word order therefore cannot serve to determine the
syntactic relationships between the individual words. Instead, the morphology of the
words overtly marks the roles that they play in the syntactic structure of this sentence. The
subject of the sentence, witajarrarlu kurdujarrarlu, is in ergative case, whereas the direct
object, yalumpu maliki, is in absolutive case. Furthermore, the words for small and children
do not need to be adjacent since their identical inflection relates them to each other.

amod
dobj \
nsubj \
|
wita-jarra-rlu ka-pala wajili-pi-nyi yalumpu kurdu-jarra-rlu  maliki

small-DUAL-ERG pres-3DU.SUB] chase-NPAST that.ABS child-DUAL-ERG dog.ABS

Figure 3.2: In Warlpiri, syntactic structure is expressed by morphology. Example taken from
Bresnan (2001: 6).

These two sentences exemplify two opposite points on the scale of options that languages
have to express syntactic structure. Bresnan uses them to illustrate a phenomenon com-
monly observed by language typologists: languages with rich morphology usually allow
for free word order whereas languages with rather poor morphology often have very
strict word order rules. Bresnan summarizes this observation with the slogan: Morphology
competes with syntax (Bresnan 2001: 6).

Figure 3.2 makes it clear that without information about the morphology of the individual
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words, automatic syntactic analysis (i.e., syntactic parsing) would have a hard time
discovering the correct syntactic structure in Warlpiri. While not all languages in the
world are as extreme as Warlpiri, most of them employ morphology to some extent to
express syntactic structure. Morphological analysis is therefore an important part of
syntactic parsing in a multilingual setting. However, automatic morphological analysis
in itself is not a simple task either, since—as always in natural language processing—it

needs to deal with ambiguity.

3.2 Syncretism

Consider the two German sentences presented in Examples 3.1 and 3.2. Both sentences
contain the word fahren (to drive). In the first example, fahren is a finite word form in third
person singular present tense, in the second example, fahren is the present tense infinitive.
Although both word forms look the same, they have different morphological features and
are indeed different inflections of the lemma fahren. The phenomenon when two (or more)
morphological forms of a lemma have the same surface form is called syncretism.

(3.1) Peter sagte, dafs sie  morgen nach Berlin fahren.
Peter said that.CONJ they tomorrow to  Berlin drive.3-SG-PRES

Peter said that they will drive to Berlin tomorrow.

(3.2) Peter will morgen nach Berlin fahren.
Peter want.MODAL tomorrow to  Berlin drive.INFINITIVE

Peter wants to drive to Berlin tomorrow.

To correctly predict the morphological features of fahren in each sentence, one needs to
know if the verb is the main verb of a subordinate clause introduced by daff (Example 3.1)
or if the verb is embedded by the modal verb will (Example 3.2). Thus, the resolution
of the syncretism must rely on syntactic information about the sentential context of the

syncretic word.

Baerman et al. (2005: 2) characterize syncretism as a mismatch between morphology and syntax:

A syntactically relevant distinction is not made by the morphology. In the examples above,
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it is the distinction between finite and non-finite verb forms. Syncretism is a common phe-
nomenon in many languages and occurs in verbal and nominal morphological paradigms.
The World Atlas of Language Structures Online? lists 60 languages with syncretism in
verbal PERSON and NUMBER marking out of the 141 languages listed that mark PERSON or
NUMBER at all (Baerman and Brown 2013b). Similarly, it lists 40 languages with a syncretic
case system out of the 75 languages listed that have a case system (Baerman and Brown
2013a).

Formally, syncretism can be characterized as an Identity in form between two grammatically
different inflections (Trask 1997, as cited in Baerman et al. 2005: 2). Syncretism occurs when
one surface form of a single word occupies more than one cell in this word’s inflection
paradigm. To illustrate this, Table 3.1 shows the declension paradigms of two Czech
nouns, bratr (brother) and mésto (city). Syncretic forms are marked by different colors. The
two examples show mostly syncretism with respect to CASE with the exception of the
form mésta additionally being ambiguous with respect to NUMBER. Case syncretism is a
typical property of Indo-European languages. Among these, Slavonic languages show the

highest degree of variation and complexity (Baerman et al. 2005: 38).

MASC ANI SG PL NEUT SG PL

NOM bratr bratfi NOM mésto mésta

ACC bratra bratry ACC  meésto mésta

DAT bratrovi/u bratram DAT meéstu meéstim

GEN bratra bratra GEN meésta meést

VOC bratfe - VOC  mésto -

LOC bratrovi/u bratrech LOC mésté/u  méstech

INS bratrem bratry INS méstem  mésty
(a) Czech, masculine animate: brother (b) Czech, neuter: city

Table 3.1: Syncretism in two Czech nominal inflection paradigms (masculine animate and neuter).

3.2.1 Disambiguation in Context

Given in isolation, neither machine nor human are able to fully disambiguate a word form

like bratra in Table 3.1a. By the word form alone, we can disambiguate it to masculine

Zywww.wals.info
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singular but cannot decide on the case value; for a word like mésta (Table 3.1b), we would
not even be able to decide for the number value. However, we rarely encounter words
in isolation but rather in sentences and texts. In a sentence, a word is embedded into a
syntactic context that can be used to disambiguate the ambiguous word form.?

Examples 3.1 and 3.2 already show that the syntactic context (presence of a subordinating
conjunction versus embedding under a modal verb) can serve to disambiguate a syncretic
word form. Another way of disambiguating a given word form in a sentence is to use
the morphosyntactic rules in the grammar of a language, e.g., rules of government and

agreement. Both describe a particular relationship between words in a sentence:

e Government describes the situation when a word imposes certain morphological
values onto another word, e.g., when a verb imposes specific case values on its

nominal dependents. For example, German subjects have to be in nominative case.

o Agreement can be defined as a systematic co-variance of a semantic or formal feature
between two words (Corbett 2006: 4). For example, the number feature of a subject

and a predicate co-vary in English.

Figure 3.3 illustrates government and agreement with a simple German sentence. Govern-
ment is shown in the arc above the sentence, agreement with the arcs below. The predicate
schlift governs the nominative case of the noun Schnecke. The verb and the noun agree
with respect to NUMBER and the noun agrees with the adjective and the determiner with
respect to CASE, NUMBER, and GENDER.

g0U:NOM

Die klein-e Schnecke schlaf-t
the. NOM.SG.F small-NOM.SG.F snai. NOM.SG.F sleep-3SG.PRS

1 \_ sgrnomscr j\ agrsc |

4gr:NOM.SG.F

Figure 3.3: Government and Agreement examples in German.

*Humans use many different linguistic and non-linguistic sources to disambiguate a sentence. In this
work, we focus on the syntactic context and its relation to morphological ambiguity. It is clear however that
even though a system that perfectly models all interactions between syntax and morphology in a language
would get us a big step forward, there would still be a long road ahead of us.
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The government and agreement rules shown in Figure 3.3 are part of the grammar of
German and need to be obeyed in German sentences. To see how they help in dealing
with syncretism, consider the inflection paradigm of the German definite article and the
noun Schnecke in Table 3.2. The noun in Table 3.2b is morphologically marked only for
NUMBER, there are no forms that distinguish case values. German noun inflection generally
distinguishes NUMBER and only in some cases marks CASE. The definite determiner in
Table 3.2a, however, is generally better marked for CASE than for NUMBER. Both words
therefore carry different loads of morphological information within a noun phrase, a
situation that has been dubbed Funktionsteilung (function sharing) by Eisenberg (2006: 142).

M.SG N.SG F.SG MFN.PL Schnecke.F SG PL
NOM der die die NOM Schnecke Schnecke-n
ACC den die die ACC Schnecke Schnecken
DAT der den DAT Schnecke Schnecke-n
GEN der der GEN Schnecke Schnecke-n
(a) German, definite determiner: the (b) German, feminine: snail

Table 3.2: Syncretism in the definite determiner and a noun in feminine gender in German.

By relating the two words by government and agreement, as shown previously in Fig-
ure 3.3, both words are able to disambiguate each other. The nominative case is imposed
on the noun by the governing verb and thus excludes all other case values. At the same
time, the determiner agrees with it with respect to GENDER, NUMBER, and CASE. The fully
specified noun therefore fully disambiguates the determiner by virtue of the Agreement

relation.

We can thus see that access to syntactic structure is an important source for disambiguating
morphological information in the cases where a word form is ambiguous. A word form
that is ambiguous between nominative and accusative case in a language where subjects
are marked by nominative case fails at marking subjecthood. The syntax must then rely

on other means to determine the subject, e.g., NUMBER agreement.

A third source of information that interacts with government and agreement is the valency,
or the subcategorization, of a verb . Consider the example in Figure 3.4. The word form
mésta can be nominative or accusative plural, or genitive singular (see Table 3.1b). But the
fact that the verb already has a subject (bratr) restricts the choice of functions for mésta,

because verbs cannot have more than one subject. If mésta turns out to be direct object, its
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correct case value must be accusative case as this is the case assigned to the direct object of
the verb. The valency of the verb thus helps in disambiguating the morphological features

of the ambiguous word form.

nmod nsubj {nsubj,dobj}

/ \/ \/

mij bratr navstivi meést-a
my.NOM.SG.M brother. NOM.SG.M Visit-3SG.PRS city-{NOM,ACC}.PL.N

Figure 3.4: Verb valency helps disambiguating morphologically ambiguous word forms.

3.3 Ambiguity in Word Segmentation

Syncretism is a particular form of morphological ambiguity that is restricted to the word
forms within the inflection paradigm of a single lemma. But word forms are often am-
biguous across lemmas as well, take for example the English verb bear (to carry/support)
and the English noun bear (an animal, e.g., a polar bear). The two words are homonyms,
i.e., they are pronounced and written the same way but have different (and unrelated)

meanimgs.4

In languages with rich morphology, homonymity occurs frequently also due to composi-
tion and derivation processes. Take for example the Turkish word ¢ekti in Examples 3.3
and 3.4. The word can be segmented into different combinations of basic morphemes
such that each distinct segmentation gives rise to entirely different interpretations of the
word. Note that this ambiguity is orthogonal to the ambiguity introduced by syncretism.
Each of these forms can potentially also be (and often are in Turkish) syncretic within their

inflection paradigm.

(3.3) cekti
pull.3SG.PAST

it pulled’

*In text-based natural language processing, homography, i.e., being written the same way, is usually
enough to create problems even if the words are pronounced differently (cmp. access as a verb and access as a
noun).
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(3.4) cek -ti
cheque.NOM exist.3SG.PAST
"it was a cheque’

Turkish has a very productive morphology and often forms complex words that involve
multiple steps of derivation interlaced with syntactic structure. In order to make the
underlying syntactic relations visible, the Turkish treebank (Oflazer et al. 2003a) annotates
dependency structure not over words but sub-units of words. Figure 3.5 shows an example
from Eryigit et al. (2008) that demonstrates the syntactic annotation in the Turkish treebank.
Words are shown within solid frames. The dependency arcs in the example connect sub-
units of words rather than the words themselves. Oflazer et al. (2003a) call these sub-units
of a word Inflectional Groups (IGs), which are separated by Derivational Boundaries. The
semantic root and derivational morphemes in a word are represented by different IGs, but

an IG can contain additional inflection morphemes.

Subj

—- X
'l okul+da I

JE—— -  —

bu okul dgrenci en  akil sura dur kiigiik  kiz
+Det +Noun I +Adj +Noun +Adv +Noun |+Ad‘i |+Noun +Noun +Verb|+Adj +Adj +Noun | +Verb
+A3sg | +A3pl +A3sg [+With|+Zero +A3sg  +Pos |+Prespart +A3sg | +Zero
+Pnon +Pnon +Pnon +A3sg  +Pnon +Pnon  +Pres
+Loc l +Gen +Nom | |+P3sg +Loc | +Nom |+C0p
| | [+Nom | | +A3sg
This  school-at+that-is  student-s-' most intelligence+with+of  there stand+ing  little girl+is

The most intelligent of the students in this school is the little girl standing there.

Figure 3.5: A Turkish sentence annotated in the style of the Turkish Dependency Treebank. Links
are annotated on a sub-lexical level. The example is taken from Eryigit et al. (2008). Note that this
graphic follows a different convention than ours and draws dependency arcs pointing from the
dependent to the head.

As an example, consider the second word in Figure 3.5, which contains two IGs. The
first one, okul+da, is made of a stem okul and an inflectional suffix da, whereas the second
IG, ki, is a derivational suffix that turns the word into an adjective. The first word Bu,
a determiner, depends syntactically on the first IG of the second word, which is a noun
root (the entire word is an adjective though). As another example, take the last word in

the sentence: it is a verb that was formed from a noun meaning girl. The suffix dir is the
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copula suffix that turns the noun into a verb. However, the word before the last means
little and modifies the noun root of the verb rather than the verb itself.

Splitting words into IGs and annotating syntax between them would not be remarkable if
the decision of how to split a word would be straight-forward all the time. But Turkish
words can be highly ambiguous and context is often needed to resolve a segmentation
ambiguity. Figure 3.6 shows the word ¢ekti from above in a sentence. The word a¢ik is an
adjective and means blank. In the Turkish treebank, adjectives normally modify nouns but
not verbs. The presence of acik in the sentence therefore makes it more likely to assume the
interpretation in Example 3.4 than the one in Example 3.3. The syntactic context thus helps
to arrive at the correct segmentation of a word. However, the correct syntactic structure
can be found only if the segmentation of the words is correct.

amod deriv
\ ¥ \

¥
Acik cek -ti
blank cheque.NOM exist.3SG.PAST

Figure 3.6: Syntactic context disambiguates the segmentation of cekti.

Since the basic units in the Turkish treebank are separated by derivational boundaries,
ambiguous segmentation of a given word means that there is more than one derivational
structure for this word. But ambiguity in word segmentation can also arise from different
sources, e.g., from orthography. In Modern Hebrew, written words can be ambiguous
with respect to their segmentation into meaningful units because there are eight common
prepositions, articles, and conjunctions that are always attached to the following word
(Goldberg and Elhadad 2013). This process is recursive so that several of such affixes can
be attached in sequence. However, it is not always immediately obvious from a word form
whether there is such affixation or not. Goldberg and Elhadad (2013) give the example in
Example 3.5 to demonstrate the ambiguity. The displayed word can either mean onion or
it can mean in the shadow, if the first character (read from right to left) is interpreted as a

preposition affix.

(35) 5%2  or 532 (Goldberg and Elhadad 2013: 123)
onion or in the shadow

To illustrate the interaction between segmentation, morphology and syntax in Hebrew,

Cohen and Smith (2007: 2) give an example of a Hebrew sentence that can be interpreted in
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different ways depending on the segmentation of a specific word. The two interpretations
of this sentence are repeated in Examples 3.6 and 3.7. The word in question is the sixth
word of the sentence (counted from right to left). While the segmentation of the word is
decided locally, the morphological and syntactic interpretation of the first and the last

word depend on this decision.

(3.6) m= aw  ayn+w PIM+TH o113+ PI+T NMR+T4+2 aynm+a
is-beautiful there shepherds that distantthe and bigthe  greenthe meadow thein shepherd the
ADJ+MASC VB+MASC MASC

"The shepherd in the big green distant meadow who shepherds there is beautiful.’
(Cohen and Smith 2007: 2)

(3.7) m» ow omw PIM+TIH 5113+ P17+ MR+T+2 ayn+a
nicely there is-lying distant the and bigthe  greenthe meadow thein shepherd the
ADV VB+FEM FEM

"The shepherdess in the big green distant meadow is lying there nicely.”
(Cohen and Smith 2007: 2)

The difference between Turkish and Hebrew with respect to segmentation ambiguity
is that in Turkish, the segments of a word still all belong to the same syntactic unit,
whereas in Hebrew the different segments of a word may belong to entirely different
syntactic contexts. In Hebrew, the eight affixes mentioned above are always attached to
the following word regardless of what this word is and whether they belong together
syntactically. For example, the attached affix could be the subordinating conjunction of
a subordinate clause, but may be written as a part of a word outside of the clause. In
Turkish, an inflectional group morphologically and syntactically always belongs to the
word it is part of, because segmentation in the Turkish treebank represents the derivational
genesis of this word. However, in both cases there exists an interdependency between the

morphological and syntactic interpretation of the words and its parts.

3.4 Modeling Choices

In the previous sections, we have motivated the necessity of morphological analysis as part

of syntactic parsing and we have given examples of the interaction between morphology
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and syntax, demonstrating that not only is information about the morphology of words
important for discovering their syntactic structure, but syntactic context is often crucial in
determining the morphological features of a word in the first place. We now take a look at
the architecture that is commonly being used to model this relationship.

Traditionally, parsing systems use a pipeline model as shown in Figure 3.7. The parsing
process is separated into at least three steps: tokenization, morphological analysis, and
syntactic analysis. During morphological analysis, the tokens are annotated with their
lexical and morphological information, i.e., they are assigned to a lemma and a part-
of-speech, and their morphological features are determined. Morphological analysis is
sometimes further divided by performing the three sub-tasks successively after each other
instead of performing them jointly. During syntactic analysis, tokens are related to each
other by grouping them into constituents or connecting pairs of words with dependency

relations in order to expose the syntactic structure of the input sentence.

Syntactic Analysis

Morphological Tagging

1

3 PoS-Tagging 3

i

Lemmatization

Morphological Analysis

Tokenization

Figure 3.7: The pipeline model for syntactic parsing.

For languages like Hebrew or Turkish, i.e., languages where the segmentation of words
needs to be predicted as well, tokenization and morphological analysis are often com-
bined (Bar-Haim et al. 2005, Sak et al. 2008) into one system that predicts a consistent
segmentation and morphological analysis of the input sentence. The parser is then run on

the predicted segmentation.

Pipelines are designed for efficiency. By splitting the problem of sentence processing
into several sub-tasks that can be performed efficiently on their own the entire system
stays tractable and fast. The underlying assumption in a pipeline is that it is possible to
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correctly perform the individual steps independent of the output of the later stages in the
pipeline. For the parsing system in Figure 3.7, this independence assumption states, for
example, that one can solve the problem of tokenization without access to the output of
the morphological or syntactic analysis step. Analogously, it states that one can solve the
problem of morphological analysis without access to the output of the parser.

3.4.1 Sequence Models for Morphological Analysis

The standard models for performing morphological analysis are sequence models. The
task is to predict a sequence of tags (think for example of a sequence of part-of-speech
tags) given a sequence of tokens (from the tokenization step) such that the first tag in
the output sequence corresponds to the first word in the input sequence, the second tag
corresponds to the second word, and so on. In this model, the decision for the best tag
is conditioned on the word itself, its surrounding words, and the previous tags in the
output sequence. The optimal sequence given the input sentence is found via dynamic

programming.

As we saw previously, morphological analysis is difficult because word forms can be
ambiguous and syntactic context is necessary for disambiguation. This necessary syntactic
context is modeled in a sequence model by conditioning the best tag on surrounding
words and preceding tags. In other words, the syntactic structure of the sentence is
approximated by looking at the words to the left and the right of the word in question.
This approximation works well for a language like English because of its strict word order:
Knowing that the last two words were a determiner and an adjective is a reliable indicator

in English for predicting a noun next.

However, such an approximation becomes considerably less reliable if the word order
is not as strict as in English because words can occur in more diverse contexts and they
share these contexts with many other words. We have seen in the beginning of this chapter
that morphologically rich languages tend to have a rather free word order since syntactic
information is encoded overtly in the form of the words (recall Figure 3.2). If it was
the case that the word forms encode the morphological information unambiguously, the
model would still work because it would not need the context at all. But we also saw

that phenomena like syncretism introduce ambiguity that cannot be resolved without
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context. Syntactic context in these languages is therefore as important as in English to
resolve morphological ambiguity, but the relevant context cannot reliably be found in the

immediate vicinity of a word anymore.

To give a rather extreme example, consider the German noun phrase in Figure 3.8. The
words marked in red are highly ambiguous with respect to their morphology, but they also
stand in an agreement relation to each other that excludes most of the potential analyses.
A sequence model would need a context of 13 words in order to relate the determiner
in the first position to the noun in the last. Such long distance dependencies cannot be
captured by sequence models. In the dependency tree, on the other hand, these words are

direct neighbors of each other as indicated by the red arcs.

NK

NK

e =

die wirtschaftlich am weitesten entwickelten , modernen und zum Teil katholisch geprdgten Regionen
NOM.PL.F NOM.PL.F NOM.PL.F
the economic - most developed , modern and to part catholic influenced regions

"the regions that are economically most developed, modern, and partly catholic’

Figure 3.8: A long German noun phrase. GENDER, NUMBER, and CASE agreement marked in red.

But the syntactic structure of a sentence as output by a parser is hidden from the morpho-
logical analysis in a pipeline model. Even more, it is intentional design of the pipeline
that output of later processing stages should not be available. With decreased reliability
of the available context and no access to the explicit syntactic structure, a morphological
analyzer is therefore bound to make mistakes. This in turn feeds into another problem of

pipelines which is called error propagation.

3.4.2 Error Propagation and Jackknifing

Error propagation describes the propagation and escalation of errors made by early steps
in a pipeline through to the later systems. Error propagation occurs in pipelines because
mistakes once made cannot be corrected by later processing steps and may lead to follow-
up errors. For example, a mistake in predicting the case value of a word, e.g., predicting

accusative case instead of nominative case, may cause the parser to predict an object
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relation instead of a subject relation. Mistakes in the tokenization/segmentation are
even worse since this step defines the tokens on which all subsequent systems operate.
Incorrectly segmenting a word in a Hebrew sentence forces all subsequent processing
steps to go along with this interpretation.

A common way to alleviate error propagation is to train the individual pipeline systems
via n-fold jackknifing. The idea behind training via jackknifing is the following: assume
that we want to train a dependency parser that uses part-of-speech tags as part of the input
information. By training the parsing model with gold-standard part-of-speech tags, which
we can get from manually annotated treebanks, the model learns to predict dependency
trees using the gold-standard part-of-speech tags. When we run the parser on unseen data,
there will be no manually annotated part-of-speech tags available, so we are going to use
a part-of-speech tagger to automatically predict the part-of-speech tags. But this tagger
is going to make mistakes. These mistakes will propagate to the parser and likely cause
parsing mistakes because the parser learned to fully trust the part-of-speech tags. Now, if
we had trained the parsing model on part-of-speech tags that have the same quality as
the ones predicted for the unseen data, then the parser could learn when to trust them
and when not to, thus potentially making fewer follow-up mistakes caused by incorrect

part-of-speech tags.

However, simply running the part-of-speech tagger over the training data to get automati-
cally predicted part-of-speech tags does not work because the tagger is usually trained
on the same data and will thus be much better on this data than on data it has not seen
before. Jackknifing is a technique that circumvents this problem and makes it possible to
annotate the training data with automatically predicted part-of-speech tags of the same
quality as one would find on unseen data (of the same domain). Technically, jackknifing
works like cross-validation: the training data is partitioned into n parts, say n = 10, and
each part is annotated by a part-of-speech tagger that was trained on the remaining n — 1
parts (in the case of n = 10, it would be trained on the remaining 9). Afterwards, the n
parts that were annotated are merged together to form the original training set annotated
with automatically predicted part-of-speech tags.

Jackknifing alleviates error propagation because it allows the models at the different
steps in the pipeline to learn how reliable information coming from the previous steps
is going to be. Pipelines trained like this perform better compared to pipelines where

each model is trained on gold-standard data. But jackknifing cannot be applied in all
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situations. When dealing with a segmentation problem as described above for Turkish and
Hebrew, the segmentation step is not available to jackknifing. Parsers cannot be trained
on automatically predicted tokens/segmentations because training a parsing model on
a treebank requires gold-standard trees to train on, and gold-standard trees necessarily
presuppose correct segmentation of the words in the tree. However, when running the
parser on unseen data, both segmentation and syntax are predicted automatically, and

errors in the segmentation will then always also lead to errors in the parser output.

3.4.3 Joint Modeling of Morphology and Syntax

As we have seen, the division of tokenization, morphological and syntactic analysis into
separate steps creates a number of problems when applied to languages with a rich
morphological system. Error propagation in the pipeline is aggravated by the lower
performance of the early steps like tokenization and morphological analysis, which in turn
is caused by a lack of syntactic information. A natural consequence of this observation
is then to abandon this separation and to develop models that allow an exchange of
information between the different levels. Joint models can resolve the mutual dependency
between morphology and syntax elegantly by allowing both to influence the outcome of
the other.

The hypothesis that we will be exploring and arguing for in the following chapters is that
models that jointly predict morphology and syntax are better than models that separate
them. To qualify this, we argue that the availability of the syntactic structure and the
possibility to directly model interaction between morphology and syntax, e.g., agreement,
allows a joint model to avoid errors caused by syncretism, unreliable sequential context
due to free word order, and segmentation ambiguity. Since these problems occur frequently
in languages with rich morphology, this hypothesis entails that joint models are better

suited for parsing such languages.

Joint models for parsing have been explored before both for constituency parsing and
dependency parsing (see Chapter 7 for a detailed account). These parsers predict the mor-
phological features of words (and e.g., the segmentation into tokens) while simultaneously
predicting the syntactic structure of the sentence. The typical challenge is to provide the
additional information in an efficient way since simply combining the two tasks directly
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quickly results in an intractable model.

In the remainder of this dissertation, we approach the topic of joint models for mor-
phologically rich languages in four steps. We start by having a closer look at parsing
with a pipeline model. In Chapter 4, we experiment with a state-of-the-art dependency
parser in a pipeline setup analyzing the parser’s output for three morphologically rich
languages, Czech, German, and Hungarian. The analysis demonstrates that syncretism
in the morphological system of a language directly causes parsing errors in a pipeline
setup. In Chapter 5, we continue by showing that direct access to the syntactic structure
of a sentence can improve the prediction of morphological features. Furthermore, we
find that the syntactic information from the parser complements the information that is
provided by language-specific lexicons. In Chapter 6, we then design a joint parser that
models interaction between morphology and syntax explicitly by imposing constraints
on the syntactic structure. The constraints implement morphosyntactic rules and act as
a filter on the search space of the parser. The constrained model outperforms its uncon-
strained baseline as well as a state-of-the-art pipeline parser. In Chapter 7, we address
the segmentation problem by designing an efficient graph-based dependency parser for
morphological lattices that performs segmentation, morphological analysis, and parsing
jointly. We test the parser on Turkish and Hebrew and show that it outperforms three

state-of-the-art pipeline systems.
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Chapter 4

Error Propagation between
Morphology and Syntax

The standard architecture for parsing systems are pipelines, where parsing is broken
down into tokenization, morphological analysis, and the actual parsing. The individual
steps are applied one after the other with each step feeding its output as information
to the following. Pipelines are efficient but may suffer from error propagation, because
introduced errors cannot be corrected later on, though the problem might be alleviated by
using jackknifing.

In Chapter 3, we motivate joint models by claiming that error propagation in pipelines
becomes a more serious problem when parsing morphologically rich languages. This is
because the morphological analysis makes more mistakes due to syncretism and insuffi-
cient information and these mistakes then cause follow-up mistakes in the parsing step.
In this chapter, we support this claim empirically by showing that certain mistakes of the
morphological analysis correlate with parsing errors and that these mistakes originate in

the syncretism in the morphological system of the language that is being parsed.!

For the analysis, we run a state-of-the-art pipeline system on data from three different lan-

guages: Czech, German, and Hungarian. All three languages belong to the broad category

'The content of this chapter is published in Seeker and Kuhn (2013a).
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of morphologically rich languages. Czech and German are both Indo-European languages,
Czech from the Slavonic branch and German from the Germanic branch. Hungarian on
the other hand is a Finno-Ugric language of the Ugric branch. Syntactically, they all use
a case system to mark the function of verbal arguments. However, the morphological
realization of case systems in the three languages shows important differences. Both Czech
and German are fusional languages, where multiple morphological categories are fused
into one inflection suffix. For example, nominal inflection suffixes in Czech and German
signal gender, number, and case values simultaneously. Hungarian, on the other hand, is
an agglutinative language. Every morphological feature is signaled by its own morpheme

and the different morphemes are chained at the end of the word.

For us, however, the important difference between the morphological systems of these
languages is that Czech and German show wide-spread syncretism in their inflection
paradigms whereas Hungarian inflection suffixes are to the most extent unambiguous.
With German and Czech on one side and Hungarian on the other, we can observe the
effect of syncretism on the parsing system on Czech and German and use Hungarian as a
control experiment. Being the prime example of a morphosyntactic feature, the analysis is

focused on case and the grammatical functions that are marked by it.

The chapter starts in Section 4.1 by describing the experimental setup. In Sections 4.2
and 4.3 we then analyze the quality of the morphological and syntactic annotation and
demonstrate the error propagation in the parser. Section 4.4 concludes with a discussion
of the results of the analysis.

4.1 Experimental Setup

The experimental setup is straightforward. We train three parsing models for each lan-
guage varying the quality of the morphological information: the first model uses gold-
standard morphology, the second one uses automatically predicted morphology, and
the third one provides no morphological information at all. In the analysis, we compare
these models with each other and across languages. Other information, i.e., lemmas and

part-of-speech tags, is predicted automatically and stays fixed for each language.
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Comparing the performance of the three models to each other shows the effect that
the morphological information has on parsing performance. The model using gold
morphology serves as an upper bound where we can observe the behavior of the parser
when it is not disturbed by errors coming from the automatic morphological analyzers.
Note that this model is unrealistic since syncretisms are fully resolved. The model using
predicted morphology serves as a realistic scenario where one can observe the problems
introduced by mistakes in the morphological prediction. And finally, the model using no
morphology shows how much non-morphological information contributes to the parsing
performance. In comparison with the other two models, it shows the contribution of

morphological information? to the parsing process.

The analysis is performed on the training sets for Czech and German and the full data set
for Hungarian. For this, the data sets are parsed via 5-fold jackknifing. We use the training
sets rather than the development sets in order to have access to more data for analysis.
The rest of this section gives the technical details of the data sets, preprocessing, and the

parser. The analysis of the models is presented in the next two sections.

4.1.1 Data

For Czech, we use the CoNLL 2009 Shared Task data set (Haji¢ et al. 2009), which consists
of sentences from the Prague Dependency Treebank (Bohmova et al. 2000, Haji¢ et al.
2006). The German data set is a subset of the TiGer treebank (Brants et al. 2002) with the
dependency conversion described in Seeker and Kuhn (2012). The subset recreates the
set of sentences used in the CONLL 2009 Shared Task for German.? The Hungarian data
set consists of the general newspaper subcorpus of the dependency version of the Szeged
Treebank (Csendes et al. 2004, Vincze et al. 2010).

