25 research outputs found

    Turbo Packet Combining for Broadband Space-Time BICM Hybrid-ARQ Systems with Co-Channel Interference

    Full text link
    In this paper, efficient turbo packet combining for single carrier (SC) broadband multiple-input--multiple-output (MIMO) hybrid--automatic repeat request (ARQ) transmission with unknown co-channel interference (CCI) is studied. We propose a new frequency domain soft minimum mean square error (MMSE)-based signal level combining technique where received signals and channel frequency responses (CFR)s corresponding to all retransmissions are used to decode the data packet. We provide a recursive implementation algorithm for the introduced scheme, and show that both its computational complexity and memory requirements are quite insensitive to the ARQ delay, i.e., maximum number of ARQ rounds. Furthermore, we analyze the asymptotic performance, and show that under a sum-rank condition on the CCI MIMO ARQ channel, the proposed packet combining scheme is not interference-limited. Simulation results are provided to demonstrate the gains offered by the proposed technique.Comment: 12 pages, 7 figures, and 2 table

    Suboptimum receiver interfaces and space-time codes

    Full text link

    Threshold Based Best Custodian Routing Protocol for Delay Tolerant Network

    Get PDF
    Delay Tolerant Network (DTN) is a kind of network in which the source may not be able to establish the stable and uninterrupted path to destination due to network partitioning, dynamic topology change and frequent disconnections. In order to dealt disruption and disconnections a store, carry and forward paradigm is used in which node stores the incoming messages in its buffer, carries it while moving and forward when comes within the transmission range of other nodes. Message forwarding contributes and important role in increasing its delivery. For instance, probabilistic routing protocol forwards message to a node having high probability value to meet message destination. These protocols cannot handle a situation in which the node continually transmits messages even the probability difference is very small. In this paper, we have proposed a routing protocol known as Threshold Based best custodian Routing Protocol (TBbcRP) for delay tolerant network. We have proposed a threshold-based method to compute the quality value which is the ability of node to carry message. A self-learning mechanism has been used to remove the delivered messages from the network. Moreover, a buffer aware mechanism has been used that make sure availability of buffer space at receiver before message transmission. We have compared the performance of TBbcRP with Epidemic, PRoPHET and Delegated Forwarding. The proposed TBbcRP outperforms in terms of maximizing the delivery probability, reducing number of transmissions and message drop

    Turbo Packet Combining Strategies for the MIMO-ISI ARQ Channel

    Full text link
    This paper addresses the issue of efficient turbo packet combining techniques for coded transmission with a Chase-type automatic repeat request (ARQ) protocol operating over a multiple-input--multiple-output (MIMO) channel with intersymbol interference (ISI). First of all, we investigate the outage probability and the outage-based power loss of the MIMO-ISI ARQ channel when optimal maximum a posteriori (MAP) turbo packet combining is used at the receiver. We show that the ARQ delay (i.e., the maximum number of ARQ rounds) does not completely translate into a diversity gain. We then introduce two efficient turbo packet combining algorithms that are inspired by minimum mean square error (MMSE)-based turbo equalization techniques. Both schemes can be viewed as low-complexity versions of the optimal MAP turbo combiner. The first scheme is called signal-level turbo combining and performs packet combining and multiple transmission ISI cancellation jointly at the signal-level. The second scheme, called symbol-level turbo combining, allows ARQ rounds to be separately turbo equalized, while combining is performed at the filter output. We conduct a complexity analysis where we demonstrate that both algorithms have almost the same computational cost as the conventional log-likelihood ratio (LLR)-level combiner. Simulation results show that both proposed techniques outperform LLR-level combining, while for some representative MIMO configurations, signal-level combining has better ISI cancellation capability and achievable diversity order than that of symbol-level combining.Comment: 13 pages, 7 figures, and 2 table

    Randomly Spread CDMA: Asymptotics via Statistical Physics

    Full text link
    This paper studies randomly spread code-division multiple access (CDMA) and multiuser detection in the large-system limit using the replica method developed in statistical physics. Arbitrary input distributions and flat fading are considered. A generic multiuser detector in the form of the posterior mean estimator is applied before single-user decoding. The generic detector can be particularized to the matched filter, decorrelator, linear MMSE detector, the jointly or the individually optimal detector, and others. It is found that the detection output for each user, although in general asymptotically non-Gaussian conditioned on the transmitted symbol, converges as the number of users go to infinity to a deterministic function of a "hidden" Gaussian statistic independent of the interferers. Thus the multiuser channel can be decoupled: Each user experiences an equivalent single-user Gaussian channel, whose signal-to-noise ratio suffers a degradation due to the multiple-access interference. The uncoded error performance (e.g., symbol-error-rate) and the mutual information can then be fully characterized using the degradation factor, also known as the multiuser efficiency, which can be obtained by solving a pair of coupled fixed-point equations identified in this paper. Based on a general linear vector channel model, the results are also applicable to MIMO channels such as in multiantenna systems.Comment: To be published in IEEE Transactions on Information Theor

    A Variational Inference Framework for Soft-In-Soft-Out Detection in Multiple Access Channels

    Full text link
    We propose a unified framework for deriving and studying soft-in-soft-out (SISO) detection in interference channels using the concept of variational inference. The proposed framework may be used in multiple-access interference (MAI), inter-symbol interference (ISI), and multiple-input multiple-outpu (MIMO) channels. Without loss of generality, we will focus our attention on turbo multiuser detection, to facilitate a more concrete discussion. It is shown that, with some loss of optimality, variational inference avoids the exponential complexity of a posteriori probability (APP) detection by optimizing a closely-related, but much more manageable, objective function called variational free energy. In addition to its systematic appeal, there are several other advantages to this viewpoint. First of all, it provides unified and rigorous justifications for numerous detectors that were proposed on radically different grounds, and facilitates convenient joint detection and decoding (utilizing the turbo principle) when error-control codes are incorporated. Secondly, efficient joint parameter estimation and data detection is possible via the variational expectation maximization (EM) algorithm, such that the detrimental effect of inaccurate channel knowledge at the receiver may be dealt with systematically. We are also able to extend BPSK-based SISO detection schemes to arbitrary square QAM constellations in a rigorous manner using a variational argument.Comment: Submitted to Transactions on Information Theor

    Design of optimal equalizers and precoders for MIMO channels

    Get PDF
    Channel equalization has been extensively studied as a method of combating ISI and ICI for high speed MIMO data communication systems. This dissertation focuses on optimal channel equalization in the presence of non-white observation noises with unknown PSD but bounded power-norm. A worst-case approach to optimal design of channel equalizers leads to an equivalent optimal H-infinity filtering problem for the MIMO communication systems. An explicit design algorithm is derived which not only achieves the zero-forcing (ZF) condition, but also minimizes the RMS error between the transmitted symbols and the received symbols. The second part of this dissertation investigates the design of optimal precoders which minimize the bit error rate (BER) subject to a fixed transmit-power constraint for the multiple antennas downlink communication channels under the perfect reconstruction (PR) condition. The closed form solutions are derived and an efficient design algorithm is proposed. The performance evaluations indicate that the optimal precoder design for multiple antennas communication systems proposed herein is an attractive/reasonable alternative to the existing precoder design techniques
    corecore