48,154 research outputs found

    CS/MTH 410/610-01: Theoretical Foundations of Computing

    Get PDF
    Turing machines; partial-recursive functions; equivalence of computing paradigms; Church-Turing thesis; undecidability; intractability. Four hours lecture

    Kolmogorov complexity and the Recursion Theorem

    Full text link
    Several classes of DNR functions are characterized in terms of Kolmogorov complexity. In particular, a set of natural numbers A can wtt-compute a DNR function iff there is a nontrivial recursive lower bound on the Kolmogorov complexity of the initial segments of A. Furthermore, A can Turing compute a DNR function iff there is a nontrivial A-recursive lower bound on the Kolmogorov complexity of the initial segements of A. A is PA-complete, that is, A can compute a {0,1}-valued DNR function, iff A can compute a function F such that F(n) is a string of length n and maximal C-complexity among the strings of length n. A solves the halting problem iff A can compute a function F such that F(n) is a string of length n and maximal H-complexity among the strings of length n. Further characterizations for these classes are given. The existence of a DNR function in a Turing degree is equivalent to the failure of the Recursion Theorem for this degree; thus the provided results characterize those Turing degrees in terms of Kolmogorov complexity which do no longer permit the usage of the Recursion Theorem.Comment: Full version of paper presented at STACS 2006, Lecture Notes in Computer Science 3884 (2006), 149--16

    A Survey on Continuous Time Computations

    Full text link
    We provide an overview of theories of continuous time computation. These theories allow us to understand both the hardness of questions related to continuous time dynamical systems and the computational power of continuous time analog models. We survey the existing models, summarizing results, and point to relevant references in the literature

    One-Membrane P Systems with Activation and Blocking of Rules

    Get PDF
    We introduce new possibilities to control the application of rules based on the preceding applications, which can be de ned in a general way for (hierarchical) P systems and the main known derivation modes. Computational completeness can be obtained even for one-membrane P systems with non-cooperative rules and using both activation and blocking of rules, especially for the set modes of derivation. When we allow the application of rules to in uence the application of rules in previous derivation steps, applying a non-conservative semantics for what we consider to be a derivation step, we can even \go beyond Turing"

    A hierarchy of Turing degrees of divergence bounded computable real numbers

    Get PDF
    AbstractA real number x is f-bounded computable (f-bc, for short) for a function f if there is a computable sequence (xs) of rational numbers which converges to x f-bounded effectively in the sense that, for any natural number n, the sequence (xs) has at most f(n) non-overlapping jumps of size larger than 2-n. f-bc reals are called divergence bounded computable if f is computable. In this paper we give a hierarchy theorem for Turing degrees of different classes of f-bc reals. More precisely, we will show that, for any computable functions f and g, if there exists a constant γ>1 such that, for any constant c, f(nγ)+n+c⩽g(n) holds for almost all n, then the classes of Turing degrees given by f-bc and g-bc reals are different. As a corollary this implies immediately the result of [R. Rettinger, X. Zheng, On the Turing degrees of the divergence bounded computable reals, in: CiE 2005, June 8–15, Amsterdam, The Netherlands, Lecture Notes in Computer Science, vol. 3526, 2005, Springer, Berlin, pp. 418–428.] that the classes of Turing degrees of d-c.e. reals and divergence bounded computable reals are different
    corecore