Table 4.1 shows the size of each of the three data sets. For the experiments in this chapter,

By morphological information, we always mean the complete annotation available in the treebanks.
Although we concentrate in the analysis on gender, number, and case, the models using morphological
information always use the whole set, including e. g. verbal morphology.

*Except for three sentences that for some reason were missing in the 2006 version of the TiGer treebank,
from which this corpus was derived. The original data set in the CoNLL 2009 Shared Task was derived from
the 2005 version, which still contains these three sentences. The 2005 version also contained spelling errors in
the raw data that had been removed in the 2006 version. These errors were manually reintroduced in order to
recreate the data set as exact as possible.
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#sentences
Czech 38,727
German 36,017
Hungarian 10,188

Table 4.1: Data set sizes for the three treebanks.

they correspond to the training set sizes in the CoNLL 2009 Shared Task for Czech and

German. For Hungarian, we use all sentences of the general newspaper section.

For the Czech and the Hungarian data, we keep the predicted information for lemmata,
part-of-speech tags, and morphology that is provided with the data. For both languages,
this information has been predicted in a two-step process where a morphological dic-
tionary produces a set of possible annotations for a given word form, which is then
disambiguated by a statistical model trained on gold-standard data (for Czech, see Spous-
tovd et al. 2009; for Hungarian, see Zsibrita et al. 2010). The German data was annotated
with mate tools* via 10-fold jackknifing. Contrary to Czech and Hungarian, lemma, part-
of-speech tag, and morphological information are annotated in three steps, each building
upon the preceding one.

We make three changes to the annotation in the Czech and the Hungarian treebanks in
order to allow for a more fine-grained analysis. First, we copy the SubPOS feature value®
over to the part-of-speech column. This leads to a much more fine-grained part-of-speech
tag set and thus supports a more detailed evaluation based on part-of-speech tags. The
German part-of-speech tag set (STTS, Schiller et al. 1999) is already fine-grained enough
for our purposes. For the same reason, we also change the object labels (Obj) in the Czech
data set by combining it with the case value in the gold standard morphology, creating
Obj1-7. This introduces a more fine-grained object distinction for the analysis and it also
separates the case-marked objects from the clausal objects, which do not have a case
feature and therefore keep the original Obj label.® Finally, we remove the empty nodes

from the Hungarian data set by attaching all dependents of an empty node to its head

*http:/ /code.google.com/p /mate-tools

>The SubPOS feature distinguishes subcategories inside the main part-of-speech categories and is part of
the morphological description.

®Prepositional objects headed by prepositions (pos: RR, RF, RV) are also excluded.
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node while changing their label to ExD as in the Czech data set. In the German data set,
we use the version without explicit empty nodes (cf. Seeker and Kuhn 2012). Table 4.2
shows the encoding of grammatical functions in the versions of the three treebanks that
we use in the experiments.

CZECH GERMAN HUNGARIAN
subject Sb SB SUB]J
nominal predicate Pnom PD PRED
object Obj1-7 OA,OA2,DA,OG  OBJ, DAT

Table 4.2: Core argument functions and their encoding in the different treebanks. The different
object labels for Czech were introduced by us. The original function is Obj.

4.1.2 The Parser

For the parsing step in the analysis, we use mate parser’ (Bohnet 2009, 2010), a state-of-the-
art second-order graph-based dependency parser that uses Carreras’ decoder (Carreras
2007) and outputs non-projective structures by using the non-projective approximation
algorithm described in McDonald and Pereira (2006). The underlying statistical model is
trained via passive-aggressive online training (Crammer et al. 2003, 2006). In all experi-

ments, the model is trained for 10 iterations (default setting).

Since we are interested in the way the parser handles morphological information, we
briefly discuss the inclusion of morphological features (see also Bohnet 2009: 3). The parser
extracts features about morphological information by combining the part-of-speech tags
of the head and the dependent of an arc with the cross-product of their morphological
feature values. For this, the morphological information is split and every single morpho-
logical feature value is treated as one morphological feature in the statistical model. The
cross-product then pairs the single feature values of dependent and head, creating all
combinations thereof. One single feature computed for the edge between an adjective
and a noun in Czech may then look like (A,N,acc,acc), which states the information that
both words have the accusative case. However, other features are created as well that
might look like (A,N,sg,masc), which states that the adjective has singular number and the
noun has masculine gender. The algorithm therefore does not pay attention to the main
syntactic category of a word. Furthermore, the cross-product is computed for every edge

"http:/ /code.google.com/p/mate-tools
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in the tree. All features are additionally combined with the label on the arc such that a
morphological feature like case is directly combined with the label with which it appears
together in the treebank. Because of this, the parser has direct access to the information
about which case value signals a particular grammatical function. The statistical model
should therefore be able to learn that certain dependent-head configurations often occur
with certain morphological feature combinations. For example, a subject edge between a
noun and a verb should very often occur together with morphological features involving
nominative case while a dative object edge should often occur with a dative feature.

4.1.3 Evaluation

In this and the following chapters we evaluate the quality of morphological and syntactic
annotation by measuring either accuracy or precision and recall. These metrics are used
throughout the dissertation except in Chapter 7 where evaluation cannot be done with
standard metrics.

Accuracy. We evaluate the quality of automatically predicted morphology by measuring
the accuracy of the prediction, which is the percentage of tokens in a sentence that
received the correct annotation. In the same way, we evaluate the quality of the syntactic
annotation, i.e., the predicted dependency tree, by computing the percentage of tokens
that were assigned the correct head (and dependency label). In order to know whether a
prediction is correct, we compare them to a gold standard. In our case, the gold standard is

a treebank that was manually annotated for morphology and syntax.

For dependency parsing, the accuracy is called the attachment score. There are two ver-
sions of the attachment score, one that takes the dependency labels into account (labeled
attachment score or short LAS) and one that ignores it (unlabeled attachment score or
short UAS). When a parser is evaluated on more than one sentence, the micro average
over all sentences is computed. Let GG; and G, be the set of labeled and unlabeled arcs in
the gold-standard tree, respectively, and let P, and P, be the corresponding arc sets of a
tree predicted by a parser for the same sentence. Labeled and unlabeled attachment score

are defined as the percentage of overlap between the respective sets of the gold standard
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and the prediction.

|G N P
|G|

|Gy N Py

LAS = Sl ul
|Gl

UAS = (4.1)

Precision and Recall. We measure precision and recall when evaluating a system with
respect to specific morphological tags, e.g., NOM.SG.MASC (nominative singular masculine)
or specific dependency arcs, e.g., arcs labeled with nsubj (nominal subject). Precision gives
the percentage of correctly labeled instances of the particular tag/arc in the prediction,
while recall gives the percentage of correctly labeled instances of the particular tag/arc in
the gold standard. For the example of nominal subjects, let G, be the set of arcs in the
gold-standard tree that are labeled with nsubj and let P,,,,;; bet its counterpart of a tree
predicted by a parser for the same sentence.

‘Gnsubj N Pnsubj‘ recall — |Gnsubj N Pnsubj|

recision =
p ‘Pnsubj ’ ‘Gnsubj ‘

(4.2)

4.2 Quality of the Morphological Information

We start the analysis by looking more closely at the quality of the predicted morphology.
We will see that already here there is a significant difference between Czech and German
on one side and Hungarian on the other.

Table 4.3 shows the quality of the automatically predicted morphological information in
the three data sets. On the left hand side, precision and recall are shown for case, number,
and gender on all words, on the right hand side, only those words were evaluated where
the predicted part-of-speech tag matched the gold standard one. Because of our focus on
case, the figures in Table 4.3 consider case, number, and gender features only. We include
number and gender because in German and Czech, these features are fused together with
case into one inflection suffix. Hungarian as an agglutinating language does not fuse
different morphological categories into one inflection suffix, but we show number for

comparison. There is no gender category in Hungarian.

Czech and Hungarian achieve high scores on all three categories, with Czech achieving
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over 95% for each feature, and Hungarian over 94% recall and almost 98% precision.
In contrast, we find a rather mediocre quality in the German data set, where only the
number feature can be predicted with comparable quality (there are only two values to
predict though) while the prediction quality for gender and case is rather low. To a certain
extent, the lower performance for German compared to Czech can be explained by the
more informed annotation tool for Czech. The German data set was annotated by purely
statistical tools while the Czech annotation tool uses a dictionary to support the statistical

disambiguator.

all correct POS

prec rec prec rec

CzECH case 95.73 95.63 96.06 96.06
gender 9759 9745 98.03 98.03
number 98.18 98.08 98.47 98.47

GERMAN case 88.69 88.51 89.26 89.06
gender 90.16 89.99 90.95 90.74
number 96.18 95.63 96.92 96.61

HUNGARIAN case 97.83 9411 99.22 99.22
number 98.64 9591 99.88 99.88

Table 4.3: Annotation quality of case, number, and gender, for all words and for those words with
a correctly predicted part-of-speech tag.

Hungarian shows a big gap between precision and recall (97.83% and 94.11% for case)
when evaluating all words, but the performance on the words with the correct part-
of-speech tag is almost perfect (99.22% for case). The reason for this drop seems to be
the part-of-speech tagger. The part-of-speech tag set in the Hungarian treebank uses a
category X as a catch-all category where annotators would put tokens they could not assign
anywhere else. The precision for this class is below 10%, because the tool is assigning a
considerable amount of proper nouns to this class. The class X however does not get a
morphological specification so that about 3,500 out of 12,500 proper nouns do not receive a
case and a number value at all. The reason for the lower precision and recall in Hungarian
is thus not due to the difficult morphology of Hungarian, it is a coverage problem of the

part-of-speech tagger that is propagated through.

The big gap between all words and words with correct part-of-speech tags that we find in
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Hungarian does not show in Czech and German.® The results are in fact only a bit better
when the correct part-of-speech is known. While it seems that in Hungarian, knowing
the part-of-speech almost guarantees to get case and number values correct, the same
cannot be said about Czech and German. Predicting morphology in Czech and German
seems to be more difficult than in Hungarian. One explanation for this is that Czech and
German have a lot of syncretism in their inflection paradigms, which makes the prediction
of morphological features dependent on additional information like syntactic or semantic
knowledge. Hungarian on the other hand is surprisingly unambiguous with respect to
marking morphological information. For example, there is only one regular syncretism
in the case system of Hungarian (genitive vs dative case) out of about 20 different case

values.

4.3 Error Propagation

We now turn to the actual parsing output and show how the errors in the morphological
annotation propagate through to the syntax. We do the analysis in three steps, with
every step zooming in a bit closer. In every step, we compare the three models that were
trained for each language, namely a model using gold standard morphology, one using
predicted morphology, and one using no morphological information. In the tables, we call
these models GOLD-M, PRED-M, and NO-M, respectively. In the first step, we evaluate the
performance of the models on the entire data to see the general trend. In the second step,
we focus on the grammatical functions that are marked by case values, i.e., subject, object,
etc. In the last step, we zoom in once more and compare the three models with respect to

the most frequent confusion errors they make.

8For German, precision and recall give different numbers when evaluated on words with correct part-of-
speech tag. This is due to the independence of the morphological analyzer from the part-of-speech tagger.
The morphological analyzer is not bound to a particular feature template determined by the part-of-speech of
the word, such that, in principle, it can assign case to verbs and tense to nouns. This is not the case for the
Czech and Hungarian analyzers, where precision and recall collapse into simple accuracy.
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4.3.1 Overall Parsing Quality

The overall parsing performance of the different models is shown in Table 4.4. Attachment
scores are given in percent. The German and the Hungarian scores exclude punctua-
tion while the Czech ones include them because punctuation in the Czech treebank is

sometimes used as the head in coordination.

Czech German Hungarian
LAS UAS LAS UAS LAS UAS

GOLD-M 8249 88.61 91.26 9320 86.70 89.70
PRED-M 81.41 88.13 89.61 92.18 84.33 88.02
NO-M 79.00 86.89 89.18 91.97 78.04 86.02

Table 4.4: Overall performance of mate parser for every language and different kind of morpho-
logical annotation. Results for German and Hungarian are without punctuation.

Comparing across languages, Table 4.4 gives the usual picture that has been observed in
several shared tasks on dependency parsing for multiple languages (e.g., Buchholz and
Marsi 2006, Haji¢ et al. 2009): The performance on German is pretty high although not as
high as it would be for English while the performance on Czech is considerably lower.”
For Hungarian, the performance is comparable to Czech in terms of UAS but the LAS for

Hungarian is better.

The results furthermore show the expected ordering in performance for the models using
different kinds of morphological information. The gold models always outperform the
models using predicted morphology, which in turn outperform the models using no
morphological information. It is noteworthy that while the performance on German does
not degrade very much when using no morphological information, it is very harmful for
Hungarian to do so (78.04% LAS for NO-M in comparison to 84.33% LAS for PRED-M). The
Czech results lie in between. Obviously, Hungarian relies much more on morphological
means to encode syntactic information than German, which can also be seen in the higher
complexity of Hungarian morphology or in the entirely free word order of Hungarian
compared to the partially free word order in German. In an imaginary continuum of

languages, German is still much more similar to English than Hungarian.

9The extreme divergence between LAS and UAS for Czech is due to the way, the Czech treebank labels
certain phenomena, which makes it difficult for the parser to decide on the correct label. See Boyd et al.
(2008: 8-9) for examples.
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4.3.2 Quality of Grammatical Functions

While the scores in Table 4.4 reflect the overall quality of the parser, we do not expect case
morphology to influence all of the decisions that the parser has to make. We therefore
go into more detail and concentrate on nominal elements (nouns, pronouns, adjectives,
etc.)!? and core grammatical functions (subjects, objects, nominal predicates, etc., see also
Table 4.2.) because in all three languages, nominal elements carry case morphology to
mark their syntactic function. Core grammatical functions are vital to the interpretation
of a sentence since they mark the participants of a situation. We exclude clausal and
prepositional arguments, which can fill the argument slot of a verb but would not be
marked by case morphology. Table 4.5 shows the performance of the three parsing models
for each language on the core grammatical functions. As described in Section 4.1.1, we

split the object function for Czech according to their associated case value.

NO-M vs. PRED-M. Comparing the NO-M models to their respective PRED-M counter-
parts, we observe what we already saw in Table 4.4, namely that morphological features
are much more important in parsing for Czech and Hungarian than they are for German.
The performance on all grammatical functions except the rather rare genitive object is
generally higher for German, indicating that the parser is able to use information from
lexicalization and configurational information to a large extent (see also Seeker and Kuhn
2011). Results for Czech and Hungarian are lower in the NO-M model but improve by
large margins when switching to predicted morphology. Czech accusative objects improve
from 72.71% f-score to 84.12% f-score in the PRED-M model. In Hungarian, the f-scores for
dative objects improve by over 33 percentage points to 73.49% f-score when switching to
the PRED-M model. Even though we saw this effect already in Table 4.4, it is much more
pronounced when we concentrate on grammatical functions because they are marked by

morphological means directly.

"We determine a nominal element by its gold standard part-of-speech tag:
Czech: AA, AG, AM, AU, C?, Ca, Cd, Ch, CI, Cn, Cr, Cw, Cy, NN, P1, P4, P5, P6, P7, P8, P9, PD, PE, PH, PJ,
PK, PL, PP, PQ, PS, PW, PZ
German: ADJA, ART, NE, NN, PDAT, PDS, PIAT, PIS, PPER, PPOSAT, PPOSS, PRELAT, PRELS, PRF, PWS,
PWAT
Hungarian: Oe, Oi, Md, Py, Oh, Ps, On, Px, Pq, Mf, Pp, Pg, Mo, Pi, Pr, Pd, Mc, Np, Af, Nc.
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GOLD-M PRED-M NO-M

fre@q prec rec f prec  rec f prec  rec f

subject 38,742 89.29 91.18 90.22 8396 87.01 8546 7410 78.82 76.39
obj (acc) 21,137 9250 93.35 9293 8525 83.01 84.12 7342 72.02 7271
predicate 6,478 89.07 87.14 88.09 8824 86.00 87.11 8234 7819 80.21
obj (dat) 3,896 83.18 85.68 84.41 80.21 78.88 79.54 7429 48.05 58.35

obj (instr) 1,579 7138 66.50 68.85 67.74 6251 65.02 5893 3553 44.33
obj (gen) 1,053 86.69 77.30 8173 80.42 6239 70.26 74.60 48.81 59.01
obj (nom) 167 57.63 40.72 4772 5697 29.34 38.74 48.67 3293 39.29
(a) Czech.

GOLD-M PRED-M NO-M
freq prec rec f prec  rec f prec  rec f

subject 45,670 95.11 96.05 9558 89.95 91.23 90.59 88.32 89.86 89.08
obj (acc) 23,830 9393 94.80 9436 84.83 84.89 84.86 8220 83.35 82.77
obj (dat) 3,864 89.56 87.73 88.64 79.17 64.44 71.05 77.09 50.78 61.23

predicate 2,732 78.07 73.35 75.64 75.80 7291 7433 7620 71.01 73.51
obj (gen) 155 80.25 4193 55.08 60.66 23.87 34.26 5294 17.42 26.21

(b) German.

GOLD-M PRED-M NO-M

freq prec rec f prec  rec t prec  rec f

subject 11,816 88.34 9157 89.93 8496 88.15 86.53 6458 6644 65.50
obj(acc) 9,326 93.63 9422 9392 9236 9270 9253 66.23 63.86 65.03
obj (dat) 1,254 80.55 7695 7871 7557 7153 7349 5836 30.62 40.17

predicate 941 81.05 7545 7815 7739 7237 7479 7249 7141 7195

(c) Hungarian.

Table 4.5: Precision, recall, and f-score for core grammatical functions marked by case, sorted by
frequency. Locative objects in Czech and second accusative objects in German are omitted due to
their low frequency.

PRED-M vs. GOLD-M. Turning to the GOLD-M models, we see that in general, German
and Czech benefit more from the gold standard morphological annotation than Hungarian.
There is however still a gain of information in Hungarian as the error propagation due to
wrong part-of-speech tags in Hungarian is eliminated in the GOLD-M model. One effect
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that shows very clearly is the improvement for subjects and accusative objects in Czech and
German when moving from predicted to gold morphology. A typical syncretism in Indo-
European languages exists between nominative and accusative in the neuter gender (Blake
2001), which is correctly disambiguated in the gold-standard morphology: comparing the
performance on subjects (marked by nominative case) and accusative objects, we see a
considerable improvement between 5 percentage points for Czech subjects and almost
10 percentage points for German accusative objects when switching to gold morphology.
Hungarian, which does not have this syncretism, does not show improvements on this

scale.

Finally, the statistical nature of the parser can be seen in the accuracies with respect to
the frequency of the functions. For all languages, predictions are less accurate for the
less frequent functions. The general order for all three languages from most frequent to
least frequent is subjects > accusative objects > predicates/dative objects > instrumental/genitive
objects. In case of doubt, the parser resorts to the more frequent function. A clear sign for
this is that for infrequent functions, the precision is always higher than the recall. As an
example, note the performance of the parsing models on dative and genitive objects. The
parser annotates genitive objects if it has strong evidence, hence the high precision, but it

frequently fails to find it in the first place, hence the low recall.

4.3.3 Analysis of Confusion Errors

In the previous section, we have seen that better morphological information leads to
improved parsing accuracy for case-marked functions. Clearly, the parser utilizes the mor-
phological information to better model the syntactic structures annotated in its training
data. We now go one step deeper and look at confusion errors that the parser commits
during parsing. Our hypothesis states that the mistakes that the parser makes are (among
other reasons) due to errors in the morphological information which are caused by syn-
cretic word forms that the morphological analyzer cannot resolve properly. If this is true,
then one should be able to predict the errors based on the ambiguity in the morphosyntac-
tic systems of the language. For example, with automatically predicted case values, we
would expect the parser to confuse subjects and accusative objects when parsing Czech
and German, since there exist regular syncretisms between these functions. When using
gold-standard information, we would expect the parser only to confuse functions that
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are marked by the same case value, e.g., subjects and nominal predicates. Conversely, we
would expect the models without morphological information to commit confusion errors

all over the place since they do not have the necessary information.

Subjects. To start with the last expectation, we examine the confusion errors with sub-
jects made when using no morphological information (NO-M). Subjects are marked by
nominative case in all three languages, with Czech allowing for dative and genitive sub-
jects under special circumstances. The NO-M models do not have access to morphological
information and should therefore mix up functions regardless of the case value that would
usually distinguish them. Table 4.6 shows the top five confusion errors made by the NO-M
models on the subject function. The values are split for correct and incorrect head selection
to tease apart simple label classification errors from errors involving label classification
and attachment.

correcthead  wrong head correct head wrong head
rank label  freq label freq rank label freq label freq
1 Obj4 4996 Atr 2644 1 OA 2680 OA 1498
2 Pnom 1261 Obj4 981 2 PD 776 NK 906
3 Adv 811 Sb_M 948 3 DA 458 DA 431
4 Obj3 752 Adv 273 4 EP 301 AG 313
5 Obj7 380 Obj-M 245 5 MO 219 (] 296
(a) Czech. (b) German.

correct head wrong head

rank label  freq label freq

1 OBL 3029 ATT 1116

2 OB]J 1505 Exd 574

3 PRED 250 COORD 313

4 ATT 185 OBL 311

5 DAT 152 OBJ 139

(c) Hungarian.
Table 4.6: Top 5 functions with which subjects were confused when parsing with NO-M models.

M marks a coordinated function in Czech.

As expected, the results in Table 4.6 show confusion errors with functions that are marked

with different case values: For Czech, when the head was chosen correctly, Obj4, Obj3,
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and Obj7 (accusative, dative, and instrumental objects respectively) are all marked by a
different case value and their confusion rates follow their frequency in the data. Prnom
(nominal predicates) are marked by nominative case like subjects. If the head was chosen
incorrectly, the parser assigns Obj4 and coordinated subjects and objects (Sb_-M, Obj_M).
Adverbial (Adv) and attributive functions (Atr) are expected as they mark adjunct functions
that can be filled by nominal elements. For German, we see confusions with the object
functions (accusative OA and dative objects DA), predicates (PD) and the EP function
marking expletive pronouns in subject position. Furthermore, the parser confuses subjects
with MO, NK, and AG, which are the three adjunct functions that can be filled by nominal
elements (e.g. AG marks genitive adjuncts). CJ finally marks coordinated elements,
which is an expected error if the head was chosen incorrectly, but unlike in the Czech
treebank, we cannot tell by the coordination label the particular function the element
would have if it were not coordinated. In Hungarian, we also find errors across the board,
with argument functions not marked by nominative case (accusative objects OBJ, dative
objects DAT), the predicate function PRED, and all types of adjuncts (ATT (attributives)
and OBL (obliques)). Obliques are especially interesting in Hungarian since the language
has only a small number of prepositions. Most oblique adjunct functions are realized by a
particular case (hence the about 20 different case values) which for a parsing model using
no morphological information makes it rather difficult to distinguish them from the core
argument functions. In summary, we find the expected picture of confusion errors across
the case paradigm.

Turning now to the GOLD-M models, we can see whether the parser is able to learn the
mapping between case and its associated functions. If so, we expect confusion errors with
functions that are all compatible with the case value of the correct function. Table 4.7 shows
the top five confusion errors that the GOLD-M models make on the subject function. Here,
we see a completely different picture compared to the NO-M model errors in Table 4.6.
In all three languages, we find — regardless if the head is correct or not — confusions
only with functions that are compatible with the nominative case. In Czech, subjects are
mostly confused with predicates (Pnom) and coordinated subjects (Sb_M). ExD marks
suspended nodes in an elliptical construction. The label does not tell whether the node
would be a subject with regard to the empty node but it may be, so it is compatible with
nominative case. Atr between nominal elements may mark close appositions, which
would be marked as nominative by default. ObjX marks objects with no annotated case
value (mostly for foreign words). Of all the functions, only Obj4 cannot be signaled by

nominative case. If one checks those 69 cases, only 22 are annotated with accusative case
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correcthead  wrong head correcthead wrong head
rank label freq label freq rank label freq label freq
1 Pnom 583 Sb-M 1142 1 PD 773 NK 555
2 ObjX 102 Atr 711 2 EP 323 (] 245
3 Adv 102 ExDM 162 3 MO 117 PNC 139
4 Obj4 69 ExD 145 4 OA 112 PD 129
5 ExD 45 Pnom 65 5 PH 9 APP 127

(a) Czech. (b) German.

correcthead  wrong head

rank label freq label freq

1 PRED 264 ATIT 678
2 Exd 102 Exd 494
3 OBL 94 COORD 249
4 ATT 90 NE 32
5 OB]J 50 DET 22

(c) Hungarian.

Table 4.7: Top 5 functions with which subjects were confused when parsing with the GOLD-M
models. "M marks a coordinated function in Czech.

in the gold standard, the rest consists mostly of various, high-frequent numerals in neuter
gender and quantifiers, most of which are ambiguous between nominative and accusative.
In these cases, the case feature seems to be overruled by other information. We get the
same picture for German and Hungarian, both models making errors that are compatible
with the nominative case value. Of the 112 errors with accusative objects (OA) in German,
only 36 have the correct case value in the gold standard. We thus conclude that the parser
learns that subjects are marked by nominative case.

Direct Objects (Accusative). We now switch to accusative objects and compare the
performance of the GOLD-M models with their respective PRED-M counterparts. We make
the switch to show results on another function and not just on subjects. The basic pattern
is the same in both cases. Table 4.8 shows the confusion errors for accusative objects. On
the left, the GOLD-M errors are shown, the PRED-M errors are displayed on the right. For
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the GOLD-M models, the picture is basically the same as with subjects, with the small
exception that all three languages show confusion with subjects under the top five.!!
Although the effect is not strong, it shows that the morphological features are sometimes

simply overruled by other, non-morphological features.

The interesting difference however can be seen when comparing to predicted morphologi-
cal information. The overall number of errors increases, but the largest increase occurs for
subjects in German (SB) and in Czech (Sb), while the same is not observable in Hungar-
ian (SUBJ). Of the 2,945 confusion errors in Czech, where the PRED-M model incorrectly
predicts an accusative object, 891 have been marked as accusative by the morphological
prediction despite being nominative in the gold standard while 1,505 have been classified
as nominative although being accusative. Checking the gender value of these instances,
we find the overwhelming majority to be neuter, feminine, or masculine inanimate, exactly
those genders whose inflection paradigms show syncretism between nominative and ac-
cusative forms. The same effect can be found in the German errors. The syncretism in the
two languages causes the automatic morphological analyzers to confuse these case values
more often, which subsequently leads to errors in the parser due to error propagation in
the pipeline architecture. If the morphological analyzer cannot reliably predict the case

values, the parser has a hard time making decisions that are based on this information.

That the parser so frequently falls for incorrect annotation is another proof that it has
learned the mapping between case and its associated grammatical functions. Also as
expected, we do not find this effect for Hungarian. Since there is almost no syncretism
in the Hungarian case paradigm, it should subsequently not lead to this kind of error

propagation.

4.4 Discussion

Since it would not contribute something new to the picture, we do not go into detail for

the remaining grammatical functions. It is clear from the analysis that the parsing model

1The AuxT label in the Czech errors is used to mark certain kinds of reflexive pronouns, which can be in
accusative or dative case. The criterion for deciding whether a reflexive pronoun is labeled AuxT or Obj4, i.e.
accusative object, is whether the governing verb denotes a conscious or unconscious action. This is a very
tough criterion to learn for a dependency parser. In any case however, AuxT is perfectly compatible with
accusative case.
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GOLD-M PRED-M
correcthead wronghead correcthead wrong head
rank label freq label freq label freq label freq
1 Adv 274 ObjM 750 Sb 2354 Atr 687
2 AuxT 270 Atr 172 Adv 262 ObjM 660
3 Sb 69 ExDM 67 AuxT 256 Sb 594
4 ExD 34 Adv 65 Obj3 137 SbM 108
5 AuxR 28 Atv 53 Obj2 109 ExDM 94

(a) Czech.
GOLD-M PRED-M

correcthead wronghead correcthead wrong head

rank label freq label freq label freq label freq

1 MO 283 NK 357 SB 2176 SB 1329
2 SB 112 (] 191 DA 610 NK 606
3 DA 55 SB 121 MO 308 CJ 365
4 CJ 43 APP 97 (J 46 AG 137
5 EP 25 MO 55 EP 40 APP 136
(b) German.
GOLD-M PRED-M

correct head wrong head correct head wrong head

rank label freq label freq label freq label freq

1 OBL 90 COORD 119 OBL 119 COORD 140
2 ATT 60 Exd 81 SUBJ 86 Exd 111
3 SUBJ 50 AIT 44 ATT 65 AIT 78
4 Exd 23 OBL 18 Exd 19 ROOT 18
5 MODE 14 ROOT 13 MODE 16 OBL 15

(c) Hungarian.

Table 4.8: Top 5 functions with which accusative objects were confused when parsing with the
gold (left) and predicted (right) morphology models. .M marks a coordinated function in Czech.

learns the association of case with the respective grammatical function and it makes errors

when the case information is wrong. These errors are in line with the syncretism in the
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morphological systems of German and Czech and the fact that we do not find the same
effect for Hungarian shows that syncretism is likely to be the source.

The syncretism in Czech and German makes the task of learning the morphosyntactic rules
of these language much more difficult for a statistical parser in a pipeline architecture.
As we described in Chapter 3, the morphological analyzer makes mistakes because it is
lacking the relevant context and these mistakes are propagated to the parser because it
relies on this information. The fact that these errors occur despite the parser being trained
via jackknifing shows that jackknifing does not solve the problem even though there
would be many more errors if the parser had been trained with gold-standard morphology.
Essentially, jackknifing is a general method to improve machine learning and it helps to
some extent. But the problem here is not that the statistical model cannot learn the correct
rules, which is demonstrated by the experiments with the gold-standard morphology. It is
rather that the parsing architecture itself does not properly model the interdependency of

morphology and syntax. This can only be changed by changing the model itself.

With a high amount of syncretism, it becomes questionable whether it is right to fully
disambiguate certain morphological properties of a word (e. g. case) without taking the
syntactic context into account. That syntactic information can indeed help predicting
morphology for Czech and German is demonstrated in the next chapter. However, the
analysis in this chapter also suggests that for Hungarian, a pipeline architecture may be
adequate with respect to morphological prediction. Joint models are only needed if the
morphological analysis cannot reliably predict the necessary information, and this is not
the case for Hungarian albeit for a different reason than for English. But since a joint
model would subsume a pipeline, we could just go with joint models for all languages.

There are two additional observations that we think are worth mentioning: First, the
experiments show that a parsing model for German can rely to a large extent on lexical
and configurational information and while morphological information is useful, it is not
as vital as in Czech and Hungarian. This illustrates the role of German as a borderline
case of a morphologically rich language, which resides in the middle ground between
morphologically poor languages like English and morphologically rich languages like

Czech and Hungarian.

