928 research outputs found

    Turbo Decoding and Detection for Wireless Applications

    Get PDF
    A historical perspective of turbo coding and turbo transceivers inspired by the generic turbo principles is provided, as it evolved from Shannon’s visionary predictions. More specifically, we commence by discussing the turbo principles, which have been shown to be capable of performing close to Shannon’s capacity limit. We continue by reviewing the classic maximum a posteriori probability decoder. These discussions are followed by studying the effect of a range of system parameters in a systematic fashion, in order to gauge their performance ramifications. In the second part of this treatise, we focus our attention on the family of iterative receivers designed for wireless communication systems, which were partly inspired by the invention of turbo codes. More specifically, the family of iteratively detected joint coding and modulation schemes, turbo equalization, concatenated spacetime and channel coding arrangements, as well as multi-user detection and three-stage multimedia systems are highlighted

    Two-tier channel estimation aided near-capacity MIMO transceivers relying on norm-based joint transmit and receive antenna selection

    No full text
    We propose a norm-based joint transmit and receive antenna selection (NBJTRAS) aided near-capacity multiple-input multiple-output (MIMO) system relying on the assistance of a novel two-tier channel estimation scheme. Specifically, a rough estimate of the full MIMO channel is first generated using a low-complexity, low-training-overhead minimum mean square error based channel estimator, which relies on reusing a modest number of radio frequency (RF) chains. NBJTRAS is then carried out based on this initial full MIMO channel estimate. The NBJTRAS aided MIMO system is capable of significantly outperforming conventional MIMO systems equipped with the same modest number of RF chains, while dispensing with the idealised simplifying assumption of having perfectly known channel state information (CSI). Moreover, the initial subset channel estimate associated with the selected subset MIMO channel matrix is then used for activating a powerful semi-blind joint channel estimation and turbo detector-decoder, in which the channel estimate is refined by a novel block-of-bits selection based soft-decision aided channel estimator (BBSB-SDACE) embedded in the iterative detection and decoding process. The joint channel estimation and turbo detection-decoding scheme operating with the aid of the proposed BBSB-SDACE channel estimator is capable of approaching the performance of the near-capacity maximumlikelihood (ML) turbo transceiver associated with perfect CSI. This is achieved without increasing the complexity of the ML turbo detection and decoding process

    Multi-Antenna Assisted Virtual Full-Duplex Relaying with Reliability-Aware Iterative Decoding

    Full text link
    In this paper, a multi-antenna assisted virtual full-duplex (FD) relaying with reliability-aware iterative decoding at destination node is proposed to improve system spectral efficiency and reliability. This scheme enables two half-duplex relay nodes, mimicked as FD relaying, to alternatively serve as transmitter and receiver to relay their decoded data signals regardless the decoding errors, meanwhile, cancel the inter-relay interference with QR-decomposition. Then, by deploying the reliability-aware iterative detection/decoding process, destination node can efficiently mitigate inter-frame interference and error propagation effect at the same time. Simulation results show that, without extra cost of time delay and signalling overhead, our proposed scheme outperforms the conventional selective decode-and-forward (S-DF) relaying schemes, such as cyclic redundancy check based S-DF relaying and threshold based S-DF relaying, by up to 8 dB in terms of bit-error-rate.Comment: 6 pages, 4 figures, conference paper has been submitte

    Successive DF relaying: MS-DIS aided interference suppression and three-stage concatenated architecture design

    No full text
    Conventional single-relay aided two-phase cooperative networks employing coherent detection algorithms incur a significant 50% throughput loss. Furthermore, it is unrealistic to expect that in addition to the task of relaying, the relay-station would dedicate further precious resources to the estimation of the source-relay channel in support of coherent detection. In order to circumvent these problems, we propose decode and-forward (DF) based successive relaying employing noncoherent detection schemes. A crucial challenge in this context is that of suppressing the successive relaying induced interference, despite dispensing with any channel state information (CSI). We overcome this challenge by introducing a novel adaptive Newton algorithm based multiple-symbol differential interference suppression (MS-DIS) scheme. Correspondingly, a three-stage concatenated transceiver architecture is devised. We demonstrate that our proposed system is capable of near-error-free transmissions at low signal-to-noise ratios

    Coded DS-CDMA Systems with Iterative Channel Estimation and no Pilot Symbols

    Full text link
    In this paper, we describe direct-sequence code-division multiple-access (DS-CDMA) systems with quadriphase-shift keying in which channel estimation, coherent demodulation, and decoding are iteratively performed without the use of any training or pilot symbols. An expectation-maximization channel-estimation algorithm for the fading amplitude, phase, and the interference power spectral density (PSD) due to the combined interference and thermal noise is proposed for DS-CDMA systems with irregular repeat-accumulate codes. After initial estimates of the fading amplitude, phase, and interference PSD are obtained from the received symbols, subsequent values of these parameters are iteratively updated by using the soft feedback from the channel decoder. The updated estimates are combined with the received symbols and iteratively passed to the decoder. The elimination of pilot symbols simplifies the system design and allows either an enhanced information throughput, an improved bit error rate, or greater spectral efficiency. The interference-PSD estimation enables DS-CDMA systems to significantly suppress interference.Comment: To appear, IEEE Transactions on Wireless Communication

    Coded Modulation Assisted Radial Basis Function Aided Turbo Equalisation for Dispersive Rayleigh Fading Channels