Second, we can see from the analysis that gold-standard morphological information

improves the parsing results considerably in all three languages with huge improvements
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for Czech and German with respect to grammatical functions. While it is clear that this is
an oracle experiment, one should be aware that this is a rather unrealistic oracle. Given the
linguistic interdependency between morphology and syntax in these languages, it does
not make much sense to assume a situation where the morphology is correctly predicted
without access to the syntactic context of the word. As a comparison, think of an oracle
used in parser reranking that is used to assess the quality of n-best lists. Given a set of
n-best lists, the oracle computes what the maximum score would be if the system always
picked the best scoring item in the list. If the lists always contain the correct solution, the
maximum score is 100%, but since they usually do not it is lower. There is in principle no
(obvious) reason why the n-best lists could not always contain the correct solution, just
sometimes not in the top position. But for languages like Czech and German, syncretism
constitutes a principled reason why we cannot expect a system to predict the correct
morphological description of a word without access to its syntactic context. An oracle that
uses gold-standard morphology is therefore more unrealistic than the one for ranking.

A typical result in parsing experiments with morphological features, particularly with
case, is that case is the best feature when gold-standard morphology is used, but it is
much less useful (and sometimes even harmful) when automatically predicted (see for
example the results on Arabic in Marton et al. 2013). This is a consequence of the difficulty
of predicting morphology and it shows that experiments with gold-standard morphology
should always be accompanied by experiments using automatically predicted morphol-
ogy since otherwise the interaction between morphology and syntax is systematically
excluded.
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Chapter 5

Morphology Prediction with
Structural Context

In the last chapter, we saw that syncretism (and morphological ambiguity in general) cause
the morphological analysis step in a pipeline to make mistakes that are then passed on to
the parser. Morphological ambiguity very generally describes the situation when a given
word form has several potential analyses, which automatic morphological prediction must
disambiguate. Since the word form itself does not provide any clues, the system must
rely on the syntactic context in which the word form occurs in order to find the correct
analysis. As mentioned in Chapter 3, the standard models for such systems are sequence
models (e.g. Haji¢ 2000, 2004, Smith et al. 2005, Chrupata et al. 2008), which model the
syntactic context of a word as the immediate surrounding words to the left and the right

as well as the predicted analyses for a fixed number of preceding words.

The claim that we put forward in Chapter 3 states that this model of context is insufficient
for languages with rich morphology since they also normally allow for free word order.
With free word order, a fixed context window around the word form that is to be dis-
ambiguated becomes unreliable because free word order means that the word can occur
in any context in the sentence. Sequence models are by design not able to capture long
distance dependencies and in a free word order language, long distance dependencies,

think for example grammatical agreement, are much more frequent.
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Consequently, our hypothesis is that a context model that also has access to the syntactic
structure of the sentence (e.g., in form of a dependency tree) performs better for a morpho-
logically rich language than a model that models syntactic context as a window around
the word form only. This hypothesis is tested empirically in this chapter.! Answering it
positively will provide additional support for jointly modeling morphology and syntax.

To be clear, we do not argue that sequence models are entirely inappropriate for predicting
morphology in morphologically rich languages. They still capture the majority of phe-
nomena because they can capture frequency effects and oftentimes the context window
is big enough to capture the short “long distance” dependencies. In Chapter 3, we give
an example of a German noun phrase (Figure 3.8) where the context window needs to
be at least 13 words in order to capture the agreement relation between determiner and
head noun. However, most noun phrases in the German TiGer treebank are short enough
to be captured with a standard trigram model. But while the surrounding context can
model many cases (and we make use of this in the experiment as well), the hypothesis
states that explicit access to the syntactic structure models the underlying relationship

more faithfully and therefore leads to even better models.

In the following experiments, we compare a baseline model that uses a context window
with itself when it has additional context information from a dependency parser. We
compare these models on the same languages that we used in the previous chapter, namely
Czech, German, and Hungarian. To these three we add Spanish as a fourth language. We
will see in the experiments that explicit syntactic information indeed leads to better models
for Czech and German while it causes only tiny improvements on Hungarian and Spanish.
In the analysis we show that the explanation for this outcome aligns with the conclusions
that we drew in the previous chapter, namely that Czech and German profit because their
morphological system relies on mechanisms like agreement for disambiguation while

Hungarian does not.

In an additional experiment, we compare the influence of explicit syntactic information
with the information that is provided by external lexicons. Lexicons are commonly used
by state-of-the-art systems to increase the coverage (Haji¢ 2004, Miiller et al. 2013). The
comparison shows that syntactic information is complementary to lexical information and

having access to both provides the best systems for Czech and German.

The content of this chapter is published in Seeker and Kuhn (2013b).
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In Section 5.1, we present the experimental design that we use in this chapter and describe
the data sets. Section 5.2 presents the results of the experiments and in Section 5.3, we
analyzes the outcome of the experiments from different angles. The chapter concludes

with a discussion in Section 5.4.

5.1 Experimental Design

In order to test our hypothesis, we employ a two-step approach. The input data is
preprocessed by assigning lemma and part-of-speech information, morphological features
are annotated and all sentences are parsed. Then, the morphological features are predicted
again (possibly overwriting the original annotation) this time with access to features
extracted from the predicted parse trees. Figure 5.1 shows a graphical representation of
the experimental setup.

predict predict . predict predict morphology
lemmas and POS morphology syntax using the dependency tree

BASELINE EXPERIMENT

Figure 5.1: Experimental setup to predict morphology using features from syntax.

The setup is inspired in part by Versley et al. (2010) who manually annotate a German
treebank with morphological information. To support the annotators, a morphological
analyzer is first run to provide a set of possible candidates. This set is further reduced by
applying hand-crafted rules leaving only few options to choose from. The crucial point is
that these rules also make use of the available syntactic structure in the treebank in order to
reduce the morphological ambiguity. It should be mentioned that the experimental setup
in this chapter is used to test a particular hypothesis and is not meant to be a proposal for
a system that can predict morphology, as it is rather inefficient. Proposals for models that
predict syntax and morphology jointly are discussed in the next two chapters.

Furthermore, be aware that the process in Figure 5.1 is not a stacking setup, i.e., the second
annotation of morphology does not use the output of the first one. It accesses information

about lemmas, part-of-speech, and parse trees only. The reason for using the first round of
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morphological annotation is that the quality of the parse trees is much better if the parser
is provided with morphological features (see also Chapter 4). But these features are not
used by the second morphology prediction.

In Section 5.1.2, we describe a morphological tagging system that we use for all the
experiments. In its basic form it constitutes our baseline system because it uses a standard
context window. We compare this baseline to a version of the tagger where we extend its
feature set with features that are extracted from the dependency tree of the given sentence.
This version constitutes the model that has access to the actual syntactic structure. The
feature set of the baseline is a proper subset of the feature set of the model that uses the
dependency tree. Because of that, the comparison between the two can be used to show
the influence and contribution of the structural context. We pad this core comparison with
two additional models. First, we compare the models to external baselines for which we
run off-the-shelf morphological taggers. The purpose of the external baseline is to show
that our basic model and the extended model both give state-of-the-art performance. This
fact is important because otherwise we cannot exclude the possibility that the structural
context adds information that may also be obtained with a standard context model and
a better feature set. Finally, we add an oracle experiment by providing gold-standard
dependency trees instead of automatically predicted ones. Comparing the oracle to the
model using structural context allows us to see the influence of parsing errors on the
quality of morphological prediction.

Syntactic information has been approximated before by incorporating long distance in-
formation about verbs into a sequence model. The idea behind this is to capture subject
verb agreement in languages where the subject and the verb are unlikely to be captured
by a fixed context window. Prins (2004) splits the states of an HMM model depending
on information about verbs in the previous part of the sentence. Votrubec (2006) adds
features to a discriminative model that record the presence of verbs in a large window (30
tokens) around the current token. In both cases, long distance syntactic information is
approximated with the assumption that the nearest verb is likely to be a syntactic head.
We use the features by Votrubec (2006) in our baseline system in order to arrive at a
competitive baseline.
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5.1.1 Data Sets

We run the experiment on treebanks of four different languages: Czech, German, Hun-
garian, and Spanish.2 We use the CoNLL 2009 Shared Task data sets (Haji¢ et al. 2009)
for Czech and Spanish with their respective splits. For German, we use the dependency
conversion of the TiGer treebank (Brants et al. 2002) by Seeker and Kuhn (2012) without
ellipses, splitting it into 40k /5k/5k for training /development/test. We use the Szeged
Dependency Treebank (Vincze et al. 2010) for Hungarian with the split of Farkas et al.
(2012). Preprocessing consists in assigning each token to a lemma and part-of-speech. For
Czech and Hungarian, we keep the annotation provided with the respective treebank. For
German and Spanish, we predict the information using the lemmatizer and part-of-speech

tagger from mate tools.? Training sets are annotated via 10-fold jackknifing.

We add Spanish to the set because it differs from all these languages in interesting ways.
Spanish is a Romance language and has a complex verbal morphology. The word order is
not as restricted as in English but far from the possibilities in Hungarian. The interesting
difference that sets Spanish aside from the other three is that it has only a residual system

of case marking which is used for pronouns only (similar to English).*

5.1.2 System Description

We now describe the morphological tagging system that we use in the experiments. The
system is a token-based tagger that assigns full morphological descriptions to each word
in a sentence. It extracts features from word forms, lemmas, and part-of-speech for a
token and surrounding context tokens. It furthermore incorporates features from the
morphological descriptions it predicted previously by performing two passes over the
input sentence. Finally, the tagger uses a tag filter, which deterministically assigns tags
to word forms that are unambiguous in the training data. The system is trained with
passive-aggressive online training (Crammer et al. 2003, 2006), which we run for ten
iterations.

Note that these are not the same data sets as in Chapter 4.

*code.google.com /p /mate-tools

*Unfortunately, Spanish seems to be a bad choice due to the data set that we tested on. See the discussion
at the end of the chapter.
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As in the previous chapter, we use mate parser (Bohnet 2009, 2010) to predict syntactic
structures (see also Section 4.1.2). In order to keep training as close as possible to testing,
all training sets are annotated via 10-fold jackknifing for information that is used by other
models. Models that are applied to development and test data are trained on the full

training sets.

5.1.3 Feature Sets

The basic feature set for the morphological tagger is shown in Table 5.1. The feature set
was obtained by running an automatic forward /backward feature selection process for
each of the four languages separately (Czech, German, Hungarian, Spanish) in order to
arrive at a baseline system that is as good as possible without using information from the
dependency tree. As mentioned before, this is important because otherwise the structural
context might provide information that can be obtained by simpler means, which would

then overestimate the utility of structural context.

The feature set in Table 5.1 distinguishes between static and dynamic features. Dynamic
features are features extracted from morphological tags that the tagger predicted itself.
Recall that the tagger performs two passes over the sentence such that during the second
pass, it can use its previous predictions as features. Static features are the features that do
not depend on the taggers output.

Given a token ¢, Table 5.1 uses feature functions to describe the feature set. Feature
conjunctions are indicated by &. form(¢), lemma(t), pos(t), and mtag(t) extract the word
form, the lemma, the part-of-speech, and the morphological tag, respectively. number(t)
indicates whether the word form of ¢ contains a digit, consists entirely of digits, or has
no digit at all. uppercase(t) does the same with uppercase characters. prefix(¢,n) and
suffix(t, n) extract the first/last n characters from the word form of ¢. Context features are

extracted from up to two tokens to the left and right of ¢, denoted t;2, ¢;, ¢, and ¢,».

The last-verb/next-verb and case(t) features are variants of the features in Votrubec (2006).
The verb features extract information about the first verb within a window of 10 previous
and 30 following tokens around ¢ in the sentence. They approximate long-distance

syntactic information by assuming that the closest verb is likely to be a syntactic head.
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The feature model can thus approximate e.g., subject-verb agreement. The case(t) feature

collects case information from previously tagged tokens.

STATIC FEATURES

form(t) pos(ti2) pos(t) & suffix(t, 1) suffix(¢, 1) & suffix(¢,, 1)
form(t;) pos(t,) pos(t) & suffix(t, 2) suffix(t,2) @ suffix(t,, 2)
form(t;2) suffix(t;, 1) pos(t) & suffix(t, 3) last-verb-lemma(t)
form(¢;3) form(t) @ pos(t) pos(t) @ suffix(¢,4) last-verb-pos(t)
form(t,.) form(t) & form(t;) pos(t) ® number(t)  next-verb-lemma(t)
lemma(t,2) lemma(t) @ prefix(¢, 2) pos(t) @ pos(t,) next-verb-pos(t)
pos(t;) lemmal(t) & prefix(¢,3) pos(t) ® pos(t;) & pos(ti2)

DYNAMIC FEATURES
mtag(t,) pos(t;) & case(t;) mtag(t;) ® mtag(t;s) mtag(tiz) ® mtag(tis)
last-verb-mtag ~ mtag(t,) ¢ mtag(t;) mtag(t,) ® mtag(t,2) mtag(ty2) ® mtag(t,s)

next-verb-mtag  pos(t;) & case(t;) ® pos(t;2) & case(t;2)

CZECH ONLY FEATURES

pos(t) & prefix(t, 2)

HUNGARIAN ONLY FEATURES

pos(t) ® uppercase(t)

SPANISH ONLY FEATURES

suffix(t, 5)
prefix(¢,1)

suffix(t,, 2)
prefix(t,4)

suffix(t,, 3)
prefix(t,5)

suffix(t,, 4)

Table 5.1: Baseline feature set.

Table 5.2 shows the structural features that we add to the baseline features when the

dependency trees are available to the system. There are two kinds of features that are

extracted: features of the syntactic head of token ¢ (denoted head(t)) and features of the

left-most dependent of ¢ (denoted Imdep(¢)). The head direction of a dependency arc from

d to h is extracted with dir(d, h). We experimented with other types, e.g., the right-most

dependent, but these features did not lead to better models. But note that this result may

be specific to the way these languages encode morphological and syntactic information

and other languages might profit from such a feature. Another feature that we have not

tried but might be useful are the dependency relations on the arcs.
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STATIC FEATURES

lemma(head(t)) dir(¢, head(t)) dir(t, head(t)) ® pos(head(t))
suffix(head(t), 2) suffix(head(t), 3) pos(t) @ pos(head(t))
suffix(Imdep(t),1) suffix(Imdep(t),2) suffix(¢,1) @ suffix(head(t),1)
prefix(Imdep(¢),1) prefix(Imdep(t),4)

DYNAMIC FEATURES

mtag(head(?)) mtag(Imdep(t))

Table 5.2: Structural features.

5.2 Experiments

This section presents the experiments that we ran with the system described in the previous
section. The purpose of these experiments is to test our hypothesis about explicit structural
context. We first present an experiments that tests the influence of the structural context
on a purely statistical morphological tagger. In the second step, we compare the purely
statistical systems to a system that additionally has access to features from a lexicon,
showing that the structural context and the lexicon features both contribute different
information and complement each other. We follow the presentation of results with an
analysis of different aspects of the experiments.

5.2.1 The Effect of Syntactic Features on Morphology Prediction

We use the off-the-shelf tagger morfette (Chrupata et al. 2008) as an external baseline (ext.
baseline). Morfette is a system for morphological tagging and lemmatization. It trains two
separate linear regression models and combines their output to produce coherent combi-
nations of lemmas and morphological tags. In the experiments, we use the morphological
tags only. The feature set of morfette extracts similar features as our baseline system, e.g.,
surface form, affixes, and the last two predicted tags. Its context window includes the two
tokens immediately to the left and the token to the right.

The tagger described in the previous section using the basic feature set (Table 5.1)) consti-
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tutes the internal baseline (int. baseline). The two baselines are compared to the tagger that
uses features from the dependency tree (Table 5.2)), which we extract from automatically
predicted trees (pred tree) and from the treebank trees (gold tree), which represents the
oracle system.

The systems are evaluated for full tag accuracy, i.e., a token is correctly classified if the
full predicted morphological description coincides with the one in the gold standard.
Unknown words are evaluated separately to measure the influence of the structural
information on the classification of words that the statistical model could not see in the
training data.

CZECH GERMAN HUNGARIAN SPANISH

all oov all oov all oov all oov

ext. baseline 90.37 68.66 86.78 66.37 96.197 85.82f 97.83 89.67
int. baseline 9251 73.12 90.92 7252 96.08 8449 97.83 89.05
pred tree 93.18" 74.04 92.077 75.06 96.18 8470 97.84 89.08
gold tree 93.641 7520 92.70f 76.297 96.467 8530 98.11 90.34

(a) Development sets.

CZECH GERMAN HUNGARIAN SPANISH

all ooV all oov all oov all oov

ext. baseline 90.01 6725 84.58 61.05 9599 85437 97.76 91.00
int. baseline 9229 7258 89.11 69.67 9594 83.76 97.59 90.88
pred tree 92.82f 7311 90.107 71.18 96.11 83.85 97.67 90.91
gold tree 93.307 7496 90.87" 73.207 96.35"7 84.50 97.88 91.61

(b) Test sets.

Table 5.3: The effect of structural context when predicting morphological information. The tables
show accuracies for all tokens (all) and out-of-vocabulary tokens only (oov). T marks statistically
significantly better models compared to the internal baseline (sentence-based t-test with a: = 0.05).

Tables 5.3a and 5.3b show the experimental results for development and test sets, respec-
tively. The results show several trends, which are consistent between development and
test sets: First of all, the features from the dependency tree are very useful for Czech and
German, but do not yield any significant improvements for Hungarian or Spanish. For
Czech and German, improvements are between 0.5 (Czech) and 1.0 (German) percent-
age points absolute. On unknown words, improvements are 0.2 (Czech test set) and 2.5
(German development set) percentage points absolute.
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Our system performs on par with, or better than, the external baseline in terms of token
accuracy, but morfette outperforms our system on unknown token accuracy for Hungarian.
For Spanish, all systems yield similar results. The oracle experiments with gold-standard
trees show that all languages can profit from the additional information, which is clearly
visible for Czech and German, but also the experiments on Hungarian and Spanish show
small but visible increases in accuracy. Finally, the pronounced differences in Czech and
German between the system using predicted trees and the system using gold-standard

trees demonstrate the propagation of parsing errors.

This experiment thus shows that our hypothesis, namely that explicit structural context
leads to better models than a fixed-size context window, is indeed true. However, we
also see that a strong effect occurs only for Czech and German, but not for Hungarian or
Spanish, even though the oracle experiment indicates that there is some small potential.
One thing that can be noted for Hungarian and Spanish is that all models give very
high accuracies. In Spanish, the accuracies are so high that it is doubtful that any more
improvement can be made on this data set. For Hungarian, we already saw in the previous
chapter that predicting morphology seems to be an easier task than for Czech and German

due to the low rate of ambiguity.

For Czech and German, however, we find a strong effect. Clearly, the model that uses the
structural context has access to information that the standard context model cannot find.
In Section 5.3, we show that part of the improvement comes from a better modeling of

grammatical agreement in the two languages.

5.2.2 Including Information from Lexicons

But before we analyze the experimental findings in more detail, we present a second
experiment where we add information from lexicons to the four systems that we compared
in the previous section. Lexicons encode knowledge that is at least to some extent difficult
to pick up for a purely statistical system. For example, the gender value of a noun in Czech
or German cannot be read off of a word form. While there are systematic patterns in the
gender assignment in these languages, especially in Slavic languages, there is always at
least a small semantic core in a noun class system, where gender is assigned according to
the meaning of a word, and not the form Corbett (1991). For these words, the gender has
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to be learned together with the word. In this respect, gender is very different from case
because case is a structural feature that is closely related to the syntax of the sentence. This
difference shows that it may not be such a good idea to treat all morphological features

the same way.

Lexicons can help a statistical system to learn information like gender for words that
do not occur in its training data, and thus are a good means to deal with data sparsity.
Lexicons can also be used to speed up processing considerably by restricting the search
space of the statistical model, but we do not pursue this approach here.

The current state-of-the-art in predicting morphological features makes use of morpholog-
ical lexicons (e.g. Haji¢ 2000, Hakkani-Tiir et al. 2002, Haji¢ 2004, Spoustova et al. 2009,
Miiller et al. 2013). We extend the system described in Section 5.1.2 to include information
from a morphological dictionary. Morphological dictionaries return all possible analy-
ses for a given word form, but do not disambiguate the input. For Czech, we use the
morphological analyzer distributed with the Prague Dependency Treebank 2 Haji¢ et al.
(2006). For German, we use DMor Schiller (1994). For Hungarian, we use Trén et al. (2006),
and for Spanish, we use the morphological analyzer included in Freeling Carreras et al.
(2004). The output of the analyzers is given to the system as features that simply record
the presence of a particular morphological analysis for the current word. The system can
thus use the output of any tool regardless of its annotation scheme which is important
if the annotation scheme of the treebank is different from the one of the morphological

dictionary.

In the following experiment, we change the external baseline for Czech and German
because the standard implementation of morfette cannot make use of external lexicons.
For Hungarian and Spanish, we did not run external baselines using lexicons. As far as
we can tell, the automatically predicted information that comes with the data sets might
have used external lexicons, but since we cannot verify this and the quality is rather poor
we do not present it here. For Czech, we show results from featurama® with the feature set
developed by Votrubec (2006) as the external baseline. Featurama is a standard sequence
model that was specifically developed for Czech. For German, we compare to RFTagger
Schmid and Laws (2008) as external baseline.® RFTagger decomposes the morphological

*http:/ /sourceforge.net/projects/ featurama/
*RFTagger uses SMOR (Schmid et al. 2004) as morphological lexicon, which was originally based on
DMOR but was improved since.
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tags into their individual attributes (e.g., gender, number, and case) and models the context
with a hidden markov model. Both Featurama and RFTagger use the Viterbi algorithm to

find the optimal sequence over the given input sentence.

CZECH GERMAN HUNGARIAN SPANISH

all ooV all ooV all ooV all ooV

ext. baseline 94.75 84.12 90.63 72.11

int. baseline 93.80 8047 9259 80.73 9727 9261 9823 9246
pred tree 94.40" 8151 93.707 8271 97.38 9239 9824 92.30
gold tree 94.80f 82.45 94.28' 84.12F 97.637 92.79 98.40 92.82

(a) Development sets.

CZECH GERMAN HUNGARIAN SPANISH

all oov all oov all oov all oov

ext. baseline 94.78 84.23 89.04 70.80

int. baseline 93.57 80.53 9148 78.83 97.03 9128 98.02 93.15
pred tree 94.24" 8161 92511 8020 9719 9150 98.07 93.03
gold tree 94647 82.80 93.327 82351 97457 91.92 98227 93.64

(b) Test sets.

Table 5.4: The effect of explicit structural context when predicting morphological information using
lexicons. The tables show accuracies for all tokens (all) and out-of-vocabulary tokens only (oov). {
marks statistically significantly better models compared to the internal baseline (sentence-based
t-test with a = 0.05).

Tables 5.4a and 5.4b present the experimental results when all systems have access to
information from a morphological lexicon. The results show the expected increase in
overall performance for all systems compared to Table 5.3, especially on out-of-vocabulary
tokens. This shows that even with the considerable amounts of training data available
nowadays, morphological dictionaries are important resources for morphological descrip-
tion (cf. Haji¢ 2000). Note also that featurama outperforms our best system, even the one
using gold-standard syntax. This, however, does not mean that syntactic information is
unnecessary. We show in Section 5.3.2 that featurama also improves when given informa-
tion extracted from dependency trees. Its superior performance here is due to featurama’s

better feature set and its Viterbi decoding.

Figure 5.2 compares the contribution of syntax and lexicon features for all four languages.

Lexicon features lead to a large improvement in all four languages, syntax features lead
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Figure 5.2: The contribution of structural and lexicon features.

to smaller improvements in Czech and German. However, it becomes clear from the
comparison that the contribution of lexicons and structural context are almost completely
orthogonal. Both sources contribute complementary information with almost no overlap.
While lexicons provide information about a word form, e.g., inherent features like gender,
structural features provide information about the syntactic context of the word in the
sentence that is necessary to correctly disambiguate the word form. For example, we show
in Section 5.3.1 that syntactic feature help in Czech and German with getting grammatical
agreement right.

5.3 Analysis

This section presents analyses of the experimental results, that investigate the experi-
ments from different angles. First, we look at the improvements with respect to a specific
morphosyntactic phenomenon, namely grammatical agreement. Then, we show that feat-

urama, the external baseline that we compared with for Czech and which outperformed



82 5 Morphology Prediction with Structural Context

our best system also improves when provided with structural features. We then try to
turn the wheel one step further and test whether the parser can profit from the improved
morphology in Czech and German (it does not). Finally, we conduct an experiment to find
out the minimum amount of parsing information that is necessary to train a parser for

predicting morphology with structural features.

5.3.1 Agreement

From the experimental results we concluded that structural information helps for predict-
ing morphology in Czech and German, but not for Hungarian and Spanish. A closer look
at the output shows an interesting difference between these two pairs of languages with
respect to tokens that are in a grammatical agreement relation with another token. Agree-
ment is a phenomenon where morphology and syntax strongly interact. Morphological
features co-vary between two items in the sentence, but the relation between these items
can occur at various linguistic levels (Corbett 2006). If structural information helps with
predicting morphological information, we expect this to be particularly helpful with get-
ting agreement right, since agreement relations can hold over long distances in a sentence
and are therefore difficult to capture for a sequence model.

All four languages in our experiments show agreement to some extent. Specifically, all
languages show agreement in number (and person) between the subject and the verb
of a clause. Czech, German, and Spanish show agreement in number, gender, and case
(not Spanish) within a noun phrase. Hungarian shows case agreement within the noun
phrase only rarely, e.g., for attributively used demonstrative pronouns. In order to test the
effect on agreement, we measure the accuracy on tokens that are in an agreement relation
with their syntactic head. We counted subject-verb agreement as well as agreement with
respect to number, gender, and case (where applicable) between a noun and its dependent
adjective and determiner. The patterns were defined manually over part-of-speech tags in

the respective treebank.

Table 5.5 displays the counts from the development sets of each language. We compare the
internal baseline system that does not use any structural information with the output of
the morphological tagger that uses the gold-standard tree. We use the gold-standard trees

rather than predicted ones in order to eliminate any influence from parsing errors. Note
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that we assume here that an agreement relation holds along a direct link in the dependency
tree. This depends on the treebank annotation scheme, which in our case holds in all four
treebanks.

agreement type baseline gold tree

CZECH
3199/4044 = 79.10

subject-verb 3264/4044 = 80.71

NP case 8719/9132 = 95.48 8821/9132 = 96.59
NP number 8933/9132 =97.82 9016/9132 = 98.73
NP gender 8493/9132 = 93.00 8768/9132 = 96.01

GERMAN

subject-verb
NP case

NP number
NP gender

4412/ 4696 =93.95
13340/13951 = 95.62
13631/13951 =97.71
13253/13951 = 95.00

4562/ 4696 =97.15
13510/13951 = 96.84
13788/13951 = 98.83
13528/13951 = 96.97

HUNGARIAN

subject-verb

8653/10219 = 84.68

8655/10219 = 84.70

NP case 402/ 891 =45.12

SPANISH

1930/2004 = 96.31
8810/8849 = 99.56
8810/8849 = 99.56

412/ 891 =46.24

1932/2004 = 96.41
8816/8849 =99.63
8821/8849 =99.68

subject-verb
NP number
NP gender

Table 5.5: Accuracies on agreement in morphological annotation compared between the baseline
system and the oracle system using gold trees.

The results in Table 5.5 show that the quality of morphological tags for tokens that are
in an agreement relation with their head token improves in Czech and German when
structural context is available, whereas in Spanish and Hungarian, only very tiny changes
occur. For Czech and German, these results confirm that structural context helps with

agreement.

We believe that the reasons why it does not help for Hungarian and Spanish are the
following: for Spanish, we see that also the baseline model achieves very high accuracies
(cf. Table 5.3) and also high rates of correct agreement, as is visible from Table 5.5. It seems
that for Spanish, structural context is simply not necessary to make the correct prediction.
However, the results are so high that we cannot exclude the possibility that this is an
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artifact not of the language but of the data set. The same experiment would need to be
repeated on additional data sets of Spanish to really confirm that it is indeed the language
for which predicting morphology is easy.

For Hungarian, we believe that the reason is in the inflectional paradigms of the language,
which show very few if any form syncretism, meaning that word forms in Hungarian are
usually not ambiguous within one morphological category (e.g., case). Making a mor-
phological tag prediction, however, is difficult only if the word form itself is ambiguous
between several morphological tags. If the word form is unambiguous, structural context
is unnecessary for disambiguation. In Czech and German on the other hand, where form
syncretism is pervasive in the inflectional paradigms, features from the dependency tree
provide informative context to better disambiguate syncretic word forms.

5.3.2 Featurama with Features from the Dependency Tree

In the Czech experiments in Section 5.2.2, the external baseline tool, featurama, performs
as good as our best system, which has access to gold-standard trees. It outperforms our
baseline system by a percentage point absolute (and even more for unknown tokens). The
question then arises whether the structural context actually contributes something new to
the task, or whether the same effect could also be achieved with a better feature model

alone as in featurama.

In order to test this we ran an additional experiment, where we added some of the
structural features to the feature set of featurama. Specifically, we add the static features
from Table 5.2 that do not use lemma or part-of-speech information, because featurama
predicts this information on its own. Due to the Viterbi decoder in featurama, we cannot
use features from the morphological tags (the dynamic features). The results in Table 5.6
show that featurama profits from structural context as well thus corroborating the findings
from the experiments in Section 5.2.
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dev set test set

all ooV all ooV

featurama 9475 8412 9478 84.23
pred syntax 95.18 84.65 95.09 84.52
gold syntax 95.397 84.62 95347 85.03

Table 5.6: Structural features for featurama (Czech). f mark statistically significantly better models
compared to featurama (sentence-based t-test with o = 0.05).

5.3.3 Can the Improved Morphology Help the Parser?

Now that we have seen that structural context information improves a model for predicting
morphology for Czech and German, where syntax and morphology interact considerably.
A natural follow-up question is whether the improvement also occurs in the other direction,
namely whether the improved morphology also leads to better parsing models.

In the previous experiments, we ran a 10-fold jackknifing process to annotate the training
data with morphological information using no structural features and afterwards use
jackknifing with the parser to annotate syntax. The predicted dependency trees are then
used to extract features for the experiments that use structural context. The same process
can be applied once more with the morphology prediction in order to annotate the training
data with morphological information that is predicted using information from the trees.
A parser trained on this data can then use the improved morphology in its feature set. If
the improved morphology has an impact on the parser, the quality of the second parsing
model should then be superior to a baseline parsing model, which uses morphology
predicted without structural context. Note that for the following experiments, neither

morphology model uses the morphological lexicon.

Table 5.7 presents the evaluation of two parsing models (one using morphology without
structural information, the other one using the improved morphology). The results show
no improvement in parsing performance when using the improved morphology. Looking
closer at the output, we find differences between the two parsing models with respect
to grammatical functions that are morphologically marked. For example, in German,

performance on subjects and accusative objects improves while performance for dative
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CZECH GERMAN

dev set test set dev set test set
LAS UAS LAS UAS LAS UAS LAS UAS

baseline morph 81.73 88.45 81.02 87.77 91.16 9297 88.06 90.24
morph w/ syntax 81.63 8837 80.83 87.61 9120 9297 88.15 90.34

Table 5.7: Impact of the improved morphology on the quality of the dependency parser for Czech
and German.

objects and genitives decreases.

5.3.4 Minimum Parsing Quality

As a last set of analyses, we test how good the parser needs to be. We do this in two ways:

limiting the amount of training data, and using an extremely simple parser.

In the first step, we train several parsing models on increasing amounts of syntactically
annotated data. For example, the first model uses the first 1,000 sentences of the treebank.
We perform 5-fold jackknifing with the parser on these sentences to annotate them with
dependency trees. Then we train one parsing model on these 1,000 sentences and use
it to annotate the rest of the training data as well as the development and the test set.
This gives us the full data set annotated with syntax that was learned from the first 1,000
sentences of the treebank. The morphological tagger is then trained on the full training set
and applied to development and test set.

Figure 5.3 shows the dependency between the amount of training data given to the parser
and the quality of the morphological tagger using structural features provided by this
parser. The left-most point corresponds to a model that does not use any information from
the dependency tree. For both languages, German and Czech, we find that already 1,000
sentences are enough training data for the parser to provide useful structural information
to the morphological tagger. After 5,000 sentences, both curves flatten out and stay on the

same level. These results show that the parser already picks up the relevant information



5.3 Analysis 87

94 T T T T T T T 94

93 -

92 *//\—_/w
o dev ~

90 - e -4

92 -

>
3
°
]
2
S
s
£ de;
s
>
3
e
5
3
]
®

91 -

90

accuracy of morphology

89 - 1 89 -

I I I I I I I 88 L L L L L L L
0 5000 10000 15000 20000 25000 30000 35000 40000 0 5000 10000 15000 20000 25000 30000 35000 40000

# of sentences in training data of syntactic parser # of sentences in training data of syntactic parser

(a) German. (b) Czech.

88

Figure 5.3: Dependency between amount of training data for the syntactic parser and quality of
morphological prediction using structural context.

quite early.

In the second step, we test now whether we can get the same effect with a very simple
parser. We use the brute-force algorithm described in Covington (2001), which simply
selects a head for each token in the sentence. It does not have any tree requirements, so
there is no guarantee for a cycle-free tree structure. In Table 5.8, we compare the simple
parser with mate parser, both trained on the first 5,000 sentences of the treebank. We
use 5,000 sentences to be on the safe side even though the previous experiment suggests
that 1,000 sentence might already be enough. Evaluation is done with labeled (LAS) and
unlabeled attachment score (UAS).

CZECH GERMAN

dev set test set dev set test set
LAS UAS LAS UAS LAS UAS LAS UAS

simple parser (5k) 71.57 7896 69.09 7723 83.06 85.23 7856 81.18
full parser (5k) 76.77 8438 7470 83.00 87.56 90.08 83.69 86.58

Table 5.8: Simple parser vs full parser — syntactic quality. Trained on first 5,000 sentences of the
training sets.

As expected, the simple parser performs much worse in terms of attachment accuracy.
Table 5.9 shows the performance of the morphological tagger when using the output of
both parsers as the structural context. For Czech, both parsers seem to supply similar
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information to the morphological tagger, while for German, using the full parser is clearly
better. In both cases, the morphological tagger outperforms the models that do not have
access to structural information. The performance on unknown words is however much

worse, probably because the simple parser is very unreliable on unknown words.

CZECH GERMAN
dev set test set dev set test set
all oov all oov all oov all oov
no syntax 92,51 7312 9229 7258 90.92 7252 89.11 69.67

simple syntax 92.96 7345 9253 7266 9152 7334 89.66 70.52
full syntax 93.08 73.64 9269 7339 9192 8346 8991 80.50

Table 5.9: Simple parser vs full parser — morphological quality. The parsing models were trained
on the first 5,000 sentences of the training data, the morphological tagger was trained on the full
training set.

These two experiments show that the information that the parser needs to provide to the
morphology prediction seems to be very easy to learn. Even with rather little training data
and a very simple-minded parsing approach, the morphology is able to improve to some
extent albeit not as much as with a full-blown parser. This fits well with the observation
that syntax helps in Czech and German with getting agreement right, since most of the
agreement relations that we tested in Section 5.3.1 holds within noun phrases, which are

very frequent and parsers should learn their general structure already from few sentences.

5.4 Discussion

In this chapter, we set out to demonstrate empirically that for morphologically rich
languages, modeling the syntactic context structurally leads to better models than a
regular window-based context model. The experiments show that this is indeed the case.
When our baseline system is extended with features that are extracted from a dependency
tree, it outperforms the baseline system without this information significantly for Czech
and German. The analysis shows that this is partly due to a better modeling of grammatical
agreement, one of the long-distance morphosyntactic relations that occur in languages
with rich morphology and free word order.
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We also see the same difference that we already observed in the previous chapter between
Czech and German on one side and Hungarian on the other. While the serious problem
for Czech and German is the ambiguity that needs syntactic information to be resolved,
the main problem for the Hungarian data set seems to be the coverage of the lexicon
rather than the high amount of ambiguity in the word forms. This can be seen also
from the improvements in Hungarian once an external lexicon is added. For the Spanish
data set, the case is a bit different. As for the other three languages, it is the case that a
morphological dictionary improves the accuracy, but generally, the results are so good
that it is doubtful that this can be improved further. 98% accuracy is so high that is
reasonable to assume that most of the remaining 2% are likely to be annotation errors.
In this case, a system cannot achieve better numbers on this data set (unless it somehow
learns the idiosyncrasies of the annotation errors). This leaves to options: either, predicting
morphology in Spanish is so easy that there is no need for better models. Or the data set
is not representative, in which case the experiments for Spanish should be verified on a
different data set before final conclusions can be drawn. It should be said, however, that
from a linguistic point of view, it makes sense to assume that predicting morphology for

Spanish is probably an easier task than for the other three languages.

For all four languages, external lexicons improve the prediction accuracy. This is due
to increased coverage because the statistical model can make better conclusions about
unknown words when the additional information from the lexicon is available. The
experiments show that both syntactic context as well as lexicon information improve
the results, but the overlap between the two is rather small so they seem to provide

complementary information.

In the analysis, we find that the improved morphology cannot improve the parser further.
We believe that this is because of two reasons. The theoretical reason is in the nature of
syncretism: Baerman et al. (2005) describe syncretism informally as Morphology lets the
syntax down, meaning that a syncretic word form fails to make a syntactically relevant
distinction. This description explains, why we can use syntax to disambiguate syncretic
word forms, because if we know the correct syntactic structure, we can use it to decide
what the correct interpretation of the syncretic word form must have been. The practical
reason is that we perform jackknifing to provide morphology to the parser. The main
motivation for jackknifing is to provide as realistic input as possible during training
compared to testing, so that the parser can learn when to trust the information from the

morphology. This alleviates error propagation due to incorrectly predicted morphology
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since the parser already learns not to trust some annotations in the first place (we have seen
in the previous chapter that this may still lead to errors though). For this reason, we get
syntactic trees that are good enough to help us disambiguate some of the morphologically
ambiguous word forms, but the improved morphology cannot improve the syntax further
since the parser already learned to predict the correct structure without the additional
information it provides. As an example, consider a noun phrase in German. Assuming
that the determiner is ambiguous between two values then the model will only be able to
correctly disambiguate the word via agreement if the determiner has been attached to the
correct head noun because only from there it can get the necessary information. But if the
head can be correctly attached already, the model does not need the correct morphological
information from the determiner to find the correct head. However, we can see from
the oracle experiments that there is still room to improve, so there must be cases where

incorrectly predicted syntax prevents the correct prediction of the morphology.

For this reason (and for efficiency considerations) the experimental setup in this chapter is
useful for showing the effect of structural information on morphological prediction, but
it is not a joint model in itself. Joint models do not work in cyclic dependencies as here
but they model the dependencies jointly. In a joint model, the head selection can be made
while simultaneously optimizing for the best morphological tag for the determiner that
is consistent with the attachment. In this and the previous chapter, we have provided
evidence for the claim that pipeline models are deficient models for morphologically rich
languages. In the next two chapters, we now propose two joint models for morphology
and syntax and show that these models indeed outperform a pipeline.

5.5 Automatic Prediction of Morphological Features

Automatically predicting morphology is an old task and for most languages, it is a
crucial part of the processing pipeline. Hence, systems have been developed for many
languages, often combining a morphological lexicon with a statistical disambiguation
model (Hakkani-Tiir et al. 2002, Haji¢ 2004, Smith et al. 2005, Schmid and Laws 2008,
Spoustovd et al. 2009). These systems cast the task as a sequence labeling task that finds
the best sequence of morphological tags given a sequence of words.
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Chapter 6

Morphosyntax with Symbolic
Constraints

In Chapter 4, we have shown that error propagation is a problem for pipeline models
because the relevant syntactic context for making correct decisions is not always available.
In Chapter 5, we have then shown that automatic prediction of morphology becomes better
when the model has access to the full syntactic structure of the sentence. Furthermore, the
analysis in both chapters has shown that syncretism is one source for errors and that the
structural information helps modeling long distance morphosyntactic dependencies like

agreement.

In this chapter, we turn the question of the previous chapter around and test whether we
can improve the parser by explicitly modeling such morphosyntactic dependencies. To
this end, we combine and extend the work by Riedel and Clarke (2006) and Martins et al.
(2009). Riedel and Clarke (2006) propose to view dependency parsing as a constrained
optimization problem, where the objective is to find the combination of arcs between the
words in a sentence that maximizes the overall score of the tree. A set of constraints is
defined to ensure that the solution to this optimization is a proper dependency tree. They
formulate the parser as an integer linear program, which they can solve with any general-
purpose constraint solver for linear programs. Although solving an integer linear program
is NP hard in the general case, the formulation allows them to add additional constraints to

the problem easily. They use these constraints to model linguistic knowledge, for example
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that a word should have at most one subject.

The original formulation by Riedel and Clarke (2006) had one flaw, namely that they could
not find a concise formulation to enforce the tree structure of the output. They resorted to
an iterative solution algorithm to find the best scoring well-formed tree but this procedure
is very inefficient. A concise formulation of the problem that enforces the tree structure
immediately was later presented by Martins et al. (2009).

We adopt the formulation by Martins et al. (2009) and use the parser to test the effect of
explicit morphosyntactic constraints.! We take the idea of linguistic constraints by Riedel
and Clarke (2006) and implement it with constraints for case licensing, agreement, and
uniqueness. The idea is to restrict the search space of the parser such that it can only output
trees that do not violate these morphosyntactic rules. The underlying statistical model
that drives the parser remains untouched be the constraints but we use automatically
predicted morphological information in the feature set. This means that the statistical
model is still used to find the optimal dependency tree but the parser sets linguistically

motivated boundaries within which the model must stay.

The motivation for this comes from the findings in the previous two chapters, where we
saw that the statistical model can indeed learn the rules but still makes mistakes due
to error propagation and because other features sometimes overrule the evidence from
morphology. However, we know that for a given language certain morphosyntactic rules
hold and an alternative to letting the statistical model learn them is to simply enforce
them in the decoder. This is the purpose of the morphosyntactic constraints in the parser.
The idea is to see these rules as structural requirements for well-formed dependency trees
rather than as features in the statistical model. The hypothesis that we test in this chapter
is thus that the explicit modeling of morphosyntactic rules can improve the parsing quality
because the statistical model can rely on the rules to guide it towards the correct structure.

We evaluate the morphosyntactic constraints on Czech, German, and Hungarian. We
use the mate parser models from Chapter 4 as a state-of-the-art pipeline baseline and
compare it to two versions of the constraint parser, namely one with and one without
the additional morphosyntactic constraints. We start by giving the full formulation of
the integer linear programming parser in Section 6.1 and define the morphosyntactic

The content of this chapter is published in Seeker and Kuhn (2013a).
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constraints in Section 6.1.3. Section 6.2 presents the empirical evaluation of the constraints
and we conclude the chapter with a discussion of the results in Section 6.3.

6.1 Parsing with Morphosyntactic Constraints

As we said before, the parser in this chapter defines dependency parsing as a constrained
optimization problem implemented as an integer linear program following Martins et al.
(2009). For the sake of completeness, we present the full formulation of the parser. To the
most part, the formulation very closely follows the one presented by Martins et al. (2009)
but we additionally extend it to labeled parsing. This extension increases the number of
variables in the model and might be thought to make the model difficult to solve. Our
experiments however show that with careful pruning, the introduction of labels into the
parsing process does not have a big impact on parsing speed. We describe the set of
morphosyntactic constraints in the second part of this section.

6.1.1 Dependency Trees as Indicator Vectors

In this and the following chapter, we represent dependency trees formally as indicator
vectors. An indicator vector is a vector of binary variables, where each variable indicates
the presence of a particular dependency arc in the tree. There is one binary variable for
each possible dependency arc between the words of a given input sentence. Figure 6.1
illustrates how a dependency structure for a three word sentence (+ artificial root node)
is encoded as an indicator vector. The first three positions encode the arcs between the
root node and each of the other words. The following six positions (3 x 2) encode the arcs
from each word to the other two. In Figure 6.1a the color coding exemplifies the encoding
of single arcs. The blue arc (arc from A to C) is encoded by the blue 1 in the 5th position.
Because the dotted red arc is not present in the tree, the 8th position (arc from C to A) in
the vector is 0.

Given the set of tokens 7" in a sentence and a set of dependency labels L, we define an
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—~ [TIA [ A A

ROOT A B C ROOT A B C ROOT A B C
A :
(1,0,0,1,1,0,0,0,0) (0,1,0,0,0,0,1,1,0) (0,0,1,0,0,1,1,0,0)
(a) A dependency tree. (b) A non-projective tree. (c) Not a well-formed tree.

Figure 6.1: Encoding graph structures as binary indicator vectors.

index set A for dependency arcs as
A:={(h,d,l)|he TU{ROOT},d € T,l € L,d# h} (6.1)
A dependency tree can thus be represented by an indicator vector

Y= <ya>a6A (62)

with y, € {0, 1}. We then define ) as the set of all well-formed dependency trees, where
well-formed means that the tree fulfills the three conditions on the structure (root has
no head, one head per word, no cycles). This includes non-projective trees (Figure 6.1b),
but excludes indicator vectors like the one in Figure 6.1c because this graph is not a
well-formed dependency tree (word C has two heads, word B has none).

6.1.2 The Basic Architecture

The general idea of the parser is to represent each arc in a fully connected graph as a
binary variable of an integer linear program, each of which associated with a score from
a statistical model. A set of constraints imposes the formal properties of a dependency
tree such that finding the highest-scoring combination of arcs under this set of constraints
outputs the best-scoring dependency tree. Typologically, this parser belongs to the graph-
based paradigm as it performs global optimization to find the best spanning tree over a
given set of tokens.
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Formally, let T' be the set of tokens in a given sentence and 7y = 7' U {ROOT} be the set
of tokens including a special root token. Furthermore, let L be the set of dependency
relations or dependency labels. A and U then define two index sets, one for labeled and

one for unlabeled arcs, respectively.

A:={(h,d,l)|heTp,deT,l€ L,h#d} (6.3)
U:={(h,d)|h€Ty,deT,h#d} (6.4)

A dependency tree is an indicator vector of binary variables,

Yy = <ya>a€A (65)

where y, = 1 means that arc a is in the parse, otherwise y, = 0. We define ) to be the set

of all well-formed dependency trees (projective and non-projective).

The basic parser assumes an arc-factored model (McDonald et al. 2005), in which the score
of a dependency tree is defined as the sum of the scores of the individual arcs in that tree.
The objective function of the integer linear program is thus to find the combination of arcs

that has the highest sum of arc scores

1 = arg max Z Ya (W - Parc(a)) (6.6)
yey acA

with w being the weight vector and ¢rc being a function that represents arcs as feature
vectors. Solving the integer linear program finds the ¢ that maximizes the objective

function given a set of additional constraints.

In order to formulate the set of constraints that force the variables in ¢ to form a de-
pendency tree, we need some auxiliary definitions. First, we define the set of potential
incoming and outgoing arcs for each token (one version each for labeled and unlabeled
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arcs):
A= {{g,h,1)| g € To,1 € Lg # h, (g, h,1) € A} 6.7)
A9 =L (h,d,l)|d € T,l € L,h #d,{g,h,l) € A} (6.8)
i ={{g,h)|g € To,g # h,{g,h) €U} (6.9)
U"“t ={(hd)[deT,h#d(g,h) U} (6.10)

It holds that A?* € A, A%t C A, Ui C U, and U™ C U.

With these subsets, we can define the first property of a dependency tree, namely that
each token has exactly one head

> ya=1 forallteT (6.11)
aeAi”

Note that this constraint is defined as in Martins et al. (2009) but it ranges over labeled arcs.
There is no need to change anything because also for labeled arcs, only one of them can be
active at any given time. Furthermore, Martins et al. (2009) have an additional constraint
that states that the root node does not have a head. Here, this constraint is not necessary

because the index set of arcs does not contain incoming arcs to the root (Equation (6.3)).

For the second property, acyclicity, Martins et al. (2009) employ a single-commodity flow
formulation (Magnanti and Wolsey 1995). The idea is to enforce acyclicity by enforcing
connectedness with the root for each token. The root sends units of flow along the arcs
of the dependency tree and each token consumes one unit of this flow. A token can only
consume its unit of flow if there is a path from the root to this token in the tree. Since
each token can only have a single head (Equation (6.11)), only acyclic trees can fulfill this
condition for each token simultaneously. This is because any cycle necessarily disconnects
the nodes in the cycle from the rest of the tree and then there will be no path from the root
node to the nodes in the cycle.

To model the flow, we need an additional set of variables. The flow variables are repre-
sented as a vector of integer variables, one for each unlabeled arc in the graph. The flow
variables are not restricted to binary values because their value represents the flow on the
respective arc:

= (fu)uev (6.12)
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The flow variables are connected to the labeled arcs in the graph via an inequality. Only if
one of the labeled arcs between a pair of dependent and head is active, the flow variable

can carry flow:

T " ynany = fina forallh € Ty,deT (6.13)
leL

Note that because of the single-head constraint, the value of the sum on the left-hand side

can be either 1 or 0.

The root node is treated differently than the other nodes. Acylicity is modeled by ensuring
that there is a path from the root node to every other node in the tree. Since every node is
supposed to consume one unit of flow, the flow on the outgoing arcs of the root node is
set to the number of other nodes (i.e., the number of tokens in the sentence), which means
it sends |T'| units:

> fu=1T) (6.14)

u€Ug50r

Every other token consumes one unit of flow, i.e., the difference between the incoming

flow and the outgoing flow is one.

> fu— D fu=1 forallteT (6.15)

ueUm ueUput

2
b A

@@@ @@

(a) In well-formed dependency (b) Cycles disconnect the structure
trees, flow flows from root to such that flow cannot reach all
each of the nodes. nodes.

Figure 6.2: Schema of how flow constraints prevent cycles.

Figure 6.2 illustrates the idea of Martins et al. (2009) of using single-commodity flow to
enforce acyclicity. Two structures are shown, one that fulfills the constraints (Figure 6.2a)
and one that does not (Figure 6.2b). In Figure 6.2a, the root node sends 5 units of flow

(distributed over the outgoing arcs as 3+2), one for each other node in the tree. This is
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the content of Equation (6.14). Every other node consumes one unit of flow such that the
difference between the flow on the incoming arcs and the flow on the outgoing arcs is
1. This is the content of Equation (6.15). Figure 6.2b now shows a structure that violates
Equation (6.15) in several places. The cycle that is formed by nodes B and E makes it
impossible to fulfill the constraint simultaneously for both nodes because the incoming
flow of B should have a value that is one larger than the outgoing flow, but the same is
supposed to hold for E. Furthermore, the root node sends 5 units of flow to node A which
distributes them to its dependents. However, since nodes C and D have no outgoing arcs,
the difference between the incoming and the outgoing flow is going to be bigger than
one. We see then that cyclic structures cannot fulfill the flow constraints and are therefore

excluded as valid output structures of the parser.?

Equations (6.6), (6.11) and (6.13) to (6.15) plus the domain restrictions
yeBl fez? (6.16)

form an integer linear program and represent a first-order graph-based dependency
parser. Finding the best solution of this integer linear program solves the same task as
running the Chu-Liu-Edmonds algorithm (Chu and Liu 1965, Edmonds 1967) as proposed
in McDonald et al. (2005). It can be considerably slower than Chu-Liu-Edmonds since
solving an integer linear program is of exponential complexity in the worst case. However,
unlike the Chu-Liu-Edmonds algorithm, it allows us to add additional conditions to the
constraint set, for example to model second-order features but also constraints to model

morphosyntax (see Section 6.1.3).

Second-order Parsing

Martins et al. (2009) add several additional constraints to the basic formulation to facilitate
second-order features. In our parser, we adopt two of them, namely what they call all
siblings and all grandchildren. The idea in both cases is to introduce an auxiliary variable
for each pair of arcs, e.g., two arcs with the same head (siblings). This auxiliary variable is
coupled with the respective arc variables and is only active if both of the arcs of the pair

?It should be noted that the flow is used as a metaphor in this formulation. The constraint solver searches
for a structure that fulfills all constraints simultaneously and there is no distribution of flow values in cyclic
trees that would do so. But there is not actually anything that flows.
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are active. If it is active, it contributes its weight to the total score of the tree.

We define index sets for sibling and grandchildren pairs of arcs (S and G, respectively):

S:={(h,d,s)|he€To,dcT,scT,h£dh+sd#s} (6.17)
G:={(g,h,d)|geTo,heT,seT,g#hh#dg#d} (6.18)

Note that we do not include labels in second-order features.

In the following, we demonstrate the all sibling formulation. The grandchildren work
completely analogously. First, we define the binary variables, one for each sibling factor:

5 = (sa)aes (6.19)

A set of three constraints for each sibling factor couples the variable with the two arcs in

the dependency tree:
S(h,d,s) < Zy<h,d,l) (6.20)
leL
S(hd,s) < Zy<h,s,l) (6.21)
leL
S(h,d,s) = Z Yihdy + Zy<h,s,z> -1 (6.22)
leL leL

Equations (6.20) and (6.21) ensure that the sibling factor cannot be active if one of the arc
variables is not active. Equation (6.22) states that the sibling factor must be active if both
of the arc variables are active. The equations loop over the labels for each arc because
the actual arc label is unknown at this point. The single head constraint (Equation (6.11))
guarantees that at most one of the arcs will be active, i.e., the sums over labels in these

equations will always evaluate to either 0 or 1.

The objective function changes accordingly to also factor over siblings

1 = arg max Z Yo (W - darc(a)) + Z Sa (ws - dsip(a)) (6.23)

yey acA a€esS

with w, representing the weights for siblings and ¢g being the feature function for sibling
factors. As before, the constraint solver searches for the solution with the highest overall
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score, which now also includes scores from sibling factors.

Inference, Learning, and Feature Model

Inference is performed using a general purpose constraint solver for linear programs,
in our case the GUROBI constraint solver.® Since solving integer linear programs is
exponentially hard in the general case, we follow Martins et al. (2009) and solve the
relaxation of the problem, which means dropping the integer constraint on the variables.
If the solver outputs an integer solution, as it often does, then this solution is guaranteed
to be optimal. If the solution is not integer, we use the first-order formulation as defined
above to project the fractional solution to integer space using the fractional values of the
variables as arc weights. To further reduce the complexity of the problem, the graphs are
pruned before parsing by choosing for each token the ten most probable heads using a
linear classifier that is not restricted by structural requirements. We also use an arc filter
that blocks arcs that do not occur in the training data based on the label of the arc and the
part-of-speech tag of the head and the dependent.

The weight vector is trained with loss-augmented passive-aggressive online learning
(Crammer et al. 2003) and averaged afterwards (Freund and Schapire 1999). The feature
model was modeled after mate parser’s but is not identical. The full set is described in
Appendix A.

6.1.3 Morphosyntactic Constraints

We now present a set of constraints for each language that is added to the integer linear
program that the parser solves. The idea follows and extends the proposal in Riedel
and Clarke (2006). They augment their decoder with several linguistically motivated
constraints and show improvements over the unaugmented decoder. Unlike Riedel and
Clarke (2006), we have the concise formulation of Martins et al. (2009) in the background,
which makes the parser much more efficient.

Swww.gurobi . com, version 4.0.


www.gurobi.com

6.1 Parsing with Morphosyntactic Constraints 101

The additional constraints implement linguistic restrictions on the morphosyntactic struc-
tures of Czech, German, and Hungarian. The purpose of these constraints is to restrict
the search space of the parser to those dependency trees that comply with the linguistic
constraints. Note that the linguistic constraints are independent of the statistical model
that drives the parser towards the optimal solution. They thus act as a filter that filters out

the linguistically implausible solutions (according to the constraint set).

Linguistically, the constraints implement knowledge about the relation between mor-
phology and syntax by imposing restrictions on the arcs based on the morphological
information on the words. In order to do this, we require an underspecified symbolic
representation of morphological information over which the constraints can be defined.
For example, the case feature of a word is represented as a set of binary variables M for
which 1 signals the presence of a particular value and 0 signals its absence. For Hungarian,
we only model the different case values, which leads to one binary variable for each of the
values. For Czech and German, we include the gender and the number features which
then gives, for each case marked word, a binary variable for every combination of the case,

number, and gender values.

The values of the morphological indicator variables are specified before parsing by anno-
tating the data sets with morphological dictionaries.* If a certain feature value is excluded
by the analyzers, the value of the indicator variable for this feature is fixed at 0, which
then means that the decoder cannot set it to 1. This way, all morphological values that
cannot be marked by the form of the token (according to the morphological analyzer) are
blocked and thereby also all parser solutions that depend on them. Words unknown to the
analyzers are left completely underspecified so that each of the possible values is allowed.
The symbolic, grammar-based preannotations thus set some of the morphological indi-
cator variables to 0 where the word form gives enough information while leaving other
variables open to be set by the parser, which can use syntactic context to make a more
informed decision. Form syncretism is thus explicitly modeled by leaving more than one

variable unspecified.

As an example, take the word form Hund (dog in German). Hund can be nominative

singular masculine, dative singular masculine, and accusative singular masculine. The

4Czech: http:/ /ufal. mff.cuni.cz/pdt/Morphology_and_Tagging /Morphology/index.html
German: Schiller (1994)
Hungarian: Trén et al. (2006)
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three variables representing these three morphological descriptions are thus left unspec-
ified, whereas all other values are fixed to 0, for example nominative plural neuter. An
non-syncretic word form like Hundes, which can only be genitive singular masculine, has
only one variable that is not fixed to 0.

Case Licensing

We now present several constraints that model the relation between morphology and
syntax. The first constraint models the mapping between a function label and the case
value that it requires. Equation (6.24) shows an example of a case licensing constraint for
the DAT label in Hungarian. A dependent d cannot be attached to a head with label DAT

if its morphological indicator variable for dative case (mgat) is zero.

Z A(h,d, DAT) < mg“t foralld e T (6.24)

A(h,a,DAT)EAT

Agreement

The second constraint models the morphological agreement between dependents and their
heads in noun phrases (Equations (6.25) and (6.26)), for instance determiners and adjectives
with their head noun in the noun phrases in Czech and German. In the treebanks, the
relation is marked by NK for German and Atr for Czech.” The constraints relate the
morphological indicators for an adjective and a noun in the following way: As long
as there is no arc (a(, 4,Nk) is zero) between the adjective (d) and the noun (k) the two
constraints allow for any value in the morphological indicator variables of both words. If
the arc is established (a; 4 nk) is set to 1), the two constraints form an equivalence forcing

°In German and mostly also in Czech, if an adjective is attached to a noun by NK (or Atr), they stand in
an agreement relation. This allows us to bind the agreement constraint to these function labels (and to the
involved part-of-speech tags). However, in a (very) small number of cases in the Czech treebank, an adjective
is attached to a noun by Atr but there is no agreement. This happens for example if the adjective is actually
the head of another noun phrase that stands in attributive relation (Afr) to the noun. The Atr label was not
meant to mark agreement relations, it just happens to coincide for most of the cases. But it might be worth
considering whether morphosyntactic relations like agreement should be represented explicitly in syntactic
treebanks.
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all the morphological indicators to agree on their value, i.e., to be both 1 or both 0. We
additionally require every word to have at least one morphological indicator variable set
to 1. Thus, if there is no solution to the equivalence, the arc between the adjective and the
noun cannot be established with this function label.

mt}ilat—pl—fem < mgat—pl—fem 41— 0, d,NK) (625)

m(}iLat—pl—fem > mjat—pl—fem 14+ 0, d,NK) (6.26)

Uniqueness

For the third constraint, Equation (6.27) shows a constraint that was already proposed
by Riedel and Clarke (2006). It models label uniqueness by forcing label [ to appear at
most once on all the dependents of a head h. The fact that verbs have at most one subject
can be modeled directly by this constraint. It thus defines a very conservative version
of subcategorization. We define a set of unique labels L,, for each of the treebanks by
counting the number of times a label occurs more than once on the dependents of a given
token. Labels that occurred more than once only for a small number of times were still
included into L, if it made sense linguistically. The constraint is applied to every word in
a sentence.

> a<1 forallhe Ty (6.27)

a€{a(a,ny [1€Lu, aany €A }

Parsers like mate parser, which use the decoder by Carreras (2007), have by design no
means to enforce such a constraint for two reasons: First, the decoder collects left and
right dependents independently of each other. Second, the feature model never sees two
arc labels together and thus cannot learn a relation between two labels.

To illustrate this, Table 6.1 shows the number of times a grammatical function occurs more
than once per head in the treebank (TRBK) and how often it was annotated by the mate
parser models used in Chapter 5. While doubly annotated argument functions almost
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never appear in the treebank, the parser frequently annotates them because it has no way
of checking whether the function has already been annotated (see also Khmylko et al.
2009).