    No full text
    In this contribution a range of Coded Modulation (CM) assisted Radial Basis Function (RBF) based Turbo Equalisation (TEQ) schemes are investigated when communicating over dispersive Rayleigh fading channels. Specifically, 16QAM based Trellis Coded Modulation (TCM), Turbo TCM (TTCM), Bit-Interleaved Coded Modulation (BICM) and iteratively decoded BICM (BICM-ID) are evaluated in the context of an RBF based TEQ scheme and a reduced-complexity RBF based In-phase/Quadrature-phase (I/Q) TEQ scheme. The Least Mean Square (LMS) algorithm was employed for channel estimation, where the initial estimation step-size used was 0.05, which was reduced to 0.01 for the second and the subsequent TEQ iterations. The achievable coding gain of the various CM schemes was significantly increased, when employing the proposed RBF-TEQ or RBF-I/Q-TEQ rather than the conventional non-iterative Decision Feedback Equaliser - (DFE). Explicitly, the reduced-complexity RBF-I/Q-TEQ-CM achieved a similar performance to the full-complexity RBF-TEQ-CM, while attaining a significant complexity reduction. The best overall performer was the RBF-I/Q-TEQ-TTCM scheme, requiring only 1.88~dB higher SNR at BER=10-5, than the identical throughput 3~BPS uncoded 8PSK scheme communicating over an AWGN channel. The coding gain of the scheme was 16.78-dB

    Achievable Outage Rates with Improved Decoding of Bicm Multiband Ofdm Under Channel Estimation Errors

    Full text link
    We consider the decoding of bit interleaved coded modulation (BICM) applied to multiband OFDM for practical scenarios where only a noisy (possibly very bad) estimate of the channel is available at the receiver. First, a decoding metric based on the channel it a posteriori probability density, conditioned on the channel estimate is derived and used for decoding BICM multiband OFDM. Then, we characterize the limits of reliable information rates in terms of the maximal achievable outage rates associated to the proposed metric. We also compare our results with the outage rates of a system using a theoretical decoder. Our results are useful for designing a communication system where a prescribed quality of service (QoS), in terms of achievable target rates with small error probability, must be satisfied even in the presence of imperfect channel estimation. Numerical results over both realistic UWB and theoretical Rayleigh fading channels show that the proposed method provides significant gain in terms of BER and outage rates compared to the classical mismatched detector, without introducing any additional complexity

    Distributed Self-Concatenated Coding for Cooperative Communication

    No full text
    In this paper, we propose a power-efficient distributed binary self-concatenated coding scheme using iterative decoding (DSECCC-ID) for cooperative communications. The DSECCC-ID scheme is designed with the aid of binary extrinsic information transfer (EXIT) charts. The source node transmits self-concatenated convolutional coded (SECCC) symbols to both the relay and destination nodes during the first transmission period. The relay performs SECCC-ID decoding, where it mayor may not encounter decoding errors. It then reencodes the information bits using a recursive systematic convolutional (RSC) code during the second transmission period. The resultant symbols transmitted from the source and relay nodes can be viewed as the coded symbols of a three-component parallel concatenated encoder. At the destination node, three-component DSECCC-ID decoding is performed. The EXIT chart gives us an insight into operation of the distributed coding scheme, which enables us to significantly reduce the transmit power by about 3.3 dB in signal-to-noise ratio (SNR) terms, as compared with a noncooperative SECCC-ID scheme at a bit error rate (BER) of 10-5. Finally, the proposed system is capable of performing within about 1.5 dB from the two-hop relay-aided network’s capacity at a BER of 10-5 , even if there may be decoding errors at the relay

    Frequency-Domain Turbo Equalisation in Coded SC-FDMA Systems: EXIT Chart Analysis and Performance

    No full text
    In this paper, we investigate the achievable performance of channel coded single-carrier frequency division multiple-access (SC-FDMA) systems employing various detection schemes, when communicating over frequency-selective fading channels. Specifically, three types of minimum mean-square error (MMSE) based frequency-domain (FD) turbo equalisers are considered. The first one is the turbo FD linear equaliser (LE). The second one is a parallel interference cancellation (PIC)-assisted turbo FD decision-feedback equaliser (DFE). The final one is the proposed hybrid interference cancellation (HIC)-aided turboFD-DFE, which combines successive interference cancellation (SIC) with iterative PIC and decoding. The benefit of interference cancellation (IC) is analysed with the EXtrinsic Information Transfer (EXIT) charts. The performance of the coded SC-FDMA systems employing the above-mentioned detection schemes is investigated with the aid of simulations. Our studies show that the IC techniques achieve an attractive performance at a moderate complexity

    Burst-by-Burst Adaptive Decision Feedback Equalised TCM, TTCM and BICM for H.263-Assisted Wireless Video Telephony

    No full text
    Decision Feedback Equaliser (DFE) aided wideband Burst-by-Burst (BbB) Adaptive Trellis Coded Modulation (TCM), Turbo Trellis Coded Modulation (TTCM) and Bit-Interleaved Coded Modulation (BICM) assisted H.263-based video transceivers are proposed and characterised in performance terms when communicating over the COST 207 Typical Urban wideband fading channel. Specifically, four different modulation modes, namely 4QAM, 8PSK, 16QAM and 64QAM are invoked and protected by the above-mentioned coded modulation schemes. The TTCM assisted scheme was found to provide the best video performance, although at the cost of the highest complexity. A range of lower-complexity arrangements will also be characterised. Finally, in order to confirm these findings in an important practical environment, we have also investigated the adaptive TTCM scheme in the CDMA-based Universal Mobile Telecommunications System's (UMTS) Terrestrial Radio Access (UTRA) scenario and the good performance of adaptive TTCM scheme recorded when communicating over the COST 207 channels was retained in the UTRA environment
    corecore