Czech German Hungarian

TRBK GOLD PRED TRBK GOLD PRED TRBK GOLD PRED

subjects 0 772 1,723 44 1,170 2,403 0 586 670
predicates 7 174 190 6 92 108 1 17 19
obj (dat.) 0 28 46 0 33 46 0 9 5
obj (acc.) 22 284 602 2 364 912 0 182 189

Table 6.1: Number of times a core grammatical function was annotated more than once in the
treebank (TRBK), by a mate parser model using gold morphology (GOLD), and by one using
predicted morphology (PRED).

Other Constraints

In addition to the constraints shown here, the parser uses several other constraints that
deal with more specific phenomena, e.g., a constraint that forbids accusative objects in
passive constructions of German. Other constraint apply uniqueness over analytic verb
forms so that the parser cannot annotate two subjects even though one would be attached

to the auxiliary and one to the main verb.

Constraint Interaction

Each individual constraint already reduces the choices that are available to the parser.
However, they exclude additional incorrect analyses by interaction. Figure 6.3 illustrates
the interaction between the three constraints for the German sentence den Miidchen helfen

Frauen meaning women help the girls.

Each individual word displays a high degree of syncretism. But when the syntactic
structure is decided, many options mutually exclude each other. The agreement constraints
in Equations (6.25) and (6.26) disambiguate den Midchen for dative plural feminine. Case
licensing (Equation (6.24)) then blocks the subject and direct object labels for Mddchen

because they cannot be marked by dative case, and Equation (6.27) ensures uniqueness
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case licensing

agreement uniqueness
NK SB/DA/OA SB/BA/OA

/ \/ \ S \
den Midchen  helfen Frauen
the girls help women
ace:sg-mase nom-pkfem nom.pl.fem
datpkmase ace-pkfem acc.pl.fem
dat.pl.fem dat.pl.fem dat.pl.fem
dat-pkneut gen-pkfem gen.pl.fem

Figure 6.3: Constraint interaction for the German sentence den Midchen helfen Frauen meaning
women help the girls.

by blocking the dative label for Frauen. The parser now has to decide whether Frauen is
subject, accusative object, or something else completely. The constraints are applied online
during the decoding process. If the statistical model would strongly prefer Mddchen to be
accusative object, the parser could label it with OA. However, in that case, it would not be
able to establish the NK label between den and Miidchen, since the agreement constraint
would be violated. Thus, the constraints filter out incorrect solutions but the decoder is
still driven by the statistical model.

6.2 Experiment

To test the parser and the morphosyntactic constraints, we apply it to the same data sets
as were described in Section 4.1.1, Chapter 4. The data sets are annotated with syntax via
5-fold jackknifing using the same preprocessing as in the previous experiment. We train
two models for the constraint parser, one without constraints and one with constraints
(denoted C and NO-C, respectively). For the C model, constraints are applied during
training and testing. We compare these two models to the mate parser models from
Chapter 4. The preprocessing is identical between the three models except that we only
train models on automatically predicted morphology.
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6.2.1 Results

Table 6.2 shows the overall performance of the two models compared to the performance
of mate parser repeated from Table 4.4 in Chapter 4. Recall that GOLD-M, PRED-M, and NO-
M are the models that use gold-standard, automatically predicted, and no morphological
information. The model that compares directly to the constraint parser is the PRED-M
model, as the features are most similar. The results in Table 6.2 show that the basic
constraint parser performs slightly below mate parser (PRED-M), but the model that uses
the linguistic constraints performs slightly better or equal for Czech and German.

Czech German Hungarian
LAS UAS LAS UAS LAS UAS

GOLD-M 8249 8861 9126 9320 86.70 89.70
PRED-M 8141 8813 89.61 9218 84.33 88.02

NO-M 79.00 86.89 89.18 9197 78.04 86.02
ILP NO-Cc 81.69 88.09 8930 9198 84.01 87.12
ILP C 81.91* 88.18 89.93* 9225 8435 87.39

Table 6.2: Overall performance of mate parser and the ILP parser. Results for German and
Hungarian are without punctuation. * marks statistical significance with respect to the respective
PRED-M model, measured with a two-tailed t-test, & = 0.05.

Performance on Grammatical Functions

Table 6.3 shows the performance on the argument functions for the unconstrained (no-c),
constrained (c) ILP models, and the PRED-M models of mate parser. In this evaluation,
we only evaluate tokens that actually carry case morphology (cf. Chapter 4). For each
language, the best results are bold-faced. In addition to the results for the different
argument functions, a total score is computed over all argument functions (all arg funcs)
and another is computed over all tokens that are not included in the first set (all other).
The latter illustrates the performance of the parsing models on the functions that are not
marked by case morphology.

For each language, we get the same basic picture: while the unconstrained ILP model

performs slightly worse than (German, Hungarian) or equally well as (Czech) the PRED
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Czech German Hungarian

NO-C C PRED NO-C C PRED NO-C C PRED

subject 85.41 87.23* 8546 90.02 9291* 9059 85.05 87.67* 86.53
predicate 87.13 90.09* 87.11 72.86 80.70* 7433 74.16 78.88* 74.79
obj (nom) 4748 53.19* 38.74 - - - - - -
obj (gen) 70.15 72.54 7027 3141 4298 34.26 - - -
obj (dat) 7999 8042 7954 6521 77.78* 71.05 7533 77.92*% 73.49
obj (acc) 84.27 86.79* 84.12 83.74 87.96* 84.86 9196 93.21* 9253
obj (instr) 67.36 68.76 65.02 - - - - - -

all arg funcs 84.33 86.37* 84.21 86.27 90.11* 87.24 86.87 89.04* 87.78
all other 81.37 81.37 81.05 89.79 89.88 89.98 8273 8286 83.43

Table 6.3: Parsing results for the unconstrained (NO-C) and the constrained (C) ILP models, and
mate parser (PRED) in terms of f-score for core grammatical functions marked by case. We omit
locative objects in Czech, and second accusative objects in German because of their low frequency.
* marks statistically significant differences when comparing the performance on a grammatical
function for the C model to the PRED-M model (« = 0.05, two-tailed t-test).

model of the mate parser, the constrained ILP model clearly outperforms both on the
argument functions. On each of them, the constrained ILP model improves over the
other two models, raising the score by between one percentage point for e.g. subjects
in Hungarian up to 7 percentage points on dative objects in German (compared to the
PRED model). We can see that in general, the improvements seem to be higher on the more
infrequent arguments like dative objects and predicates than on the frequent arguments
like subject or accusative object. However, it is not the case that the performance of one of
the infrequent functions suddenly surpasses the performance of a more frequent function.
Those two effects are to be expected since the ILP parser is still a data-driven parser. The
constraints support it by excluding morphosyntactically incorrect analyses but they do

not resolve ambiguous cases. These are still decided by the statistical model.

6.3 Discussion

The experiments in this chapter are meant to test whether the explicit modeling of mor-
phosyntactic constraints can improve a statistical parser. While the overall parse quality is
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only marginally better compared to a state-of-the-art baseline without such constraints,
a focused analysis that evaluates the argument functions targeted by the constraints re-
veals that the model indeed becomes better for those functions. We also again see that
the improvements are smallest for Hungarian. Evidently, there is less need for explicit

constraints when parsing Hungarian.

The linguistic constraints that we used implement rules that are part of the grammar of
Czech, German, and Hungarian. We implement them as hard constraints on the output
structures of the parser and not as features in the statistical feature model even though
the feature model of the parser already includes features that relate the morphology
of dependent and head with each other. Ideally, the statistical model would learn the
morphosyntactic rules of a language on its own and predict structures that adhere to them.
The fact that the constrained model outperforms the one without constraints shows that

this is not necessarily the case.

Goldberg and Elhadad (2013) take a similar approach as we do and model agreement for
Hebrew as a filtering process that is applied on an n-best list output by their lattice parser.
In their parser like in ours, agreement is modeled as hard constraints and is decoupled
from the actual statistical model. As they putit: [...] agreement is a part of the parser and not
of the grammar (Goldberg and Elhadad 2013: 146). However, while they find improvements
due to the filter they are very small. Their analysis shows that this is mostly because the
statistical model already makes a correct decision in most cases. Other reasons include
the restricted number of analyses in the n-best list and the fact that agreement alone does
not always create the correct parse. The difference in our parser is that the constraints
are already in place during parsing thus obviating n-best lists. But more crucially, the
constraints are also applied during training so that the statistical model never actually

makes agreement mistakes during training.

Hard constraints seem to be an attractive solution because the parser cannot ignore them
and they cannot be overruled by stronger features. The uniqueness constraint for example
models something that statistical parsing models usually do not model on its own. For
example, Carreras’ decoder (Carreras 2007) which is used in mate parser derives left and
right dependents of a word independently of each other. It also never relates two arc
labels with each other. The same holds for the statistical model underlying the parser
used in this chapter. Such design decisions are made for efficiency, but they prevent the

statistical model to learn that some labels occur at most once per head. The uniqueness
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constraint does not add this knowledge to the statistical model but it still forces the parser
to comply with it. Similarly, the agreement constraints enforce morphological agreement
along a single arc. We have seen in Chapter 4 that a statistical model can learn these rules
but that errors in the preprocessing cause the parser to make mistakes nonetheless. Also
here, hard constraints can avoid the mistakes that are caused by faulty information.

The relation between the statistical model and the constraints can be seen as two com-
ponents of a grammar where the constraints represent the hard rules in a language that
always need to hold whereas the statistical model models preferences and frequency ef-
fects. Besides a well-formed tree structure, this parser additionally guarantees some form
of grammaticality with respect to case marking and agreement. Rules and preferences are
clearly both part of language and it is an open question how they should be modeled in
a parser. Krivanek and Meurers (2011) compare a data-driven Nivre et al. (2007) and a
rule-based dependency parser Foth and Menzel (2006) on learner and newspaper corpora
and find that while the former is better on modifier functions (e. g. PP-attachment), the
latter performs better on argument functions. Their explanation is that while the data-
driven parser has access to lots of data and can pick up statistical effects in the data like
semantic or selectional preferences, the rule-based parser has access to deep lexical and
grammatical information and is thus able to model argument structure in a better way.
The results of our experiment seem to support the claim that rules can help with argument
structure, which also means that argument structure is still a problem for standard parsing

models.

The big disadvantage of hard rules, however, is their brittleness. The constraints that we
develop here are purposefully formulated in a very defensive way to account for this. For
example, the case licensing constraint does not say that a word in dative case is either
indirect object or an argument of a preposition etc., but it merely states that if a word form
cannot be dative, the word cannot fill the role of an indirect object. It is very difficult to
find rules that always hold in a language without exception in the first place, and these
rules can always be violated, may it be on purpose or by mistake. It would be much more
elegant if the statistical model could learn the relation between morphology and syntax on
its own. The parser in this chapter does not actually model the morphological features of
the words in the sentence but only uses it to restrict the search space. In the next chapter,
we propose a parser that models morphology and syntax jointly such that the statistical
model itself must decide on the best combination of syntactic structure and morphological

features.
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Chapter 7

Graph-based Lattice Dependency
Parsing

The last chapters have presented motivation and justification for jointly modeling mor-
phological and syntactic analysis and we showed how morphosyntactic rules can be
integrated into a parser by constraining the output structures. While the constraint parser
in the previous chapter models the interaction between morphology and syntax, it does so
without involving the statistical model of the parser. Because of this, the constraint parser
cannot actually predict the morphological features of words. It can restrict morphological
ambiguity by percolating the morphosyntactic rules down to the word level and in the
best case, only one option remains. However, it cannot disambiguate between options
that are both compatible with the morphosyntactic constraints.

In this chapter, we develop a parser that jointly predicts the morphological features of
words as well as their syntactic structure in the sentence.! The statistical model predicts
the best combination of syntactic structure and morphological features and thus truly
learns a joint distribution. This model cannot suffer from error propagation because
it does not rely on information from another processing step. We use this parser to

empirically demonstrate that joint modeling is superior to a pipeline parser that separates

'The content of this chapter is published in Seeker and Cetinoglu (2015). My contribution to this joint
work with Ozlem Cetinoglu consists of the formulation, development, and testing of the parser as well as
participating in the design of the evaluation.
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morphological and syntactic analysis.

To facilitate the joint prediction, the parser operates on morphological lattices, which
represent the potential morphological analyses for a given word or sentence. Lattices
are often used in NLP to compactly represent ambiguous analyses for a given input, for
example multiple interpretations of a sound signal in speech recognition (Ortmanns et al.
1997, Jurafsky and Martin 2009) or candidate output sentences in machine translation
(Ueffing et al. 2002). Figure 7.1a shows a representation of the German word Brot (bread).
Each path through the lattice encodes one morphological interpretation of the word form.
Chaining several such word lattices together creates a lattice for a sentence. Choosing a
path through such a sentence lattice means to select a morphological interpretation for
each word.

cekti/Verb+Past+A3sg

Brot/Noun+Nom+Sg+Neut

Brot/Noun+Dat+Sg+Neut

¢ek/Noun+Nom

Brot/Noun+Acc+Sg+Neut ti/\Vlerb+Zero+Past+A3sg

(a) The German word Brot. (b) The Turkish word ¢ekti.

Figure 7.1: A lattice representation of morphological ambiguity.

However, in this chapter we do not work on German but instead extend the joint model
beyond the prediction of morphological features and apply it to Turkish and Hebrew.
Recall from Chapter 3, Section 3.3, that in these languages words can be segmented into
meaningful units. For Turkish, these units correspond to inflected stems or derivation
suffixes and are called Inflectional Groups (IG). The segmentation thus represents the
derivational genesis of the word. For Hebrew, the segments represent single morphemes
that may belong to different syntactic contexts. For illustration, Figure 7.1b shows a word
lattice for the Turkish word ¢ekti that encodes two possible segmentations of the word. The
upper path encodes an interpretation as an inflected verb stem that would be translated
as it pulled. The lower path represents an interpretation as a noun that was derived into a

verb with the copula suffix. This interpretation means it was a cheque.

Selecting a path in a lattice such as the one shown for Turkish thus means to not only
predict the morphological features of the words but also to decide the segmentation of

words into smaller units. As discussed in Chapter 3, it is these smaller units over which we
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want to predict a syntactic structure because syntactic relations hold between the smaller
units rather than the words themselves. The task of the joint parser is therefore to select a
path through the lattice while at the same time predicting a syntactic structure over the
segments of the selected path. Solving these three tasks, i.e., segmentation, morphological
analysis, and parsing, jointly allows the model to use information from all three sources.
Syntactic information can support choosing the correct segmentation (cf. Figure 3.6) and
morphological analysis. At the same time, segmentation defines the tokens over which
the syntactic structure is built. In a pipeline model, segmentation mistakes can never be
repaired. The joint model instead can learn how segments, morphological features, and
dependency arcs relate to each other without being restricted by decisions that it cannot
change. Such a model is then trivially applicable also to less complex lattices as the one

shown for German in Figure 7.1a.

Building a parser for the joint task is challenging because the search space for this parser
is huge. Not only does it have to find the best dependency tree among an exponentially
large number of trees, the number of trees is additionally increased because now they can
differ with respect to the segmentation and morphological features on the words as well.
We solve this problem by using a dual decomposition approach (Rush et al. 2010, Koo et al.
2010, Martins et al. 2010b). The joint problem is decomposed into smaller subproblems,
each of which can be solved efficiently with known algorithms. An iterative optimization
algorithm then solves the subproblems repeatedly, adjusting weights after each round to
enforce agreement between them. Decomposing the joint problem in this way keeps the
model tractable as the complexities of the subproblems are combined additively instead
of being multiplied.

Almost as challenging as building the parser is its evaluation. Since the parser predicts
the segments over which the parser predicts the dependency tree, they may be different
from the segments in the gold standard tree. Simple attachment scores therefore cannot
be applied anymore. Drawing on previous work for Hebrew, Turkish, and Chinese, we
discuss and apply different evaluation metrics for evaluating the joint task.

The parser presented in this chapter is the first graph-based dependency parser that solves
the full joint task of segmentation, morphological analysis, and parsing. Furthermore, the

results presented for Turkish are the first results on full lattice parsing for this language.

The chapter is organized into four main parts: Section 7.1 introduces the concept of lattice
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parsing and presents the formal description of the parser. Section 7.2 discusses the problem
of evaluating a lattice parser and the approaches that have been put forward to do so.
Section 7.3 presents an empirical evaluation of the parser on Turkish and Hebrew and
Section 7.4 finally compares the parser to related work for joint models in parsing.

Terminology. In the rest of the chapter, we will use the term word to refer to input strings
separated by whitespace, and the term token to refer to the smallest unit of processing
as in the output of a tokenizer. For Turkish, a token corresponds to an Inflectional Group,
whereas for Hebrew, it refers to a morpheme. Thus, a Turkish or Hebrew input sentence
can have seven words, but the number of tokens in that sentence is unknown and must be

predicted by the parser.

7.1 Lattice Parsing

Lattices are directed acyclic graphs with one defined initial state and one defined final
state. Figure 7.2 shows the lattice representations of a Turkish and a Hebrew word. The
initial state is the state that has no incoming transition (shown as the left-most state) and
the final state is the state with no outgoing transitions (shown as the right-most state).
Each path from the initial state to the final state represents one possible analysis of the

input word and there is exactly one path per analysis.

ekmek/Noun+Nom hneim/VB

ek/Verb
mek/Inf+Noun+Nom

(a) The Turkish word ekmek. (b) The Hebrew word hneim.

neim/VB

neim/JJ

Figure 7.2: Lattice representations of morphologically ambiguous words in Turkish and Hebrew.
The Turkish example is from Seeker and Cetinoglu (2015) and the Hebrew example is from
Goldberg and Tsarfaty (2008).

Given a vocabulary &, a morpheme inventory 7, and a word z € X, a morphological
lexicon M(z) C T+ maps words to a set of sequences over 7. These sequences of

morphemes are the morphological analyses of word z. The elements of 7 can simply
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be the surface forms but may also include information about part-of-speech tags and
morphological features as shown in Figure 7.2. The set of morphological analyses for a
word z can be represented by a lattice. A path p € M (x) through the lattice from the start
state to the final state then represents one possible morphological analysis of the word.

The lattice representation for words can be extended to sentences by concatenating word
lattices into what Cohen and Smith (2007) call a “sausage lattice”. An example for such
a lattice is shown in Figure 7.3 for the Turkish sentence ekmek aldim (I bought bread).? A
sentence lattice represents all possible morphological analyses of the given sentence. Since
it is a concatenation of the word lattices, the paths converge after each word and there
cannot be transitions that skip a word boundary. A sentence lattice therefore represents
the Cartesian product over the analyses of the individual words.

ekmek/Noun+Nom aldim/Verb+Past+1sg

©

ek/Verb / al/Adj
mek/Inf+Noun+Nom dim/Verb+Past+1sg

Figure 7.3: A sentence lattice for the Turkish sentence ekmek aldim (I bought bread). Double circles
mark word boundaries (i.e., whitespace). Example taken from Seeker and Cetinoglu (2015).

It is straightforward to extend M to sentences: Given a sentence © = (z1, 2, ..., Zy), the
morphological lexicon maps sentences to sets of sequences of sequences of morphemes
M(z) C (T1)", which is the same as M (x) C T+. M(x) can be represented as a sentence

lattice as in Figure 7.3 and the elements of M (z) are paths through the sentence lattice.

Lattice parsing is the task of predicting a parse tree given a sentence lattice (Chappelier et al.
1999, Hall 2005). During parsing, a lattice parser must select one of the paths in the lattice,
thereby deciding on the number of tokens in the sentence and their morphosyntactic
properties as part of the parsing process. A lattice parser run on a morphological lattice as
shown in Figure 7.3 thus predicts segmentation, morphology, and syntax of this sentence
simultaneously.

Lattice parsing subsumes two interesting special cases: (1) The lattice encodes multiple
paths but all paths are of equal length. In this case, the lattice does not encode any

https://www.youtube.com/watch?v=tAboni_Mqv4
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ambiguity about segmentation but the morphological properties of the tokens remain
underspecified. Languages without segmentation ambiguity can be represented by these
lattices. (2) There is only a single path in the lattice. In this case, there is no uncertainty
about segmentation or morphological properties of the tokens at all. This is the standard

case used in pipeline architectures.

7.1.1 A Graph-based Lattice Dependency Parser

In this section, we present the construction of the lattice parser. We cast the problem
of lattice parsing as a constrained optimization problem, in which we seek the highest-
scoring dependency tree under the constraint that the tokens that it spans over form a
consecutive path through the lattice. Since solving this constrained problem is difficult,
we use a dual decomposition approach (see Chapter 2, Section 2.2 for a description of
the underlying idea of dual decomposition), in which we decompose the task into two
subtasks. The first subtask finds a consecutive path through the sentence lattice. The
second subtask computes a spanning tree over the lattice. To these two subtasks, we add
two constraints that ensure that the path that is found by the first task coincides with the
tokens that the second task predicts to be part of the final solution. A dual decomposition
algorithm then finds the optimal solution to this problem by solving the subproblems
repeatedly until all constraints are fulfilled.

As said before, we will refer to the minimal unit of parsing as a token. In the input
lattices for the parser, a token corresponds to a single transition between two states. For
convenience, we define the set of tokens 7" to hold all tokens represented in a (sentence)
lattice. Tokens represent IGs in the Turkish treebank and morphemes in the Hebrew

treebank.

We assume two different structures, lattices and dependency trees. Dependency trees are
represented as directed acyclic trees with a special root node (ROOT); lattices are directed
acyclic graphs as defined above. For dependency trees, we will use the terms node and
arc to refer to the vertices and the edges between the vertices, respectively. Tokens are
represented as nodes in the dependency tree. For lattices, we use the terms state and
transition to refer to the vertices and their edges in the lattice. Contrary to dependency

trees, tokens are represented as transitions in the lattice.
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Finding The Path. A token bigram in a lattice M (x) is a pair of two transitions (¢,t'),
such that the target state of ¢ in M (z) coincides with the source state of ¢’ in M (x). A
chain of overlapping bigrams that starts from the initial state and ends in the final state
forms a path through the lattice. We represent the ROOT token as the first transition, i.e., a
single transition that leaves the initial state of the lattice.

Given a lattice M (x), we define the index set of token bigrams in the lattice to be
S = {(t,t')|t,t' € T, target(t) = source(t') }. (7.1)
For later, we furthermore define the set of bigrams that have ¢ at the second position:
S ={(k,t)[(k;t) €S, keT} (7.2)
A consecutive path through the lattice is defined as an indicator vector
p = (ps)ses (7.3)

where p; = 1 means that bigram s is part of the path, otherwise p; = 0. We define P as the
set of all well-formed paths, i.e., all paths that lead from the initial to the final state.

We use a linear model that factors over token bigrams. Given a scoring function fp that

assigns scores to paths, the path with the highest score can be found by

p = arg max fp(p) (7.4)
peP
with  fp(p) = Zps w - ¢sec(s)
seSs

where ¢src is the feature extraction function for token bigrams. Given a weight vector,
the highest-scoring path through the lattice can be found with the Viterbi algorithm. In
Section 7.3, we also use the bigram model as a standalone disambiguator for morphological
lattices to find the highest-scoring path in a lattice.

Finding The Tree. We define the index set of arcs in a dependency tree as

A={(h,d,l)|heT,deT —{ROOT},l € L,h#d} (7.5)
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with L being a set of dependency relations. A dependency tree is defined as an indicator
vector

Y = (Ya)acA (7.6)

where y, = 1 means that arc a is in the parse, otherwise y, = 0. We define ) to be the set

of all well-formed dependency trees (projective and non-projective).

We assume an arc-factored model as commonly done in dependency parsing (McDonald
et al. 2005, Koo et al. 2010). Given a scoring function f; that assigns scores to trees, the
problem of finding the highest scoring tree is defined as

g = arg max fr(y) (7.7)
yey
with fT(y) = Z Ya W - ¢ARC(G)
acA

where ¢5xc is the feature extraction function for single arcs and w is the weight vector.
We follow Koo et al. (2010) and use the Chu-Liu-Edmonds algorithm (CLE) to find the
highest-scoring parse (Chu and Liu 1965, Edmonds 1967). CLE enforces the tree properties
of the output, i.e., acyclicity and exactly one head per token. Note that the algorithm
includes all tokens of the lattice into the spanning tree, not just some tokens on some path.

Agreement Constraints. To make the path and the parse tree agree with each other,
we introduce an additional dependency relation NOREL into L, the set of dependency
relations. We define a token that is attached to ROOT with relation NOREL to be not on the
path through the lattice. These arcs are not scored by the statistical model, they simply serve
as a means for CLE to mark tokens as not being part of the solution by attaching them to
ROOT with this relation.?

When the bigram model finds a path through the input lattice, it effectively partitions
the set of tokens 7" into two sets, namely the tokens that are on the path and the tokens
that are not (see Figure 7.4a). By means of the NOREL label, the arc-factored model is
able to mark a token as being part of the solution tree or not. The tokens that are part of
the solution should form a dependency tree, whereas the other ones should simply be
dependents of ROOT. Currently, however, a tree token can be a dependent of a non-tree

3The parser can predict the NOREL label only on arcs attached to ROOT.
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=) D"

(a) The bigram model partitions the tokens into two sets. The tokens on
the path, {R, A, F, G}, and the tokens not on the path, {B,C, D, E'}.

NOREL

(b) The tree model also partitions the tokens into two sets. The tokens
in the output tree, { R, A, F, G}, and the tokens that are not part of the
output tree, { B, C, D, E'}. Due to the first agreement constraint, there
can be internal structure among the tokens in the first set only.

Figure 7.4: The bigram model and the tree model both partition the set of tokens into two sets. The
second agreement constraint ensures that the two partitionings coincide.

token. To prevent this, we introduce a constraint that disallows tokens that are attached to
ROOT with NOREL to have dependents on their own. The constraint is implemented as an
implication factor (= , Martins et al. 2015). It states that an active NOREL arc for a token h
implies an inactive arc for all arcs having h as head. There is one such constraint for each

possible arc in the parse.

Y(ROOT,h,NOREL) — 'Y(h,d.l) (7.8)
forall (h,d,l) € A,h # ROOT,! # NOREL

By introducing the constraint in Equation (7.8), the CLE cannot mix tree tokens and non-
tree tokens and thus cleanly partitions 7" into two sets, namely tree tokens and non-tree
tokens (see Figure 7.4b). Simultaneously, it predicts a dependency tree over the tree tokens.
The final step is now to ensure that the partitioning of T" by selecting a path through
the lattice is identical to the partitioning of 7" by computing the spanning tree. This can
be achieved with a second constraint, which is defined over token bigrams and arcs. It
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states that for a token ¢, either one of its bigrams4 or its NOREL-arc must be active. It is
implemented as an XOR factor (&, Martins et al. 2011b) and there is one such constraint
for each token in the lattice.

@ Ps @ Yroor,t,norery forallt €T (7.9)
SES‘t

By means of the constraint in Equation (7.9), both subtasks have to agree on the path
through the lattice. The Viterbi algorithm ensures that the solution will be a coherent path
while the CLE predicts a dependency tree over this path. All tokens that are not on the
path are discarded before the parser returns the parse tree.

7.1.2 Inference

The objective function of the lattice parser is

arg max fr(y) + fr(p) (7.10)
y€),peP

subject to the two agreement constraints in Equations (7.8) and (7.9).

We use Alternating Directions Dual Decomposition or AD? (Martins et al. 2011a)° to find
the optimal solution to this constrained optimization problem. AD? is an approximate
algorithm that finds the optimal solution in an iterative fashion. If the algorithm converges,
the solution is guaranteed to be optimal. AD? can efficiently handle first-order logic
constraints, which we use to implement the agreement constraints. Similar approaches,
where such constraints are used to ensure certain properties in the output structures,
have been used, e.g., in semantic parsing (Das et al. 2012), compressive summarization
(Almeida and Martins 2013), and joint quotation attribution and coreference resolution
(Almeida et al. 2014).

CLE can be implemented such that its worst case complexity is O(7?), while the Viterbi

*The lattice structure ensures that always only one of the bigrams with the same token in second position
can be part of a path.
*http:/ /www.ark.cs.cmu.edu/AD3/
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algorithm needed to find the path is of worst case complexity O(QT?), where Q is the
number of states in the lattice. Instead of combining these two problems directly, which
would multiply their complexity, AD> combines them additively, such that the complexity
of the parser is O(k(T? + QT?)) with k being the number of iterations that AD? is run.

7.1.3 Second-Order Parsing

The formulation of the parser given so far describes a first-order dependency parser,
where features are extracted on single arcs only. However, higher-order models that
consider sibling or grandparent information are known to be superior to first-order
models (McDonald and Pereira 2006, Carreras 2007, Koo and Collins 2010).

Koo et al. (2010) present a formulation for a dependency parser that uses head automata
(Alshawi 1996, Eisner 2000) to model second-order factors, i.e., sibling and grandparent
features (see also Martins et al. 2013). In this model, a dependency structure is decomposed
into smaller graphs, two for each token in the sentence. The smaller graphs model the
left and right direct dependents for each token, independent of each other and, crucially,
independent of the other tokens in the sentence.

Finding the optimal left and right dependents for each token independently of the other
tokens does however not guarantee that the partial solutions agree with each other and
form a coherent dependency tree. Therefore, Koo et al. (2010) use CLE to ensure proper
spanning trees in the output of the parser. They use dual decomposition to find the
optimal dependency tree defined by the head automata and CLE under the constraint that
both agree on the structure.

We adopt the formalization given in Martins et al. (2013) extending it slightly to include
arc labels. Let

Ay ={{g,;h, 1) |g e T,1 € Lyg#h} (7.11)
A9t = {(h,d,l)|d € T — {ROOT},l € L,h # d } (7.12)

be the sets of incoming and outgoing arcs of token h, respectively. The set of outgoing arcs
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is further split into the set of outgoing arcs to the right and to the left of h.

out

Ah,a
A

out

{
{

d,l)|deT—{RroOT},l € L,h < d} (7.13)

h,
h,d,l)|d € T —{ROOT},l € L,h > d} (7.14)

{
{

The set of candidate arcs for a right (left) grandparent-sibling head automaton (Koo et al.
2010) is then

AT = A9 U A (7.15)
ATE = A9 U A (7.16)

Note that the terms right and left are a bit fuzzy when it comes to lattices, and the definition
in Equations (7.13) and (7.14) depends on the numbering of tokens in the lattice. In our
lattices, tokens (i.e., transitions) are numbered such that a higher index means that the
token is either on a competing path or it is further to the right on the same path. This way,

the indices of tokens on the same path increase from left to right.

For each head token h in the sentence, let (dy,ds,...,dn+1) be the sequence of right
dependents of h (the left case works analogously). dyp and d,,+1 are special symbols for
the begin and end of the sequence. Furthermore, let g := head(h) be the head of & (the
grandparent). The scoring function for a given grandparent-sibling head automaton is
then defined as

m+1

W (Ypagm) = D w - (Gsin(hy dior, di, I) + Gar(g, by dis 1)), (7.17)
k=1

where y sesn is the subvector of y that contains all indicator variables indexed by ApSTS,
¢sis and ¢gp are feature functions that extract features from the head, the dependent, its

immediate next sibling, and the grandparent.

Sibling head automata (without the grandparent part) can be solved in quadratic time
using dynamic programming (Koo et al. 2010, Martins et al. 2013) to find the set of right
(left) dependents of h with the highest score. To include information about grandparents,
this algorithm is run once for each possible grandparent yielding a cubic complexity. As
there are two grandparent-sibling head automata per token in a sentence (one for right
and one for left dependents), the complexity of solving the head automata for all tokens in
the sentence is O(T*L).
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Head automata can simply be added to the set of subproblems defined in Section 7.1.1.
The objective function for the parser changes accordingly to

argmax fr(y) + fr(p) + Z fGSIB y|Acsns + Z fGSIB ylAcsm
yeY,peP

subject to the two agreement constraints in Equations (7.8) and (7.9). The head automata
subproblem gives the parser access to second-order features, but it also increases the
complexity of the parser significantly.

7.1.4 Learning

We use passive-aggressive online learning (Crammer et al. 2003) with parameter averaging
(Freund and Schapire 1999). We train only one parameter vector that includes features
from the tree and from the path. The parser thus always performs full decoding during
training. We map features into vector space using a hash kernel as described in Bohnet
(2010). It gives a boost in speed and allows the model to learn weights for structures that

do not occur in the training data but may be predicted during online training.

The loss function computes Hamming loss between the gold standard tree y and the

predicted tree 3.
loss(y,9) = Y y(h,d,1)(1 = §(h,d,1)) (7.18)
A(p,a,1)EA
Loss is computed for the full spanning tree over the lattice including the NOREL arcs. One
could compute loss only on the actual tokens being selected by the parser, but this could
not be done with Hamming loss since the number of tokens in gold and prediction would

not necessarily coincide.

However, while the NOREL arcs are considered for computing the loss, they are not scored
by the statistical model and thus do not contribute to the score of the actual solution. This
is done because the only interpretation of a NOREL arc is that this token is not correct.

Preliminary experiments showed that scoring them indeed yields worse models.
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Feature Model

The feature model for the parser was developed semi-automatically on the Turkish de-
velopment set (see Section 7.3.1) by performing a few rounds of leave-one-out feature
selection. The main purpose of the feature selection was to make the feature set smaller,
in particular for the second-order features. No feature selection or adaptation was done
with respect to the Hebrew data. We did not systematically evaluate the importance of
individual features. The feature set is an obvious place to improve the parser and to
explore the possibilities and restrictions that a lattice imposes on the type of features that

are available.

The feature set comprises mostly standard features like surface form, lemmas, part-of-
speech tag, morphological features and combinations thereof. The full feature set of the
lattice parser is described in Appendix B. Here, we will only discuss a few interesting

cases that arise due to the lattice structure.

Distance Features. In standard dependency parsing, the distance between the head and
the dependent is computed based on the total ordering of the tokens in the input sentence.
When parsing lattices, there is no total order over the tokens anymore, as some tokens are
alternatives for each other. To determine the distance between two tokens, we therefore
compute the length of the shortest path between the two tokens in the lattice. There is no
shortest path for tokens that can never be on the same path, but we do not need to cover
this case as the parser does not need to consider arcs between such tokens anyway (see
also Section 7.1.5). Note, however, that the shortest distance between two tokens in the
lattice may not coincide with the distance of the two tokens in the path that is chosen by
the parser. While we do not do this, in-between features (McDonald et al. 2005) could be

computed based on the shortest path as normal.

Space-delimited Words. Since for Turkish and Hebrew, tokens in the lattice are segments
of larger units, i.e., space-delimited words, features can also be extracted on these words.
We extract the surface form of the space-delimited word that the current token is part of
and whether the token is a suffix of a space-delimited word. Furthermore, if two tokens

are to be related by a dependency arc, features are added that state whether the two tokens
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are part of the same space-delimited word and whether they are adjacent to each other.
These features are helpful for Turkish because the relations inside a space-delimited word
always follow the same pattern.

Latent Context Features. One problem observed for transition-based parsing by Hatori
et al. (2011) and Bohnet and Nivre (2012) is that joint models that predict, e.g., syntax and
part-of-speech tags together cannot use part-of-speech tags as features on tokens that have
not yet received a part-of-speech tag.® Hatori et al. (2011) solve this problem by what they
call delayed features, i.e., they delay the evaluation of features involving part-of-speech
tags until the token is assigned a part-of-speech tag. Bohnet and Nivre (2012) stack their
joint model on a part-of-speech tagger and features extracted from buffer tokens thus use
the top-scoring part-of-speech tag from the tagger even though it might not be the one
assigned by the joint model later on.

A similar problem as for the transition-based parsers arises for linear context features in the
lattice parser. Due to the lattice structure, it is generally not possible to find a unique left
and right neighbor of a token. We define the immediate left neighbor of a token as a token
whose target state coincides with the source state of current token. Analogously, the right
neighbor token’s source state coincides with the target state of the current token. However,
as there are multiple paths in a lattice, there may be more than one immediate left/right
neighbor for each token. We first tried to compute context features on all of them, but this
made the model learn the specific lattice structure and led to strong overfitting effects.
We therefore use the path features of the parsing model (see Table B.1 in Appendix B)
to determine the context token with the highest score according to the current weight
vector and extract context features only on these latent neighbors. The latent neighbors
are computed only once and their scores are not influenced by the penalties from the dual

decomposition algorithm.

®In transition-based parsing, the tokens that are still on the buffer have usually not yet received a part-of-
speech tag.
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Fractional Solutions

AD? solves a relaxation by treating the binary indicator variables (Equations (7.3) and (7.6))
as continuous variables ranging from 0 to 1. This means that in general, the solution
produced by the parser is not a binary indicator vector (y) but a vector of real numbers.
In most of the cases, the actual solution of the algorithm will however converge to an
integer solution once the model is trained. During training, when the model is not finished,
fractional solutions happen more frequently. We address this issue differently during

testing and during training.

During testing, we follow Martins et al. (2009) and project fractional solutions to the
nearest integer solution. They run CLE on the sentence using the fractional values of the
solution as arc weights rather than the actual scores from the model. In the lattice parser,
we first run the Viterbi algorithm with the fractional bigram values (p) to find the best
path through the lattice. Afterwards, we run CLE on the tokens selected by the first step
weighted with the fractional arc values from y.” In the experiments described in Section 7.3,
fractional solutions occur in about 9% of the sentences in the Turkish development set

during testing.

During training, we skip the projection step and instead perform updates with the frac-
tional solution. If AD?® finds an integer solution, the learning algorithm performs the
normal update. If it finds a fractional solution, features are weighted by the fractions
that were assigned to the factor they were computed on. Fractional solutions also lead to

fractional loss.

7.1.5 Pruning

The search space of the parser is defined as the set of well-formed non-projective depen-

dency trees (). It is already restricted to those trees that form a coherent path through

"The second step can potentially fail if the pruning step (see Section 7.1.5) has pruned off all arcs that
would link a token to the other tokens on the path selected by the first step. In this case, all arcs from such a
token to any other token on this path are allowed. As there is no weight for these arcs, the parser will make a
very poor choice attaching this token. This solution is motivated solely from the need for a proper spanning
tree, it does not give the parser means to make a sensible attachment. Fortunately, this case occurs only very
rarely.
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the lattice by the formulation of the parser. Reducing this search space even further can
lower parsing time considerably. It is commonly done and often necessary in higher-order
graph-based dependency parsers (Martins et al. 2009, Koo and Collins 2010, Koo et al.
2010, Rush and Petrov 2012, Zhang and McDonald 2012, Martins et al. 2013).

Excluding Arcs between Competing Paths

First of all, we can exploit the formal properties of the lattice itself to reduce the number of
arcs that the parser needs to consider. Some tokens in the lattice can never end up on the
same path because they are parts of competing analyses of a word. The parser therefore
does not need to consider arcs between these tokens, because they cannot both be part of
a dependency tree simultaneously. Arcs between them are thus never allowed and can

therefore safely be discarded from the beginning.
a

O, O——0@

Figure 7.5: Pruning arcs between edges in the lattice that can never be on the same path. Token
a can never be on the same path as token b and thus dependency arcs between a and b can be
excluded beforehand. Both a and b can be on the same path as c.

To find such arcs we define C; as the set of tokens that can be connected with ¢ by a
dependency arc. C; contains all tokens in the lattice that can be part of a path through the
lattice that also contains ¢. Let source(t) be the source state of a token (recall that a token is
represented as an edge in the lattice) and let target(t) be the target state of that token. The

set C is defined recursively as

1. if target(t’) = source(t) then t’ € C;
2. ift' e Ct then Ct = Ct U Ct/

3. ifte Cy then t' e Cy

The first condition states that two adjacent tokens can always be part of the same path.
The second condition defines transitivity, i.e., that all tokens that can be on the same path
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as token ¢’ can also be part of the same path as token ¢ if ¢ and ¢ can be on the same path.
The third condition defines symmetry. If ¢ can be on the same path as ¢, then ¢ can be on
the same path as ¢'.

All tokens ' ¢ C; can neither be dependents nor heads of ¢. The corresponding arcs can
therefore be removed from the set of candidate arcs.

Excluding Arcs Based on the Annotation Scheme

The second formal property we can use is the annotation scheme of the treebank. For
example, the Turkish treebank only allows the last segments of a word to have their head
outside of this word. Inner segments of a word have by definition their head immediately
to the right. Since word boundaries (not token/segment boundaries) are known before
parsing, tokens can be classified beforehand for whether they can be word-final segments
or not. For tokens that cannot be word-final segments, we can reduce the set of candidate
heads to the ones immediately following this token.

Figure 7.6 shows a schematic lattice. Word boundaries are marked with double circles
and edges leading into double circles therefore represent word-final segments. Word
internal segments must have their head immediately to the right, which reduces the head
options for these tokens considerably. The head options for the word internal segments in
Figure 7.6 would be a : {b,c}, b: {d}, c: {d}, e: {g}, f: {9}

b e
O—— O, O
>
c i
Figure 7.6: Using the annotation scheme of the Turkish treebank to prune dependency arcs. Word

boundaries are marked by double circles. Edges leading into double circles represent word-final
segments (marked red). All other segments must have their head immediately to the right.

Arc Pruning

A heuristic pruning step is applied after the two pruning steps described above. During
heuristic pruning, the number of candidate heads for each token is reduced to a maximum
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of ten.

The heuristic pruner is a simple classifier that is trained on the treebank and uses the
first-order features of the parser’s feature model (¢arc). It ranks all potential heads for
each token and keeps only the top ten heads on the list. It does not enforce a tree structure

but simply considers all pairs of tokens for scoring.

It also does not take into account the dependency relations, i.e., it decides only on unlabeled
arcs. The admissible dependency relations for each head-dependent pair are decided in a
rule-based fashion by the part-of-speech tags of the head and the dependent. If the specific
combination of part-of-speech tags and dependency relation does not occur in the training
data of the parser, then the particular arc will be pruned away:.

The ten heads that the pruner outputs for each token are combined with all dependency
relations with which they can occur in the training data. This set of candidate arcs

constitutes the graph in which the parser searches for the maximum spanning tree.

As heuristic pruning can in principle remove correct arcs from the input graph, the correct
arcs are always added back to the graph, when the parser is trained. This way, the parser
is always able to predict the correct tree during training, but it may not learn to handle a
situation well in which the correct arc has been pruned away.

Path Pruning

A second way of speeding up the parser is to reduce the ambiguity in the lattice. To
achieve this, we use the bigram model (Equation (7.4) in Section 7.1.1) together with an
n-best Viterbi decoder to predict the n-best paths through the lattice. We then prune away
all edges in the lattice that are not part of any of the n-best paths. Since the n-best lists
only contain full paths, pruning does not create dead ends in the lattice.

Note that this is not the same as keeping n-best paths in the lattice. Since all of these paths
pass through the convergence points after each word, the combination of two distinct
paths creates more than two paths in the pruned lattice.
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The intention of this procedure is to preserve ambiguity where the scores are close to each
other. The idea is inspired by the observation by Bohnet et al. (2013) that keeping few
alternatives that are close in score to the top-scoring item is better than keeping more
alternatives. Zhang et al. (2015) use a similar idea to create input lattice for Chinese.

7.2 Evaluation

In standard parsing, the parser predicts a syntactic structure over a fixed number of tokens.
In lattice parsing, the number of tokens is not fixed because deciding on the number of
tokens is part of the prediction. Simple accuracies that measure how many tokens were
correctly attached are therefore not applicable in lattice parsing, as the number of tokens
in the prediction can differ from the number of tokens in the gold standard. In this section,
we review proposals on how to evaluate lattice parsers. The actual metrics that we use for
our experiments are described in Section 7.3.4.

7.2.1 Precision and Recall

Tsarfaty (2006) proposes a variant of PARSEVAL (Black et al. 1991) to evaluate constituent
parsers on Hebrew. Instead of anchoring constituents to the tokens of a parse tree, they are
anchored to the (non-whitespace) characters over which they span. This way, an incorrect
segmentation of a given substring will not affect the parsing score as long as the correct

constituent was predicted for it. For an entirely correct segmentation, this metric collapses
to standard PARSEVAL.

Let G be the set of all constituents in the gold standard parse and let P be the set of all
constituents in the predicted parse. Precision is computed by dividing the number of
correctly predicted constituents by the number of all constituents in the prediction. Recall
is the ratio between the number of correctly predicted constituents and the number of
constituents in the gold standard.

|G N P |G N P
recall =

precision =
1P| |Gl
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This metric is currently the standard for evaluating constituent lattice parsers on Hebrew
(Goldberg and Tsarfaty 2008, Goldberg et al. 2009, Goldberg and Elhadad 2011, 2013)
and has also been applied for Arabic (Green and Manning 2010). Cohen and Smith
(2007) propose a variation of this metric to deal with cases where the concatenation of
the segments of a word does not coincide with the original surface form of the word (see
for example Tsarfaty and Goldberg (2008) for Hebrew). They first compute an alignment
between the morphemes in the gold standard and in the prediction. The metric then also
punishes violations of one-to-one mappings and character edits necessary to transform

the predicted sequence into the gold sequence.

PARSEVAL and the described variant are intended for evaluating constituent parsers
and are not directly applicable to dependency parsing. Goldberg (2011:53) proposes a
variation on (un-)labeled attachment score that uses the same idea as the PARSEVAL
variant. Morphemes in the gold standard and the prediction are indexed by the ID of the
(whitespace-delimited) word to which they belong. To give Goldberg’s example, the word
790n can be segmented as one (780n) or two tokens (780 ). All segments of the word are
indexed with the word ID: (5,780n) or (5,780),(5,n). Dependency arcs in a dependency
tree thus connect pairs of such indexed segments. Precision and recall are then computed
as for PARSEVAL, with G being the set of all arcs in the gold standard and P being the set
of all arcs in the predicted dependency tree. If the segmentations in the gold standard and
the prediction are identical, this metric reduces to standard (un-)labeled attachment score.

A particular segmentation error that can occur in Hebrew is the incorrect prediction or
omission of a covert determiner. Under certain circumstances, a given word is ambiguous
between a definite and an indefinite reading which manifests in the presence or absence
of an additional segment (Bar-Haim et al. 2005: 44). This error is sometimes excluded from
evaluation by arguing that this should be treated as an error in the morphological analysis
rather than a segmentation error (Goldberg and Tsarfaty 2008, Goldberg 2011).

Li and Zhou (2012) and Hatori et al. (2012) use a similar definition of precision and recall
to evaluate a parser for Chinese dependency parsing. The parser jointly decides on word
boundaries, part-of-speech tags, and syntactic structure. Their definition of precision
and recall is stricter than the one proposed in Goldberg (2011:53), because in addition
to the correct surface segmentation, the segments are required to also have the correct
part-of-speech tag.
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7.2.2 Evaluating Turkish

The metrics proposed for Hebrew are all applicable to Turkish dependency parsing as
well, but because of the different nature of the segmentation problem in Turkish, a Turkish-
specific metric can be defined meaningfully. Recall that contrary to Hebrew, Arabic, or
Chinese, the Turkish treebank annotates dependency relations over inflectional groups
(IGs, see Section 3.3). Within a word, the dependency structure between the IGs of this
word is fixed and deterministically predictable: each IG except for the last has its head
immediately to the right. A sequence of IGs in Turkish encodes different stages of morpho-
logical derivation, whereas in Hebrew, different segments of a whitespace-delimited word
may constitute different words on their own which may belong to completely different

syntactic contexts.

Because the internal structure of a word in the Turkish treebank is deterministic, it is
traditionally not considered in evaluation. Eryigit et al. (2008) (also in Eryigit 2012) define
a metric that evaluates the attachment of the last IG of each word in the sentence. For an
arc to be correct, the IG has to be attached to the correct IG in the correct word (Figure 7.7a).
This requires the segmentation of the head word to be correct, because otherwise, the
correct IG cannot be determined. If the segmentation of the head word is not correct, the
metric accepts an attachment as correct if the head IG is part of the correct head word and
the head IG has the same part-of-speech tag as the gold-standard head IG (Figure 7.7d).

The segmentation of a word is considered correct if all IGs in the predicted word segmen-
tation have the same morphological analysis as their counterparts in the gold standard.
Unlike for Hebrew, the segmentation cannot be checked on the word forms alone, as the
dependency representation of the Turkish treebank annotates word forms for non-final
IGs as underscores. The metric does not consider the segmentation of dependent words
during evaluation, and it loosens the requirements if the segmentation of the head word
is incorrect. The metric thus abstracts away from the segmentation problem as much as

possible in order to evaluate syntactic structure in isolation.
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- - xyz - _ abc
XY Z A B C

(a) segmentation v/, attachment v/

12 4
v \¢ \ \4 \
- - Xxyz _ abc
XY Z A D

(c) segmentation X, attachment X

- - xyz - _ abc
XY Z A B C

(b) segmentation v/, attachment X

4 TN TN
] 1 \ ] \
\4 \Y \ \4 \
- - Xxyz _ abc

XY Z A B

(d) segmentation X, attachment v/

Figure 7.7: Evaluation for Turkish in Eryigit et al. (2008). The four schemas show two words
(xyz and abc) with their segmentations indicated by underscores. (a) and (d) show cases that are
counted as correct, (b) and (c) show cases that are considered incorrect. Uppercase letters symbolize
part-of-speech tags. Dashed arcs are word internal and are not considered for evaluation.

7.2.3 TedEval

TedEval is a metric that was developed to facilitate cross-framework evaluation, e.g., com-
paring different dependency annotations (Tsarfaty et al. 2011) or comparing constituent
structures to dependency structures (Tsarfaty et al. 2012a). It has also been proposed
for evaluating morphological segmentation and parsing (constituents and dependencies)
jointly (Tsarfaty et al. 2012b).

TedEval is based on tree edit distance, which is the number of operations like insertion and
deletion of nodes that is needed to transform one tree into another. The two trees that are
compared are first transformed into functional trees, formal tree structures that represent
the functional information of a parse tree but abstract away from the directionality of
the syntactic relations. Each nonterminal in these trees is labeled with the grammatical
function of the substring that it spans over. This process is performed for the gold standard
tree and the predicted parse tree.® The minimal tree edit distance is then computed

SWhen comparing to multiple gold standards, the gold standard tree is actually a generalization over
multiple trees from different gold standards.
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between the functional trees of both gold standard and prediction.

For the joint evaluation, Tsarfaty et al. (2012b) propose the following operations: adding
a nonterminal node, deleting a nonterminal node, adding a terminal node, and deleting
a terminal node. Adding and deleting terminal nodes allows the metric to measure
segmentation errors, as each terminal that needs to be replaced with another constitutes
an error in the predicted segmentation. The terminals that can be added are restricted by
the input lattice and segments can only be replaced by segments that are available for the
same position in the sentence. Tsarfaty et al. (2012b) then define the actual TedEval metric

as
TED(G, P)

TEDEVAL(G,P)=1— ———
B =1 a2

(7.19)

where TED(G, P) is the minimum tree edit distance between the gold tree G and the
predicted tree P. The edit distance is normalized by the number of nodes in both trees
minus the two root nodes.

When using this metric for evaluation of joint morphological segmentation and depen-
dency parsing, the dependency trees have to be transformed into functional trees first.
Non-projective trees are projectivized to allow for the transformation. A dependency tree
is then evaluated based on the structure of its functional tree. It has been used for example
in Seddah et al. (2013) and Zhang et al. (2015) to evaluate the joint task.

However, the transformation seems to influence the outcome of the evaluation: As an
experiment, we took a sentence from the Turkish treebank and created several versions
of it where the 10th token is attached to each of the other 13 in the sentence unless this
would lead to a cyclic structure. All other tokens were left untouched. This procedure thus
created 12 different versions of the dependency structure, 11 with exactly one attachment
error and 1 tree that was completely correct. Running TedEval on the 11 trees with the
attachment error returned 5 different scores, because the functional trees that are created
from the dependency trees have different edit distances to the gold even though all of the
underlying dependency trees have exactly one attachment error.

This experiment shows that TedEval and attachment score are not equivalent, which is to
be expected. But since different errors in the dependency trees can lead to different TedEval
scores, it shows that there is a gradation of incorrectness in the metric. Some errors are

punished more by TedEval than others, and they are punished in an unpredictable manner.
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A difference in scores between two parsers can be caused by one parser getting more of
the structure correct than the other. But in TedEval, it can also be caused by one parser
making better errors than the other, where better means more favorable functional tree
structures. Using TedEval in this manner will thus bias models towards higher TedEval
scores, but it is not clear whether this bias relates to anything meaningful and if so, what it
would be. We see the metric proposed by Goldberg (2011:53) as a good alternative for
TedEval in dependency parsing, as it performs a very similar evaluation by taking the
surface form of the tokens into account, but it does not need to transform the dependency
structures.

7.24 Evaluating the Path

The lattice parser performs all subtasks of a typical pipeline simultaneously, namely
segmentation, part-of-speech tagging, morphological analysis, and syntactic analysis. The
first three are solved by finding a single path through the lattice, the last one is solved by
finding the best spanning tree over such a path. While it is difficult to evaluate the parsing

task without the other ones, we can evaluate the first three tasks without the last one.

The definitions of precision and recall described above are easily adapted by simply
disregarding the syntactic structure. A segment is considered correct if it matches its
counterpart in the gold standard. Precision and recall are defined as before over the
number of segments in the prediction and the gold standard, respectively.

Evaluating the segmentation based solely on the surface form of the segments makes more
sense for the Hebrew treebank than for the Turkish treebank, since the latter annotates
underscores for the surface forms of word-internal segments, which makes the matching

of surface forms mostly uninformative.

Another possibility to evaluate the path selection of the lattice parser is to use Word Error
Rate (WER) (Jurafsky and Martin 2009: 362). This metric computes minimum string edit
distance between the predicted segmentation and the gold standard. Given the three edit
operations insert, delete, substitute, WER is defined as

insertions + deletions + substitutions
number of words in gold standard

WER = 100
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Tsarfaty et al. (2012b) define SEGEVAL, which is based on string edit distance as well.

In addition to the segment-based metrics, we can also give a word-based evaluation. Such
a metric would return the ratio of correctly segmented words to the number of words
in the sentence. For this metric, only entirely correctly segmented words count as true

positives.

7.3 Experiments

In this section, we present the experimental evaluation of the lattice parser by testing it on
the Turkish treebank and the treebank of Modern Hebrew. We compare the joint model to
two state-of-the-art pipeline systems and to a pipeline system that uses the exact same
feature set and decoding algorithms as the joint parser.

7.3.1 Data Sets

Turkish. The training set for Turkish consists of the 5,635 sentences of the METU-Sabanci
Turkish Treebank (Oflazer et al. 2003b). We use the detached version of the Turkish Treebank
(Eryigit et al. 2011), where multiword expressions are represented as separate tokens. We
use the 300 sentences of the ITU validation set (Eryigit 2012) as test set. As there is no
separate development set, we split the training set into 10 parts and use 2 of them as
development data. All models run on this development set are trained on the remaining
8 parts. Table 7.1 summarizes the split sizes.

This version of the treebank contains 49 sentences with circular annotations. We manually

corrected these sentences and use the updated version in our experiments.’

Hebrew. The Hebrew data comes from the SPMRL Shared Task 2014 (Seddah et al. 2014),
which provides lattices and pre-disambiguated input files. This data is based on the

°The corrected data is available under http://www.ims.uni-stuttgart.de/institut/
mitarbeiter/ozlem/seekerTACL2015.html.
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Turkish Hebrew

training 5,635 (4,508) 5,216
development 0(1,127) 500
test 300 500
total 5,935 6,216

Table 7.1: Data split sizes. The numbers in brackets for Turkish refer to the set sizes when the
development set is evaluated.

Modern Hebrew Treebank (Sima’an et al. 2001), which was extended according to the
Universal Stanford Dependency scheme (Tsarfaty 2013) and converted to dependencies
using the method described in Goldberg (2011). The 2014 version also uses the original
Hebrew characters instead of the ASCII transliteration that was used in the SPMRL Shared
Task 2013.

The treebank consists of 6,216 annotated sentences, of which the first 500 are used as
development set and the last 500 are used as test set. The remaining sentences are used as
training set. The sizes of the different sets are summarized in Table 7.1. The training and
development lattices contained a number of circular structures from which we removed
the edges causing the cycles.

7.3.2 Experimental Setup

The lattice parser is trained on morphological lattices that represent different segmen-
tations and morphological analyses of a given sentence. For Turkish, these lattices are
produced by passing the sentences through a morphological analyzer for Turkish (Oflazer
1994). For Hebrew, we use the lattices provided by the SPRML Shared Task 2014. For
both Turkish and Hebrew, the training lattices may not contain the correct paths due to
shortcomings of the lexicons and analyzers involved in their creation. In these cases, we
add the correct path to the lattices so that it is always possible for the parser to find the
correct solution during training. This procedure is done during training only. We do not
add any paths to the lattices during testing.
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In order to provide disambiguated lattices to the baseline systems, we train the bigram
model (Equation (7.4) in Section 7.1.1) separately to predict the best path through a lattice.
The feature set is the same as in the lattice parser. In the following, we will refer to this
model as the bigram segmenter. The segmenter is trained on the respective training data for
each language to predict paths for the development and test sets.

Compared to the Turkish data, the Hebrew lattices are so large that training times for the
lattice parser became unacceptable. We therefore use the bigram segmenter in combination
with an n-best Viterbi decoder to predict the 10 best paths for each lattice (the training
set is annotated via 10-fold jackknifing). All edges in the lattice that are not part of one
of these 10 paths are discarded. All experiments with the joint model for Hebrew are
conducted on such pruned lattices (see also Section 7.1.5).

The bigram segmenter and the lattice parser are trained for 10 iterations. After each
iteration, the training samples are deterministically shuffled. AD? is run for maximally
1,000 iterations both during training and testing.

7.3.3 Baselines

We use three baseline parsing systems in the experiments: MATE, TURBO, and PIPELINE.
The first two baselines are off-the-shelf dependency parsers that currently represent the
state-of-the-art, the purpose of the third baseline is to measure the effect of the joint

decoding compared to a pipeline setting.

1. MATE. Mate parser!? (Bohnet 2009, 2010) is a graph-based dependency parser that
uses Carreras’ decoder (Carreras 2007) and approximate search (McDonald and

Pereira 2006) to output non-projective dependency structures.

2. TURBO. TurboParser!! (Martins et al. 2013) is a graph-based parser that decomposes
the parsing problem into smaller subproblems and solves the overall task using
dual decomposition. The main principles behind the construction of the lattice
dependency parser presented in this chapter are in fact modeled after TurboParser.

Yhttp://code.google.com/p/mate-tools
Uhttp://www.ark.cs.cmu.edu/TurboParser/
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3. PIPELINE. The third baseline system runs the joint parser on a pre-disambiguated
lattice, i.e., in a pipeline setup. The lattices are disambiguated using the same
decoder and feature set that the lattice parser uses in the bigram model. The only
difference between the PIPELINE baseline and the lattice parser is therefore the fact
that the lattice parser performs segmentation and parsing jointly.

All three baselines are pipeline setups and operate on disambiguated lattices. Since the
bigram segmenter uses the same feature model (for segmentation) as the lattice parser,
there is no difference between the lattice parser and any of the baseline parsers concerning
the features that are available during segmentation.

The first two baselines allow us to compare the joint parser to the current state-of-the-art.
Note, however, that the feature sets are different between the joint parser and the off-the-
shelf baseline systems. A difference in performance between the lattice parser and the first
two baseline systems might therefore be caused by a difference in the feature sets rather
than the fact that the former performs joint decoding. The third baseline eliminates this
difference in the feature sets and allows us to test directly the influence of joint decoding.

All three baseline systems are trained on the gold standard segmentation (and thus gold
morphological analyses) in the training data, since predicted paths are not guaranteed to
be compatible with the gold dependency structures. During testing, the lattices are first
disambiguated using the bigram segmenter, and the selected paths are then given to the
parser.

7.3.4 Evaluation Metrics

We follow Hatori et al. (2012) and use a strict definition of precision and recall (PREC,
REC, F1) over tokens to evaluate the full task. We first align the tokens of each word in the
parser output with the tokens of the corresponding word in the gold standard using the
Needleman-Wunsch algorithm (Needleman and Wunsch 1970), which we modified so it
does not allow for mismatches. A token in the parser output that is not in the gold standard
is thus paired with a gap and vice versa. Two tokens must have the same morphological
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analysis in order to match.!? A true positive is a token that has the same segmentation,
morphological analysis, and head as its matching token in the gold standard.

This metric is very strict and requires all levels of analysis to be correct. In order to evaluate
the syntax as independently as possible, we furthermore report IGeval for Turkish, with
and without the aforementioned backoff strategy (IGeval and IGeval STRICT). For Hebrew,
we report on a version of precision and recall as defined above that only requires the
surface forms of the tokens to match.!3 This metric is almost the one proposed in Goldberg
(2011), but we do not exclude errors with respect to covert determiners. All reported

evaluation metrics ignore punctuation.

7.3.5 Results

We present the evaluation of the system in four steps: We start by measuring how well
the joint system is able to select a correct path through the input lattice. We then show
the competitiveness of the feature model of our system by applying it to correctly disam-
biguated lattices. After that, we evaluate the full task, in which the system has to predict
segmentation, part-of-speech tags, morphological features, and syntactic structure. Finally,
we have a closer look at where the improvements occur in the joint system.

The purpose of the experiments is two-fold: Firstly, we want to see how the lattice parser
compares to state-of-the-art pipeline systems that perform the joint task as a series of
independent steps. Secondly, we want to compare the lattice parser to a pipeline system
that uses the exact same feature model and decoding algorithms in order to see whether
the very fact that it uses joint decoding makes the lattice parser superior to a pipeline

setup.

2The method does not create cross, many-to-one, or one-to-many alignments, which can be important
because in very rare cases the same token occurs twice in one word.

13The metric would not work for Turkish, as the surface forms of non-final IGs are all represented as
underscores.



7.3 Experiments 141

Path Selection

We first evaluate the effect of syntactic information on the path selection quality and leave
aside the syntactic structure for now. We compare three systems for each treebank, a
baseline system (BASELINE), the bigram segmenter (BIGRAM SEGMENTER), and the full
lattice parser (JOINT).

The baseline system for Turkish is the morphological disambiguator described in Sak et al.
(2008). We do not use pre-trained models but train the disambiguator on the training data
of the Turkish treebank. We use the pre-disambiguated lattices provided by the SPMRL
2014 Shared Task as the baseline for Hebrew. Seddah et al. (2013:159) give a description

on how these lattices are produced.

We use segment-based precision, recall, and f-score (PREC, REC, F1) and word-based
accuracy (ACCy) to evaluate the systems. The metrics are described in Section 7.2.4. Recall
that these metrics measure the quality of the full path selected by the system. Only a
segment/word that has the correct surface form, part-of-speech tag, and morphological

analysis is counted as a true positive.

data system PREC REC F1 ACC,,
dev  BASELINE 89.59 88.14 88.86 87.97
BIGRAM SEGMENTER 90.69 89.52 90.10 89.45
JOINT 90.80 90.22 90.51 89.94
test BASELINE 89.46 88,51 88.99 8795
BIGRAM SEGMENTER 89.96 89.23 89.59 88.71
JOINT 90.19 89.74 89.97 89.25

Table 7.2: Path selection quality for Turkish.

Table 7.2 shows the experimental results for the segmentation evaluation on the Turkish
data. The bigram segmenter considerably outperforms the baseline system. This shows
that the feature model of the bigram segmenter is better suited to the Turkish treebank,
which is of course partly due to the fact that this particular feature model was developed
on the Turkish development set. The bigram model is in turn outperformed by the full
lattice parser. While there is a modest improvement for precision, recall and word-based
accuracy show a considerable improvement over the bigram model. The improvements

over the bigram model must be due to the syntactic information that the lattice parser can
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access, since the bigram model and the lattice parser both use the same feature model for
path selection.

data system PREC REC F1 ACC,
dev  BASELINE 85.99 84.07 85.02 80.30
BIGRAM SEGMENTER 86.84 86.30 86.57 83.46
JOINT 86.68 87.49 87.08 84.67
test BASELINE 81.79 79.83 80.80 74.85
BIGRAM SEGMENTER 84.44 8322 83.83 79.60
JOINT 83.88 83.99 83.94 80.28

Table 7.3: Path selection quality for Hebrew.

Table 7.3 shows the results of the same experiment when conducted on the Hebrew data.
Also for Hebrew, the bigram segmenter and the lattice parser outperform the baseline.
As the feature model of these two systems was not specifically adapted to the Hebrew
treebank in any way, this result suggests that the feature model performs quite well in
the general case. Comparing the bigram segmenter with the lattice parser, we see that for
Hebrew, the bigram segmenter gives better precision than the lattice parser, especially on
the test set. But like in Turkish, the parser is considerably ahead in recall and word-based
accuracy, and the higher f-score indicates that the improvement in recall outweighs the
disadvantage in precision to some extent.

So far, the experiments indicate that syntactic information is useful for the segmentation
task. This result corroborates previous results for Hebrew (Cohen and Smith 2007, Gold-
berg and Tsarfaty 2008) and also demonstrates it for Turkish, even though the segmentation
ambiguities in both treebanks have different origins.

Performance on Gold-standard Segmentation

Next, we present experimental results on the development sets of both languages, when
the different systems are trained and tested on correctly disambiguated lattices. We
compare the lattice parser (JOINT) to the three baselines described in Section 7.3.3, namely
MATE, TURBO, and PIPELINE. In this setting, the PIPELINE and the JOINT systems give
identical results, because they use the same feature set and decoders. We can use standard
labeled and unlabeled attachment scores (LAS, UAS) for evaluation because segmentation
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in the parser output is always correct.

Turkish Hebrew
data system LAS UAS LAS UAS
dev  MATE 73.05 81.61 82.80 89.68

TURBO 73.85 8287 8251 89.63

PIPELINE/JOINT 74.40 82.81 83.06 89.63

Table 7.4: Parsing results for Turkish and Hebrew using gold standard segmentation.

Table 7.4 mainly serves to show that the feature model of the lattice parser is competitive
with the external baseline parsers. For unlabeled scores, all three systems perform on par
with each other, whereas for labeled scores, the lattice parser outperforms the baselines.
The numbers also show that MATE performs worse than TURBO for Turkish, but is slightly
ahead for Hebrew.

Evaluating the Full Task

We now evaluate the performance of the lattice parser on the full task, i.e., segmentation,
morphological analysis, and dependency parsing. We evaluate with segment-based
precision, recall, and f-score (PREC, REC, F1) both for labeled and unlabeled dependencies
as described in detail in Section 7.2. The input to all baseline systems has been produced

using the bigram segmenter trained on the respective training data.

Table 7.5 gives the results on the Turkish treebank, evaluating the systems on the devel-
opment set, the test set, and on the training set via 10-fold cross-validation (10cv). The
TURBO baseline performs consistently better on the Turkish data than the MATE baseline.
It is in turn outperformed by the PIPELINE baseline in all experiments except for unlabeled
scores on the development set, where TURBO and PIPELINE give results that are close to
each other. That the PIPELINE baseline is better than the two external baselines is partly
due to the fact that the feature model of the PIPELINE baseline was specifically developed
on the Turkish development set, which is not the case for the external baselines. The
JOINT system is the best performing system, consistently outperforming even the PIPELINE

baseline.
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LABELED UNLABELED
data system PREC REC F1  PREC REC F1
dev  MATE 62.54 6173 6214 6944 6854 68.98

TURBO 63.54 6271 6312 70.68 69.76 70.22
PIPELINE 63.86 63.03 6344 7065 69.73 70.19
JOINT 64.21 63.79* 64.00 70.96 70.50* 70.73

10cv  MATE 6328 6249 62.88 7037 6950 69.94
TURBO 63.82 63.03 6342 7112 7024 70.68
PIPELINE 6497 64.17 6457 7171 70.83 71.27
JOINT 65.27 64.84" 65.06 72.05¢ 71.58" 71.82

test MATE 64.64 6412 6438 70.62 70.04 70.33
TURBO 65.36 64.83 65.09 71.66 71.08 71.37
PIPELINE 6640 6586 66.13 7230 71.72 7201
JOINT 67.33 66.99* 67.16 72.94* 72.58* 72.76

Table 7.5: Parsing results for Turkish. Statistically significant differences between the joint system
and the pipeline system are marked with { (p < 0.1) or * (p < 0.5). Significance testing was
performed for precision and recall using the Wilcoxon Signed Rank Test.

Table 7.6 shows the same experiments conducted on the Hebrew treebank. We compare
the same systems as for Turkish, but note that the joint system is now called JOINT10 to
indicate that the lattices for this system are pruned as described in Section 7.3.2. Unlike for
Turkish, we cannot find big differences between the three baseline systems. They perform
mostly on par with each other, this time with the MATE baseline being slightly ahead of
the TURBO baseline. However, as for Turkish, the lattice parser is better than the three

baselines.

For both languages, the differences in recall between the pipeline baseline and the joint
system are statistically significant, but this is most of the time not the case for precision
(with the exception of unlabeled precision on 10cv and test for Turkish). It appears that
the syntactic information that is available to the joint system mostly helps with recovering
correct segments but cannot prevent overprediction of segments better than the pipeline
system. However, the improvements in recall do not seem to occur at the expense of
precision, as the precision of the joint system is in general at least as high or higher than

the precision of the pipeline baseline.
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LABELED UNLABELED
data system PREC REC F1 PREC REC F1
dev  MATE 6541 65.00 6520 70.65 7021 70.43

TURBO 65.12 6472 6492 7044 70.00 70.22
PIPELINE 65.64 6523 6544 70.65 7021 7043
JOINT10  66.82 67.44" 67.13 7147 72.13* 71.80

test MATE 63.16 6225 6270 6752 6655 67.03
TURBO 63.06 6216 62.61 6727 6631 66.79
PIPELINE 63.63 6272 63.17 67.62 66.65 67.14
JOINT10 63.81 63.89" 63.85 67.79 67.887 67.84

Table 7.6: Parsing results for Hebrew. Statistically significant differences between the joint system
and the pipeline system are marked with { (p < 0.1) or * (p < 0.5). Significance testing was
performed for precision and recall using the Wilcoxon Signed Rank Test.

Evaluating the Syntax

As became clear in Section 7.2, it is very difficult to evaluate the parsing system only for
the syntactic performance independently from the segmentation quality. Nonetheless,
while we are generally interested in improving the full parsing task, knowing at which
level the improvements occur is helpful to understand the system better.

Because of its particular type of annotation, we can evaluate the lattice parser on the
Turkish treebank with two additional metrics. We use the word-based accuracy proposed
by Eryigit and Oflazer (2006), which is described in detail in Section 7.2.2. We also use a
more strict version of this metric. In the strict version, the head word is always required to
have the correct segmentation. We denote these metrics IGeval and IGeval STRICT and
report on labeled (LAS;;) and unlabeled dependencies (UASg).

Table 7.7 shows the results of the experiments on the Turkish treebank when evaluated
with the IGeval metrics. For the strict version, the picture is similar to the one we saw in
Table 7.5, where the lattice parser outperforms all baselines. For the non-strict version,
however, the difference between the lattice parser and the PIPELINE baseline disappears.

Recall that the IGeval metric is designed to abstract as much as possible from the segmen-
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IGeval STRICT IGeval
data system UAS, ¢ LAS, UAS); LASq
dev  MATE 70.60 60.10 74.88 63.46

TURBO 72.22 61.24 76.58 64.73
PIPELINE 72.26 61.82 76.64 65.49
JOINT 72.66*  62.40 76.61 65.59

10cv  MATE 7175 6126 7584 64.42
TURBO 72.77 61.89 76.93 65.09
PIPELINE 73.66 63.52 77.68  66.82
JOINT 7393 63.85 77.74  66.83

test MATE 7199 6184 77.08 65.98
TURBO 73.16 6276 7837  67.02
PIPELINE 7433 6440 79.61 69.02
JOINT 75.02  65.32 7945  68.99

Table 7.7: Parsing results for Turkish using IGeval. Statistically significant differences between the
joint system and the pipeline system are marked with {. Significance testing was performed using
the Wilcoxon Signed Rank Test with p < 0.01.

tation of the words that are connected by the dependency structure. Thus, it is able to
approximate a syntactic evaluation that is independent of potential segmentation mistakes
made by the system. The reason for this is the annotation in the Turkish treebank, in which
the word-internal dependency arcs are deterministic and thus allow for a word-based

evaluation.

The disappearance of the difference between the PIPELINE baseline and the lattice parser
suggests that most of the improvements in the joint system occur in the segmentation and
morphological analysis. The syntactic quality produced by the lattice parser stays on the
same level as the pipeline baseline.

We can perform a similar experiment for Hebrew. Since the Hebrew data encodes actual
word forms for the segments (compared to the underscores in the Turkish treebank), we
can evaluate the syntax jointly with the surface segmentation disregarding any errors in
the predicted part-of-speech tags or morphological features. This metric is very similar to
the metrics used by Goldberg and Tsarfaty (2008) and is also comparable in spirit to the
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version of TedEval in Tsarfaty et al. (2012b).

LABELED UNLABELED
data system PREC REC F1 ~PREC REC F1
dev  MATE 68.05 67.62 67.83 7470 7424 7447

TURBO 6797 6754 67.75 7458 7412 7435
PIPELINE 6856 68.14 6835 74.84 7437 74.60
JOINT10  69.23 69.87" 69.55 74.88 75.587 75.23

test MATE 66.17 6522 65.69 71.62 70.60 71.11
TURBO 66.14 65.19 6566 7138 70.35 70.86
PIPELINE 66.81 65.85 66.33 71.82 70.79 71.30
JOINTI0  66.63 66.721 66.68 7148 71.57" 71.52

Table 7.8: Parsing results for Hebrew, only requiring surface forms of segments to be correct.
Statistically significant differences between the joint system and the pipeline system are marked
with f. Significance testing was performed for precision and recall using the Wilcoxon Signed Rank
Test with p < 0.01.

Table 7.8 shows the results of this kind of evaluation. Unsurprisingly, the absolute figures
are higher than the ones in Table 7.6, since we now disregard two classes of errors. We
still get the same picture as before with the lattice parser being ahead of the baselines in
recall, but like in Table 7.3, the pipeline baseline gives higher numbers for precision. The

differences in recall between these two systems are statistically significant.

7.3.6 Conclusion

The experiments presented in this section show that the lattice parser performs better than
a pipeline model when evaluated for the full task of segmentation, morphological analysis,
and parsing. The improvements mostly occur in recall and the effect is the same for both
languages, Turkish and Hebrew. For Turkish, the improvements occur in the lower levels
of analysis, i.e., segmentation and morphology. The IGeval metric shows that the pipeline
and the joint model perform equally well on the syntactic level. This effect might be due
to the special nature of segmentation ambiguity in the Turkish treebank. For Hebrew, an
evaluation that disregards morphological analysis still shows improvements in recall for
the joint model compared to the pipeline. That a joint model is better suited to model
Hebrew has been shown by Cohen and Smith (2007), Goldberg and Tsarfaty (2008), and

Goldberg and Elhadad (2013) for constituency parsing and our experiments demonstrate
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the same result for dependency parsing.

7.4 Discussion

We start the discussion by giving some background on the joint models proposed for
parsing. We then compare our parser to this work and discuss alternative modeling
choices.

7.4.1 Joint Constituency Parsers

There exists a long line of work on joint models for parsing. It was originally motivated
by the word segmentation problem in Chinese, Hebrew, and Arabic and was conducted
in the context of constituency parsing. The segmentation problem in Chinese is different
to the one in Turkish or Hebrew as it is not a problem about splitting words into smaller
parts but rather a problem of grouping sequences of characters into words. Luo (2003)
already proposes a constituency parser that integrates segmentation and part-of-speech
tagging into the parsing process by modeling word structure as part of the constituency
structure. Words are thus treated as the lowest tier of constituents. They find that the
structural information from the parse tree is less important but part-of-speech information
is highly beneficial to the task of word segmentation. This finding is confirmed later by
Ng and Low (2004) with a serious of comparisons between pipeline and joint models for
joint segmentation and part-of-speech tagging. Several other models for segmentation
that exploit part-of-speech information were developed since then, e.g., Zhang and Clark
(2008b), Jiang et al. (2008), and Zhang and Clark (2010).

Joint models for Hebrew were first proposed by Tsarfaty (2006), who argues that a joint
model for segmentation, morphological analysis, and syntactic analysis is better suited for
Hebrew than a pipeline setup. She defines a probabilistic model for the full joint task but
presents experiments with a model that performs the joint task only for the first two steps
(segmentation and morphological analysis). Nonetheless, the experimental results already
demonstrate the superiority of the (semi-)joint model compared to a setup where none of
the tasks are solved jointly.
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The first full joint constituent parser for Hebrew was proposed one year later by Cohen
and Smith (2007). It is a parser that operates on morphological lattices and searches
for the best combination of parse tree and lattice path. Their model factors the joint
probability into two different sub-models: a morphological disambiguation model and
a PCFG, which they train separately. The morphological disambiguation model assigns
weights to the transitions in the lattice, which are integrated into the score for the tree
when the transition is selected by the lattice parser. They show that a good morphological
model is an important prerequisite for the success of the joint parser. In particular, they
need the morphological model to be good at ranking the alternatives to the best solution
in order to be beneficial to the parser.

Goldberg and Tsarfaty (2008) present further experiments with a lattice constituent parser
for Hebrew. Contrary to Cohen and Smith (2007), their model does not have a separate
sub-model for morphological disambiguation but relies entirely on the parsing model to
disambiguate the morphology. They test a series of extensions to a plain PCFG creating
increasingly rich grammars and demonstrate that the richer grammars are more accurate.
Although they do not directly compare to a pipeline model, their best parser outperforms
the results reported by Cohen and Smith (2007) for their pipeline and their joint setting.
This work is continued in Goldberg and Elhadad (2011) where they extend the Berkeley
parser (Petrov et al. 2006) to accept lattices as input. The latent annotations learned by the
LA-PCFG yield an error reduction of 20% over their previous model. In Goldberg and
Elhadad (2013), they extend the parser once more by adding a post-filter on top of the
LA-PCFG lattice parser to model morphological agreement, showing that such a filter can
lead to grammatically more sound analyses.

For Arabic, Green and Manning (2010) adapt the Stanford parser to lattices and conduct a
comparison of a joint model to a standard pipeline. They find that weighting the lattice as
suggested by Cohen and Smith (2007) gives better performance than using the unweighted
lattices as proposed by Goldberg and Tsarfaty (2008). However, their joint model does not
outperform the pipeline setup. They suggest that this result might be due to the fact that
lattices are basically longer sentences and that parse quality is generally worse on longer

sentences.
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7.4.2 Joint Models for Transition-based Dependency Parsers

Joint models for dependency parsing were pioneered by Hatori et al. (2011) for Chinese.
They design a transition-based parser that performs part-of-speech tagging and parsing
jointly. In this parser, the shift operation of the arc-standard decoder (Nivre 2008) is
defined such that every time a token is pushed onto the stack the parser also selects a
part-of-speech tag for it. Instead of one shift transition that the model has to predict, the
parser now chooses between shift transitions for each tag in the part-of-speech tag set.
This increase in number of transitions adds a constant factor to the overall complexity of
the parser, which means that the parser is not significantly slower, especially since part-of-
speech tag sets for languages with no morphology are usually rather small. A problem
that they encounter is that due to the joint modeling, the parser has no information about
the part-of-speech of tokens that it has not shifted yet. To deal with this, they introduce
delayed features in the feature model, which postpones the evaluation of some features until

all necessary information is available.

This parser was soon extended to integrate word segmentation into the model thus per-
forming the full joint task of segmentation, part-of-speech tagging, and dependency
parsing (Hatori et al. 2012, Li and Zhou 2012). The full joint parsers operate on charac-
ter level and form words by means of an append action, an additional operation in the
transition system that concatenates characters. The first models worked with an ad-hoc
representation of the inner structure of the words. Linguistically motivated word-internal
structures were shown to yield even better results by Zhang et al. (2014a).

The joint transition-based parsers that were developed for Chinese were quickly adapted
to other languages as well. As we have argued in this dissertation, joint models are inter-
esting for languages with rich morphology because they can model interaction between
morphology and syntax. Bohnet and Nivre (2012) define a similar parser as the one in
Hatori et al. (2011) but extend it to non-projective parsing in order to handle the free word
order in morphologically rich languages.

Bohnet et al. (2013) extend the parser further to include prediction of morphological fea-
tures into the model. However, including morphological features is not as straightforward
as including the part-of-speech tags was for the Chinese parsers because morphological
tag sets are much larger than part-of-speech tag sets. Simply having the parser choose for
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each shifted word a morphological tag out of a set of potentially more than 1,000 tags has
a big impact on the run-time of the parser. Bohnet et al. (2013) therefore provide the parser
with an n-best list of possible tags for each word, which they predict with a standard
sequence model. They find that keeping at most two tags for each word already gives them
the best results. It may be surprising that two is already enough, but today’s sequence
models for predicting part-of-speech tags or morphology are quite good. Keeping a list of
the two best tags essentially means that one trusts the sequence model to rank the correct
candidates high, but wants to keep some options open for the parser to make the final
decision when it sees more context. That the preprocessing has to be good in ranking the
correct alternatives high was already found by Cohen and Smith (2007) for their Hebrew

constituency parser (see above).

Bohnet et al. (2013) encounter another problem related to rich morphology in their beam-
search decoder: the beam quickly loses variants that differ with respect to the part-of-
speech tags or morphological features and only keeps structural variants around. They
avoid this effect by reserving a portion of the beam to be filled by morphological variants
exclusively. The problem seems related to one encountered by Zhang et al. (2014a), who
weight the features for segmentation and part-of-speech tagging four times as high as the
parsing features because otherwise the parsing features dominate the feature model due

to their larger number.

The parsers discussed in this section were developed for languages with rich morphology
but that do not have a word segmentation problem as in Hebrew, Arabic, Turkish, or
Chinese. However, it is straight-forward to adapt the parser. In essence, the append action
that is used in Chinese to form words from characters can be used to split words into
smaller parts. A parser that uses this idea is described in Tratz (2013) for parsing Arabic.
The parser is based on the easy-first decoding algorithm (Shen and Joshi 2008, Goldberg
and Flhadad 2010a) and differs from standard transition-based algorithms in that it can
operate on any pair of words in the sentence. The parser defines additional operations
like part-of-speech tagging, morphological tagging, and affix splitting. The operations are
ordered such that the parser can only link two tokens with a dependency relation if both
have already received a part-of-speech tag. The same idea was implemented in a parser
for Chinese for joint part-of-speech tagging and parsing (Ma et al. 2012).

There is some work on standard dependency parsing for Hebrew (Goldberg and Elhadad
2009, 2010a, Goldberg 2011), but only little work has been done on lattices. De La Clergerie
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(2013) reports on experiments with a transition-based dependency parser for lattices. The
results for the joint model are however slightly behind the ones for their pipeline baseline.
Ko6hn et al. (2014) conduct experiments with TurboParser on n-best paths that they predict
from Hebrew lattices. Although this is technically not lattice parsing, they show that the
parser is able to select better paths from the n-best list than a ranking model without

syntactic features.

7.4.3 Joint Models for Graph-based Dependency Parsers

Parallel to the development of transition-based parsers for joint modeling work on graph-
based parsers was conducted too. There is however not as much work on joint models
for graph-based parsing due to the high complexity of graph-based decoders. Transition-
based parsers are generally more attractive for joint modeling due to their incremental
processing that looks at one word at a time. Having a transition-based parser predict
part-of-speech tags adds the size of the part-of-speech tag set as a constant to its complexity.
This constant is usually small for part-of-speech tags but as we discussed above, it can
become very large for morphological tags and already then it is better to prune the set
of possible tags for each word. However, the tag set constant is considerably larger in
graph-based parsers because graph-based parsers consider factors over multiple words.

Li et al. (2011) extend Eisner’s decoder (Eisner 1997, 2000) and several higher-order
versions of it to jointly predict part-of-speech tags and syntactic structure. In each cell of
the chart, the parser predicts the highest-scoring combination of arc and part-of-speech
tags on the head, the dependent, and the two words at which the combined spans meet.
Depending on the order of the factors, this adds polynomials of the tag set size to the
complexity of the parser. The complexity of their first-order model includes the factor
q* where ¢ is the size of the tag set. These parsers can still be efficient when combined
with heavy pruning and they produced state-of-the-art results for Chinese at the time.
However, the approach does not scale well with respect to large tag sets as are common

for morphologically rich languages.

Lee et al. (2011) define a graphical model for joint morphological prediction and parsing,
modeling morphosyntactic interaction via dedicated factors in the model. They use loopy
belief propagation (Smith and Eisner 2008) to do inference in the model and demonstrate
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improvements over their own baselines. However, their results fell far behind the state-of-
the-art of that time.

7.4.4 Comparison

We now compare our parser to the work that we described in the beginning of this section.
The comparison is grouped into different aspects that we think are relevant for this work.

Architecture

The parser that we develop in this chapter is a graph-based dependency parser. The
complexity issue that arises due to the global optimization is addressed by using inexact
search (i.e., dual decomposition) that allows us to add the complexity of the sub-problems
rather than multiplying them. In this respect, it is more efficient than an extension of the
dynamic programming decoders in Li et al. (2011) to segmentation and morphological
prediction. However, like their parsers ours requires pruning to keep the runtime tractable.
The decoder is therefore more similar to the work by Smith and Eisner (2008) as they also
use inexact search for inference and model different aspects of the problem with different
dedicated factors.

The architecture of the lattice parser resembles the construction by Rush et al. (2010)
for combining a part-of-speech tagger with a constituency parser in the sense that the
lattice parser also combines a sequence model with a parsing model. However, due to the
lattice structure, the lattice parser needs additional constraints to ensure an agreement
between the outputs of the two models. These constraints are implemented as first-order
logic factors, which can be handled efficiently by AD?® (Martins et al. 2011b, 2015). Such
constraints have previously been used to enforce structural requirements in systems for
semantic parsing (Das et al. 2012), compressive summarization (Almeida and Martins
2013), and joint quotation attribution and coreference resolution (Almeida et al. 2014). We
adopted the idea of using the Chu-Liu-Edmonds algorithm to ensure the tree structure
from Koo et al. (2010) as well as using head automata to model second-order dependencies.
Non-lattice dependency parsers that decode with dual decomposition algorithms are
proposed in Koo et al. (2010) and Martins et al. (2013).
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One important motivation for the graph-based parser in this chapter is to deal with
segmentation ambiguity. This is done by searching for the combination of best parse
tree and best path in a morphological lattice. The transition-based parsers can easily be
adapted to solve this task as well. For example, the parser by Hatori et al. (2012) uses
an append operation to form new words from single characters. This operation can be
changed to split incoming words into smaller parts. A similar idea is implemented in

Tratz (2013) for easy-first parsing.

Lattice parsing in a graph-based setting can also be done without dual decomposition. The
chart-based lattice parsers that are used in the constituency parsers work similarly with
Eisner’s decoder. This technique has been applied for example in the context of machine
translation (Carreras et al. 2008). The difference to our parser is then that our parser
natively outputs non-projective structures whereas Eisner’s decoder alone is restricted to

projective structures.

Finally, recent work suggests that global optimization is unnecessary in dependency
parsing in the first place. This assumption underlies the transition-based approach as well,
namely that it may be enough to make local decisions since this will lead to an optimal tree
anyway. The work by Zhang et al. (2014b) pushes this assumption to the limit by using a
very simple decoder based on sampling that in turn allows them to use any kind of scoring
function they want. In Zhang et al. (2015), they present an application of this approach
to joint modeling of segmentation, morphological analysis, and dependency parsing for
Arabic and Chinese, demonstrating state-of-the-art results. The scoring function in this
parser permits any kind of global feature that one can think of. In principle, this can be
modeled in our lattice parser with additional soft constraints for which the parser learns
a weight. However, this would mean many more constraints that would likely lead to a
slower parser. But more importantly, their work shows that a good feature model, i.e., a
model that captures the relevant information well, is more important than a decoder that

considers all possible combinations.

Lattices

One question that is answered differently by the different parsers is the question of how
to represent morphological (and segmentation) ambiguity. Almost all of the constituency
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parsers described above work with explicit morphological lattices that are created be-
forehand and serve as input to the parser. However, the transition-based parsers mostly
do not adopt this setting but instead represent ambiguity by simply optimizing over all
possible part-of-speech tags or morphological tags. Conceptually, this is not so different to
a lattice since all possible part-of-speech tags can also be represented in a lattice structure.
However, it makes a difference if the lattice is not complete, i.e., if the lattice only encodes
the options that are known to the morphological dictionary from which it was created.
In this case, the lattice restricts the possible options defined by a tag set to those that are
represented in the dictionary. This feature is helpful because it the restriction lowers the
amount of ambiguity which in turn restricts the search space of the parser. However, it
can also lead to problems if the dictionary does not cover all phenomena or is missing

particular analyses.

One reason why the transition-based parsers do not use explicit lattices seems to be the
fact that they were developed either for Chinese or for morphologically rich languages
that have no segmentation problem (with the exception of the parser by Tratz (2013)). The
opposite is true for the constituency parsers for Hebrew and Arabic, which were from
the start meant to deal with segmentation ambiguity. When the segmentation problem
enters into the picture, explicit lattices (or at least a restriction of options via an external
dictionary) are almost unavoidable because otherwise every possible segmentation at
character level would need to be considered and the model would also need to learn what

real words are.

However, transition-based parsers for Chinese still do not use explicit lattices even though
they solve the word segmentation problem. This is due to two differences between the
Chinese word segmentation problem and the one in Hebrew, Turkish, etc. One is that
a word in Chinese is always going to be the concatenation of the characters that it is
composed of. This is for example not the case for Hebrew. Goldberg and Tsarfaty (2008)
describe super-segmental morphology as one problem of Hebrew parsing. Super-segmental
morphology describes cases where the original surface form looks different than the
concatenation of all its constituting morphemes. This phenomenon can be triggered for
example by phonological processes that delete or change sounds. For this reason, a model
for word segmentation must know more about the morphology of words than just the
points where the surface string needs to be split. The other reason is that Chinese words
consist of only few characters on average which results in less split points compared to a

Latin-based script. Nonetheless, it is common that Chinese models for word segmentation
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(including the joint models discussed above) use large lexicons of Chinese words in their

feature set.

A question that is related to the use of lattices is whether to use scores of other models
to weight the lattices or even prune them. Cohen and Smith (2007), Green and Manning
(2010), Bohnet et al. (2013) use additional models to prescore the options that the parser can
choose from when predicting the morphological information and find that this prescoring
is important for the success of the overall model. On the other hand, Goldberg and
Tsarfaty (2008) explicitly state that they want the parsing model to learn the decision on
its own. Our lattice parser does not use scores from external models and even though it
uses two models for scoring path and tree respectively, they are learned jointly. However,
we believe that it makes a lot of sense to rely on the knowledge that is represented in

specialized tools like part-of-speech taggers.

Features

One problem that was already observed by Hatori et al. (2011) is that if the parser is sup-
posed to predict part-of-speech tags, it cannot use it as features for doing so. In particular,
the transition-based parser that they design cannot access part-of-speech information on
tokens that have not been shifted because it is the shift operation that assigns a part-of-
speech tag to the token. However, information about the part-of-speech of the buffer
tokens provides valuable context. Hatori et al. (2011) address this problem by introducing
delayed features, which are evaluated once the information is available. Bohnet and Nivre
(2012) and Bohnet et al. (2013) use the best prediction of a part-of-speech tagger as context
features but the parser can overwrite this information later on. The same procedure is
used by Li et al. (2011) who fix the part-of-speech tags for context tokens to the single best
analysis from a part-of-speech tagger.

In our parser, we use the features of the path model to determine the best preceding and
following token for each token in the lattice. These are then used as context features in the
feature model. It is a slightly different approach because the path model is trained jointly
with the parser and the best preceding and following token can therefore change during

training.
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Another technique that was reported to be useful is to give higher weight to the path
features. Zhang et al. (2014a) describe how they weight the features for segmentation and
part-of-speech tagging four times higher than the parsing features since otherwise they are
outweighed by the large number of parsing features. We do not perform such weighting
in our model. Exploring different weighting schemes may give some insights into the
model, especially which part of the model is most important. Instead of weighting the
path features higher, one could also make them very small. Koo et al. (2010) for example
put almost the entire weight on the head automata, leaving only a small fraction of it in
the Chu-Liu-Edmonds algorithm to facilitate tie breaking. In such a weighting scheme, the
Chu-Liu-Edmonds (and in out case the path model) simply constitutes another constraint
that enforces tree structure (or a consecutive path in the case of the path model). The
actual optimization would take place in the head automata, which have access to path as

well as structural features.

7.4.5 Evaluation

Even though the segmentation problem can be solved with similar means as part-of-speech
tagging, the problems it poses to evaluation (see Section 7.2) show that it is not quite
the same. One insight from evaluation is that segmentation is structurally connected to
syntax and thus an incorrect segmentation makes the syntactic annotation meaningless.
This is not the case for incorrect part-of-speech tags or incorrect morphological features.
Although one can argue that an incorrect part-of-speech tag makes the interpretation of
a sentence meaningless as well, it does not affect the overall structure of the sentence. It
therefore seems to us that segmentation and syntax should be seen as a unit that makes

sense only in combination.

Segmentation ambiguity also has repercussions on the training of pipeline architectures:
When training pipelines for languages with an uncertain segmentation, jackknifing cannot
be done with respect to the segmentation. The problem is that for predicted segmentation,
a gold-standard dependency tree will not be available and a supervised parser cannot be
trained. In this regard, segmentation is different to part-of-speech information. However,
training via jackknifing usually gives better models since the later steps in the pipeline
can learn which annotations from the lower levels can be trusted and which ones cannot,

thus leading to less severe error propagation in pipelines. Joint models that also predict
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segmentation do not suffer from error propagation, since they predict the segmentation
themselves. While error propagation in pipelines could so far be remedied (to some
extent) by applying jackknifing, including segmentation into the parsing task introduces
a processing step to which jackknifing cannot be applied. For parsing languages with
segmentation ambiguity, joint models are thus the best option that is currently at our

disposal.
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Chapter 8

Conclusion

In this dissertation, we presented experiments to demonstrate the shortcomings of a
pipeline architecture for parsing languages with rich morphology. We developed parsers
to test an alternative model that solves the task of morphological and syntactic analysis
jointly and showed experimentally that they are superior to the pipeline. The purpose
of this dissertation was to demonstrate that the reason why pipeline architectures work
well for English is not because pipelines are good models for parsing per se, but because
English is a special case among the languages in the world with respect to morphology.
In linguistic theory, syntax cannot and is not considered independent of morphology,
and parsing should not be thought independent of morphological analysis either. In the

following, we summarize the main contributions.

Syncretism. Syncretism introduces ambiguity because relevant grammatical information
is not fully specified morphologically. The syntactic context of a syncretic word form
can give the relevant information to properly resolve the ambiguity but in languages
with free word order, this context can be anywhere in the sentence. Morphosyntactic
mechanisms like agreement can hold over long distances in the sentence even though
syntactically they may be local. A pipeline model disconnects the prediction of syntactic
structure from the prediction of morphological information and thus limits access to
syntactic structure for predicting morphology. We demonstrated this with an analysis
that shows how parsing errors with respect to argument functions can directly be related
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to mistakes of the morphological prediction due to syncretism. We then showed how
access to the full syntactic structure of a sentence improves automatic morphological
analysis. In particular, these improvements are orthogonal to improvements from large-
scale lexicons showing that the syntactic context of a word contributes information that

cannot be obtained otherwise.

Languages like Czech and German show an intricate interaction between morphology
and syntax. These languages rely (among other things) on syntactic information and
morphosyntactic rules like agreement to resolve syncretism. However, our experiments
have also shown that parsing models for Hungarian do not suffer as much from error
propagation as Czech and German. This is because there is almost no syncretism in
Hungarian. It seems that jointly modeling morphology and syntax for Hungarian may not
need to be as necessary as it is for German and Czech. Even though joint models subsume
pipelines, pipelines are more efficient and may be suitable for Hungarian. At the end of
the day, this shows that using morphology to encode grammatical information is not the
problem in itself, but it is the specific ways these mechanisms are implemented in the

individual languages that causes problems for our standard models.

Restricting the Search Space. The constraint parser that we presented in Chapter 6
models morphosyntax by imposing constraints on the search space of the parser. These
constraints import a linguistic aspect into the parser’s decoder by defining a well-formed
output not just by imposing a tree structure but also the requirement that they do not
violate the morphosyntactic rules of the language. The underlying statistical model, on the
other hand, remains untouched by the constraints. Although the parser performs better
on argument functions compared to an unconstrained version, the statistical model itself

does not model morphology and syntax jointly.

The fact that we can use these constraints to improve the performance of the parser for
argument functions also shows that the parsing models still have a deficit with respect to
modeling argument frames. Restricting the search space is a step in the right direction
because it excludes for example structures where the same verb has two different subjects,
but what we would like to see is that also the statistical model has a representation of
the argument frame of a verb. We would like the model to select an argument as the
subject because it considered the other potential candidates and decided that among these
this one is the best choice. To do this, it must however see all candidates together rather
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than making a decision for each one individually and independent of the other options.
Sibling models, which model two dependents of the same head together, are the closest
to model the interaction between different arguments of the same verb. But they only
consider two dependents, often ones that are next to each other, and they almost never
consider the dependency relations of both siblings. Such design decisions are often made
out of efficiency considerations, and for good reasons. However, free word order and
non-configurationality, which are found aplenty in morphologically rich languages, make

it necessary to reconsider these decisions.

Joint Modeling. The second parser that we presented is a graph-based parser that oper-
ates on lattices and jointly predicts a segmentation of the words into smaller units, their
morphological features, and the syntactic structure connecting them. It is an implementa-
tion of the joint model that we have argued for in this dissertation and our experiments
with it show that joint decoding indeed outperforms an identical pipeline model that only
differs in the fact that it separates morphological and syntactic analysis. One challenge for
joint models is their increased complexity. We addressed this issue in the lattice parser
by decomposing the problem into efficiently solvable sub-problems and an agreement
constraint. Inexact optimization via dual decomposition then finds the best dependency
structure that fulfills the agreement constraint.

The experiments on Turkish and the subsequent analysis show that the improvements due
to the joint modeling almost exclusively occur in the segmentation and morphological
analysis while the parsing quality stays at the same level as for the pipeline model. We
observed a similar effect in a side experiment in Chapter 5, where we automatically
predicted morphology while having access to the full syntactic structure of the sentence.
When using the improved morphological prediction as input to another parsing step,
the parsing quality stayed the same. It seems like the morphological analysis can profit
from the parsing but not necessarily the other way around. This should be further
investigated by testing the parser on more languages, especially also languages without
the segmentation problem. This would also facilitate a meaningful comparison to other

joint parsers.

There are also several aspects of the lattice parser itself that are worth further investigation.
Like previously published joint parsers there is the question of how to represent the context
of words in the feature model. In our case, it is the question of what the next/previous
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word in a lattice should be and how it should be represented. Another aspect is to adapt
the morphosyntactic constraints from the constraint parser and integrate them into the
lattice parser.
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Appendix A

Full Feature Set of the Constraint
Parser

We use functions form(¢), lemma(t), and pos(t) to extract the surface form, lemma, and
part-of-speech tag of a token ¢, respectively. mfeats(t) returns the set of individual morpho-
logical features, e.g. {case=nom, number=pl, gender=fem}. dist(d, h) returns the
distance between the dependent and the head. Context tokens are indicated by subscripts,
e.g. d41 denotes the token immediately to the right of the dependent and h_5 denotes the
token that is two tokens to the left of the head. Conjunction of basic features is marked
with @.
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form(h) lemma(h)
pos(h) form(h) & pos(h)
lemma(h) & pos(h) form(d)
lemma(d) pos(d)
form(d) @ pos(d) lemma(d) @ pos(d)
form(h) @ form(d) lemma(h) @ lemma(d)
pos(h) & pos(d) form(h) & form(d) & pos(h) @ pos(d)
form(h) & pos(h) & pos(d) form(d) @ pos(h) & pos(d)
form(h) & form(d) & pos(h) form(h) & form(d) & pos(d)
lemma(h) @ pos(h) @ pos(d) lemma(d) ® pos(h) @ pos(d)
lemma(h) @ lemma(d) & pos(h) ® pos(d) lemma(h) ® lemma(d) & pos(h)
lemma(h) @ lemma(d) & pos(d) dist(d, h) @ form(h) @ form(d)
dist(d, h) @ pos(h) & pos(d) dist(d, h) ® lemma(h) & lemma(d)
dist(d, h) @ pos(h) ¢ form(d) dist(d, h) & form(h) & pos(d)
dist(d, h) @ pos(h) ® pos(d) @ pos(h1) dist(d, h) @ pos(h) ® pos(d) @ pos(h_1)
dist(d, h) @ pos(h) @ pos(d) & pos(d41) dist(d, h) @ pos(h) @ pos(d) & pos(d_1)
pos(h) & pos(d) & pos(f-1) pos(h) & pos(d) & pos(h_»)
pos(h) @ pos(d) ® pos(d1) pos(h) @ pos(d) & pos(d_1)
pos(h) & pos(d) & pos(h1) & pos(ds1)  pos(h) @ pos(d) & pos(h+1) & pos(d_1)
pos(h) @ pos(d) @ pos(h_1) © pos(ds1)  pos(k) @ pos(d) © pos(h_1) & pos(d_)
bos(d) & pos(d) pos(d) & pos(d 1) & pos(dsa)
form(d) @ pos(d) ® pos(d41) ® pos(d42)  pos(d) @ pos(d_1)
pos(d) ® pos(d_1) & pos(d_2) form(d) @ pos(d) & pos(d_1) & pos(d_s)
pos(d) & pos(d;1) & pos(d_) form(d) @ pos(d) @ pos(d1) & pos(d_)
pos(h) & pos(f.1) pos(h) & pos(hs1) & pos(f2)
form(h) @ pos(h) @ pos(hy1) @ pos(hy2) pos(h) @ pos(h_1)
pos(h) @ pos(h_1) @ pos(h_2) form(h) @ pos(h) & pos(h_1) ® pos(h_s)
pos(h) @ pos(h1) & pos(h_1) form(h) & pos(h) & pos(h1) & pos(h_)
form(d) & form(d_) form(d) @ form(d_,) @ form(d_2)
form(h) @ form(h_;) form(h) @ form(h_1) ® form(h_s)
form(d) & form(d) form(d) @ form(dy1) @ form(d2)
form(h) ® form(h1) form(h) @ form(h4) @ form(hyz)
orm(d) & form(d_,) & form(dy1) orm(h) @ form(h_1) @ form(hy)
pos(iy s pos(d) & pos(i) s bes(hsz)  posth) & postd) & pos(i 1)  pos(hs)
pos(h) @ pos(d) & pos(d41) & pos(di2) pos(h) @ pos(d) & pos(d_1) & pos(d_s)
pos(d) @ pos(h2) pos(h) & form(d_,)
pos(h) @ pos(d_1) pos(h) @ form(d_1) @ form(d_s)
pos(h) @ pos(d_1) @ pos(d_z2) pos(z) Vi,d <i<h
form(i) Vi,d <i < h pos(h) @ pos(d) @ pos(i) Vi,d <i < h
pos(h) @ pos(d) & form(i) Vi,d < i < h lemma(h) ® lemma(d) & form( YWi,d<i<h

m @ m’ V(m,m'), (m, m') € mfeats(h) x mfeats(d)

pos(h) @ m & m’ V(m,m’), (m,m’) € mfeats(h) x mfeats(d)
pos(d) ® m & m' Y{m,m'), (m,m’') € mfeats(h) x mfeats(d)
lemma(h) & m & m' V(m, m'), (m,m’') € mfeats(h) x mfeats(d)
lemma(d) ® m @& m' V{m,m'), (m,m’) € mfeats(h) x mfeats(d)

Table A.1: Arc features.
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form(d) & form(s) pos(d) ® pos(s)

lemma(d) @ lemma(s) form(d) & pos(s)

pos(d) @ form(s) form(h) & form(d) & form(s)

pos(h) @ pos(d) @ pos(s) lemma(h) @ lemma(d) @ lemma(s)
pos(h) @ pos(d) & form(s) form(h) & form(d) & pos(s)

pos(h) & form(d) & form(s) form(h) & pos(d) & pos(s)

form(d) & pos(d) & form(s) @ pos(s) lemma(d) ® pos(d) & lemma(s) & pos(s)
form(d) @ form(s) & form(s41) form(d) @ form(s) @ form(s_1)

form(d) @ form(s) @ form(d1) form(d) @ form(s) @ form(d_;)

pos(d)  pos(s) © pos(s 1) pos(d) & pos(s) © pos(s_1)

pos(d) & pos(s) & pos(d-1) pos(d) @ pos(s) & pos(d_1)

form(d) & form(s) & form(s,o) form(d) & form(s) & form(s_»)

form(d) & form(s) & form(d, ) form(d) @ form(s) @ form(d_s)

pos(d) & pos(s) & pos(s.-2) pos(t)  pos() @ posts

pos(d) & pos(s) & pos(ds2) pos(d) & pos(s) & pos(d_»)

dist(d, s) ® form(d) @ form(s) dist(d, s) & pos(d) & pos(s)

dist(d, s) ® lemma(d) ® lemma(s) dist(d, s) & form(d) & pos(s)

dist(d, s) @ pos(d) & form(s) dist(d, s) & form(h) & form(d) & form(s)
dist(d, s) @ pos(h) @ pos(d) ® pos(s)

Table A.2: Second-order features. For sibling features, s stands for the sibling, while for grandchild
features it stands for the grandparent node.






167

Appendix B

Full Feature Set of the Lattice Parser

We use functions form(t), lemma(t), and pos(t) to extract the surface form, lemma,
and part-of-speech tag of a token ¢, respectively. mtag(t) extracts the full morpholog-
ical description of a token as one string, e.g. case=nom|number=pl|gender=fem.
mfeats(t) instead returns the set of individual morphological features, e.g. {case=nom,

number=pl, gender=fem}. ® denotes conjunction of basic features.

B.1 Path Features

The path model factors over token bigrams, features are therefore extracted for each token
bigram (¢, ') in the lattice (see Section 7.1.1). Table B.1 shows the feature set used to score
token bigrams. All templates in Table B.1 are combined with a binary feature that indicates
whether tokens t and t’ are part of the same (space-delimited) word or not. Token bigrams
involving the first/last token in the lattice are padded with special symbols that represent
the boundaries.
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B.2 First-order Features

The first-order features are extracted on single arcs between two tokens, the dependent
d and the head h. Table B.4 shows the list of features for arcs. The function wsform(d)
returns the surface form of the space-delimited word that d is a part of. dist(d, h) returns
the length of the shortest path between tokens d and h in the lattice (see Section 7.1.4).
is_-ws_suffix(d) is a binary function that indicates whether a token is a suffix of a space-
delimited word, and adjacent(d, i) returns whether tokens d and & are adjacent in the
lattice, i.e. whether the target state of d is the source state of h. All first-order features
(including the Turkish-specific features) are combined with the direction of the arc and the
dependency label.

For context features, the parser extracts features from each token immediately to the left
and right of the dependent and the head. left means that the context token’s target state
is the same as the source state of the current token in the lattice, right means that the
source state of the context token is the target state of the current token. When using latent
context, there is only one context token to each side of the current token (see Section 7.1.4).
Table B.2 shows the features exemplarily for the right context token d, of the dependent.

B.3 Turkish-specific Features

Table B.3 shows features that capture morphological phenomena in Turkish. The basic
functions extract specific features from the morphological description of a token. These fea-
tures are specific to the annotation scheme of the Turkish treebank. Functions subtype(t),
case(t), agr(t), tam(t), voice(t), pcase(t), pagr(t), and cop(t) extract the part-of-speech
subtype, the case value, the agreement features (number and person), tense-aspect-mood
values, voice, the case value governed by a preposition, agreement values on the posses-
sum, and the copula status of a word, respectively. Two binary functions, case_agrees(d, h)
and agr_agrees(d, h), return whether the case values and the agreement values of two

tokens are the same. Features are extracted on a arc for dependent d and head h.
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form(t)
form(t)
lemmal(t)
lemma(t’)
pos(t)
pos(t’)
mtag(t)
mtag(t')
form(t) & form(t')
lemma(t) @ lemma(t’)
pos(t) & pos(t)
mtag(t) & mtag(t’)
form(t) @ lemma(t)
form(t') ® lemma(t’)
form(t) @ lemma(t’)
form(t') @ lemma(t)

(

t
t
t
t
form(t) & pos(t)

)
)

m®m' Y{m,m'), (m,m') € mfeats(t) x mfeats(t')

form(t") & pos(t’)
form(t) & pos(t’)
form(t") @ pos(t)
form(t) & mtag(t)
form(t’) & mtag(t’)
form(t) & mtag(t’)
form(t/ t)
lemma(t) @ pos(t)
lemma(t') & pos(t')
lemma(t) & pos(t’)
lemma(t’) & pos(t)
lemma(t) & mtag(¢)
() i

t
t
t
t
t
t
t

) & mtag(

4
lemma(t’) ® mtag(t’)
lemma(t) © mtag(t’)
lemma(t') & mtag(t)
pos(t) & mtag(t)
pos(t') & mtag(t’)

t
t
t
t
t
t
t

pos(t) @ mtag(t')

pos(t') @ mtag(t)

form(t) @ pos(t) ® mtag(t)
form(t') & pos(t’) ® mtag(t’)
form(t') @ pos(t) & mtag(t)
form(t) ¢ pos(t’) & mtag(t’)
lemma(t) @ pos(t) & mtag(t)
lemma(t') ® pos(t') ® mtag(t')
lemma(t') & pos(t) © mtag(t)
lemma(t) @ pos(t’) & mtag(t’)
pos(t) @ pos(t') & mtag(t)
pos(t) & pos(t') & mtag(t')

m VYm, m € mfeats(t)

m Vm, m € mfeats(t)

m @ pos(t) Ym, m € mfeats(t)
m @ pos(t') Vm, m € mfeats(t)

Table B.1: Path features.

B.4 Second-order Features

Second-order features are extracted for sibling and grandparent relations. Tables B.5

and B.6 show the features involving sibling tokens (s) and grandparent tokens (g), re-

spectively. Like the first-order features, all second-order features are combined with the

direction of the arc and the dependency label.
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form(d
lemma

pOS( d)

mtag(d,
form(d,

r)
(dr)

)
) @ form(d)

lemma(d,) @ lemma(d)

pos(d;)
mtag(d,

<
)

pos(d)
@® mtag(d)

form(d,) ® form(h)
lemma(d,.) ® lemmal(h)
pos(d, ) & pos(h)
mtag(d,) ¢ mtag(h)

form(d,

)
)

lemma(d,) @ lemma(d) & lemma(h)
pos(d,) @ pos(d) & pos(h)

mtag(d,) ® mtag(d) ® mtag(h)
form(d,) @ form(d) ® mtag(h)
lemma(d,) @ lemma(d) ¢ mtag(h)
form(d,) @ form(h) & mtag(d)
lemma(d,) @ lemma(h) & mtag(d)
form(d,) ® mtag(d) ® mtag(h
lemma(d
mtag
mtag
mtag

(
E )
(d;) & mtag(d) & mtag(h)
(d,) ® form(d) & mtag(h)
(d,) ®lemma(d) & mtag(h)
(d,) @ form(h) & mtag(d)
(dr) (

@ form(d) @ form(h) mtag(d,) ® lemma(h)  mtag(d)

Table B.2: First-order context features, shown for the right context d, of the dependent d.

pO
pO

S
oS
(e8]
(¢S]
oS
oS
oS
S

(
os(
(
(
(
os(
os(
(

d)
h)
d)
d)
d)
d)
d)
d)

@ subtype(d)
@ subtype(h)
® pos(h) @ subtype(d)

@ pos
@ pos
@ pos
@ pos
@ pos

(h)
(h)
(h)
(h)
(h)

@ subtype(h)
@ case(d)

@ tam(h)

& cop(h)

@ voice(h)

(d) @ pos(h) & case_agrees(d, h)
(d) ® pos(h) @ agr_agrees(d, h)
(d) @ pos(h) @ case(d) @ case(h)
pos(d) & pos(h) & agr(d) & agr(h)
(d) @ pos(h) ® agr(d) © pagr(k)
(d) @ pos(h) & case(d) & pcase(h)
(d) @ pos(h) & case(d) $ agr(d) & pagr(h)

Table B.3: First-order features to capture Turkish morphology.
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form(d) form(d) @ form(h) wsform(d) @ pos(d) ® mtag(d)
lemma(d) form(d) ® lemmal(h) form(h) & pos(h) @ mtag(h)
pos(d) form(d) @ pos(h) lemma(h) & pos(h) & mtag(h)
mtag(d) form(d) & mtag(h) wsform(h) @ pos(h) & mtag(h)
wsform(d) form(d) ® wsform(h) is_-ws_suffix(d) @ adjacent(d, h)
form(h) lemma(d) & form(h) dist(d, h)

lemmal(h) lemma(d) ® lemma(h) dist(d, h) @ form(d) @ form(h)
pos(h) lemma(d) & pos(h) dist(d, h) @ lemma(d) & lemma(h)
mtag(h) lemma(d) & mtag(h) dist(d, h) & pos(d) & pos(h)
wsform(h) lemma(d) ® wsform(h) dist(d, h) & mtag(d) & mtag(h)
form(d )@lemma(d) pos(d) @ form(h) dist(d, h) @ wsform(d) @ wsform(h)
form(d) @ pos(d) pos(d) & lemma(h) m & form(d) Ym,m € mfeats(h)
form(d) & mtag(d) pos(d) & pos(h) m @ lemma(d) Vm, m € mfeats(h)
form(d) @ wsform(d)  pos(d) @ mtag(h) m @ pos(d) Vm, m € mfeats(h)
form(h) @ lemma(h) pos(d) & wsform(h) m @ wsform(d) ¥m, m € mfeats(h)
form(h) & pos(h) mtag(d) @ form(h) m @ form(h) Ym, m € mfeats(d)
form(h) @ mtag(h) mtag(d) @ lemma(h) m @ lemma(h) Vm, m € mfeats(d)
form(h) & wsform(h)  mtag(d) & pos(h) m & pos(h) Ym, m € mfeats(d)
lemma(d) & pos(d) mtag(d) ® mtag(h) m & wsform(h) Vm, m € mfeats(d)
lemma(d) & mtag(d) mtag(d) & wsform(h) m Vm, m € mfeats(d)

lemma(d) ® wsform(d) wsform(d) @ form(h) m @ form(d) Vm, m € mfeats(d)
lemma(h) @ pos(h) wsform(d) @ lemma(h) m @ lemma(d) Vm, m € mfeats(d)
lemma(h) @ mtag(h) wsform(d) & pos(h) m @ pos(d) Vm, m € mfeats(d)
lemma(h) & wsform(h) wsform(d) & mtag(h) m @ wsform(d) ¥m, m € mfeats(d)
pos(d) ¢ mtag(d) wsform(d) @ wsform(h) m Vm, m € mfeats(h)

pos(d) & wsform(d)

pos(h) @ mtag(h)
pos(h) @ wsform(h)

form(d) @ pos(h) & mtag(h) m @ form(h) ¥m, m € mfeats(h)
lemma(d) @ pos(h) @ mtag(h) m @ lemma(h) Vm,m € mfeats(h)
wsform(d) & pos(h) @ mtag(h) m & pos(h) Ym, m € mfeats(h)
wsform(d) & mtag(d)  form(d) ® pos(d) & mtag(d) m @ wsform(h) Vm, m € mfeats(h)
wsform(h) @ mtag(h) lemma(d) @ pos(d) & mtag(d)

m®m' Y{m,m'), (m,m') € mfeats(d) x mfeats(h)

m®m' @ form(d) ® form(h) V(m, m'), (m, m’') € mfeats(d) x mfeats(h)

m®m’ ®lemma(d) ® lemma(h) ( m,m > (m,m') € mfeats(d) x mfeats(h)

m @& m’ & pos(d) & pos(h) V(m,m’), ( m') € mfeats(d) x mfeats(h)

m @ m’ & wsform(d) ® wsform( ) V{m,m'), (m,m’) € mfeats(d) x mfeats(h)

Table B.4: First-order arc features.
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form(s)

lemma(s) & pos(s) & mtag(s)
wsform(s) @ pos(s) ¢ mtag(s)
form(d) ® form(s)

lemma(d) & form(s)
lemma(d) & pos(s)

lemma(d) & mtag(s)

pos(d) ® form(s)

mtag(d) @ pos(s)

mtag(d) & mtag(s)

dist(d, s)

dist(d, s) @ lemma(d) ® lemma(s)

lemma(d) ® lemma(h) & lemma(s)
wsform(d) @ wsform(h) @ wsform(s)
form(d) @ form(h) @ pos(s)

pos(d) & form(h) @ form(s)
lemma(d) & lemma(h) & pos(s)
lemma(d) & form(h) & pos(s)
form(d) & form(h) ¢ mtag(s)
pos(d) @ pos(h) & mtag(s)

m & form(s) Vm, m € mfeats(s)

m @ form(d) Ym, m € mfeats(s)

m & pos(d) Ym, m € mfeats(s)

m @ wsform(d) Vm, m € mfeats(s)

m ®m' @ form(d) ® form(s) V(m,m'), (m, m’) € mfeats(d) x mfeats(s)
m ®m' @ wsform(d) ® wsform(s) V(m,m'), (m,m’) € mfeats(d) x mfeats(s)

pos(si)

mtag(s;)

pos(s) @ pos(s;)
lemma(d) ® lemma(s;)
form(s,)

form(s) @ form(s,)
lemma(d) ® lemma(s,)
mtag(s) ® mtag(s,)
pos(d) @ pos(s) @ pos(sy)

mtag

(d) ® mtag(s) & mtag(s;)
mtag(
(

d)
d) @ mtag(s) & form(s;)
mtag(d) @ mtag(s) & lemma(s;)
mtag(d) @ form(s) @ mtag(s;)
lemma(d) ® lemma(s) @ lemma(s;)
form(d) @ mtag(s) ¢ form(s,)
mtag(d) & lemma(s) & lemma(s,)
mtag(d) ¢ mtag(s) & form(s,)
lemma(d) ® mtag(s) & mtag(s,)
lemma(d) & mtag(s) ® lemma(s,)

Table B.5: Sibling features.
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form(g
form(d) @ form(g)
form(d) ® mtag(g)
form(d

lemma(d) & lemma(g)
lemma(d) & mtag(g)
lemma(d) & wsform(g)
pos(d) & lemma(g)

)
pos(d; @ pos(g)
)

)
)
)
) @ wsform(g)
(d
(d
(

pos(d) & mtag(g)
pos(d) & wsform(g)
mtag(d) & wsform(g)

wsform(d) @ lemma(g)
wsform(d) @ pos(g)
wsform(d) & mtag(g)
wsform(d) & wsform(g)
wsform(d) & wsform(g)
dist(d, g)

dist(d, g) ® form(d) & form(g)

dist(d, g) @ lemma(d) & lemma(g)
form(g) @ pos(g) @ mtag(g)
lemma(g) & pos(g) & mtag(g)

form(d) @ pos(g) ¢ mtag(g)
lemma(d) @ lemma(h) @ lemma(g)
pos(d) ® pos(h) & pos(g)

mtag(d) ® mtag(h) & mtag(g)
pos(d) & form(h) & form(g)
pos(d) @ lemma(h) & lemma(g)
lemma(d) ® lemma(h) & pos(g)
lemma(d) & form(h) @ pos(g)
lemma(d) @ form(h) @ lemma(g)
lemma(d) @ lemma(h) @ form(g)
form(d) @ form(h) & mtag(g)
lemma(d) ® lemma(h) & mtag(g)
m Vm, m € mfeats(g)

m & pos(d) Vm, m € mfeats(g)

m @ form(d) Vm, m € mfeats(g)

m @ lemma(d) Ym, m € mfeats(g)
m @ pos(d) Vm, m € mfeats(g)

m @ form(g) Vm, m € mfeats(d)

m @ lemma(g) Vm, m € mfeats(d)
m & pos(g) Vm, m € mfeats(d)

m @ wsform(g) Ym, m € mfeats(d)
m @ wsform(d) Ym, m € mfeats(g)

m®m' V{m,m'), (m,m') € mfeats(d) x mfeats(g)

m @ m' @ form(d) & form(g) V(m,m'y, (m,m’) € mfeats(d) x mfeats(g)

m @ m’ ®lemma(d) ® lemma(g) ¥V{m,m'), (m,m’) € mfeats(d) x mfeats(g)
m @& m' @ pos(d) @ pos(g) V(m,m’), (m, m') € mfeats(d) x mfeats(g)

lemma(g;)

pos(g:)
form(g,)

pos(gr)

form(g) & form(g;)
form(d) & form(g;)
lemma(d) ® lemma(g;)
mtag(g) & mtag(g)
form(d) & form(g,)

form(g) @ form(g,)

lemma(d) ¢ lemma(g,)
lemma(g) ¢ lemmaf(g;)
pos(g) & pos(g,)

mtag(d) & mtag(g, )

mtag(g) & mtag(g, )

pos(d) & pos(g) & pos(gi)
mtag(d) & mtag(g) ® mtag(g)

form(d) & mtag(g) @ form(g;)
lemma(d) & mtag ) ® lemma(g;)

(9
mtag(d) @ lemma(g) ® lemma(g;)
mtag(d) & mtag(g) & form(g;)
mtag(d) & mtag(g) & lemma(g;)
mtag(d) & form(g) & mtag(g;)

form(d) & form(g) ¢ form(g,)
lemma(d) & lemma(g) ® lemma(g,)

pos(d) ® pos(g) © pos(gr)

mtag(d) & mtag(g) & mtag(g,)
lemma(d) ¢ mtag(g) & lemma(g,)
mtag(d) @ form(g) ® form(g,)
mtag(d) ® mtag(g) & form(g,)
mtag(d) ® mtag(g) ® lemma(g,)
form(d) @ mtag(g) & mtag(g,)
mtag(d) & form(g) & mtag(g,)

Table B.6: Grandparent features.
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