22 research outputs found

    Tunable Online MUS/MSS Enumeration

    Get PDF
    In various areas of computer science, the problem of dealing with a set of constraints arises. If the set of constraints is unsatisfiable, one may ask for a minimal description of the reason for this unsatisifiability. Minimal unsatisfiable subsets (MUSes) and maximal satisfiable subsets (MSSes) are two kinds of such minimal descriptions. The goal of this work is the enumeration of MUSes and MSSes for a given constraint system. As such full enumeration may be intractable in general, we focus on building an online algorithm, which produces MUSes/MSSes in an on-the-fly manner as soon as they are discovered. The problem has been studied before even in its online version. However, our algorithm uses a novel approach that is able to outperform the current state-of-the art algorithms for online MUS/MSS enumeration. Moreover, the performance of our algorithm can be adjusted using tunable parameters. We evaluate the algorithm on a set of benchmarks

    Recursive Online Enumeration of All Minimal Unsatisfiable Subsets

    Full text link
    In various areas of computer science, we deal with a set of constraints to be satisfied. If the constraints cannot be satisfied simultaneously, it is desirable to identify the core problems among them. Such cores are called minimal unsatisfiable subsets (MUSes). The more MUSes are identified, the more information about the conflicts among the constraints is obtained. However, a full enumeration of all MUSes is in general intractable due to the large number (even exponential) of possible conflicts. Moreover, to identify MUSes algorithms must test sets of constraints for their simultaneous satisfiabilty. The type of the test depends on the application domains. The complexity of tests can be extremely high especially for domains like temporal logics, model checking, or SMT. In this paper, we propose a recursive algorithm that identifies MUSes in an online manner (i.e., one by one) and can be terminated at any time. The key feature of our algorithm is that it minimizes the number of satisfiability tests and thus speeds up the computation. The algorithm is applicable to an arbitrary constraint domain and its effectiveness demonstrates itself especially in domains with expensive satisfiability checks. We benchmark our algorithm against state of the art algorithm on Boolean and SMT constraint domains and demonstrate that our algorithm really requires less satisfiability tests and consequently finds more MUSes in given time limits

    Proceedings of the 21st Conference on Formal Methods in Computer-Aided Design – FMCAD 2021

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Timed Automata Robustness Analysis via Model Checking

    Get PDF
    Timed automata (TA) have been widely adopted as a suitable formalism to model time-critical systems. Furthermore, contemporary model-checking tools allow the designer to check whether a TA complies with a system specification. However, the exact timing constants are often uncertain during the design phase. Consequently, the designer is often able to build a TA with a correct structure, however, the timing constants need to be tuned to satisfy the specification. Moreover, even if the TA initially satisfies the specification, it can be the case that just a slight perturbation during the implementation causes a violation of the specification. Unfortunately, model-checking tools are usually not able to provide any reasonable guidance on how to fix the model in such situations. In this paper, we propose several concepts and techniques to cope with the above mentioned design phase issues when dealing with reachability and safety specifications

    Formal Requirements Analysis and Specification-Based Testing in Cyber-Physical Systems

    Get PDF
    openFormal requirements analysis plays an important role in the design of safety- and security-critical complex systems such as, e.g., Cyber-Physical Systems (CPS). It can help in detecting problems early in the system development life-cycle, reducing time and cost to completion. Moreover, its results can be employed at the end of the process to validate the implemented system, guiding the testing phase. Despite its importance, requirements analysis is still largely carried out manually due to the intrinsic difficulty of dealing with natural language requirements, the most common way to represent them. However, manual reviews are time-consuming and error-prone, reducing the potential benefit of the requirement engineering process. Automation can be achieved with the employment of formal methods, but their application is still limited by their complexity and lack of specialized tools. In this work we focus on the analysis of requirements for the design of CPSs, and on how to automatize some activities related to such analysis. We first study how to formalize requirements expressed in a structured English language, encode them in linear temporal logic, check their consistency with off-the-shelf model checkers, and find minimal set of conflicting requirements in case of inconsistency. We then present a new methodology to automatically generate tests from requirements and execute them on a given system, without requiring knowledge of its internal structure. Finally, we provide a set of tools that implement the studied algorithms and provide easy-to-use interfaces to help their adoption from the users.openXXXIII CICLO - INFORMATICA E INGEGNERIA DEI SISTEMI/ COMPUTER SCIENCE AND SYSTEMS ENGINEERING - Informatica/computer sciencePULINA, LUCAVuotto, Simon

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access two-volume set constitutes the proceedings of the 27th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2021, which was held during March 27 – April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The total of 41 full papers presented in the proceedings was carefully reviewed and selected from 141 submissions. The volume also contains 7 tool papers; 6 Tool Demo papers, 9 SV-Comp Competition Papers. The papers are organized in topical sections as follows: Part I: Game Theory; SMT Verification; Probabilities; Timed Systems; Neural Networks; Analysis of Network Communication. Part II: Verification Techniques (not SMT); Case Studies; Proof Generation/Validation; Tool Papers; Tool Demo Papers; SV-Comp Tool Competition Papers

    Psr1p interacts with SUN/sad1p and EB1/mal3p to establish the bipolar spindle

    Get PDF
    Regular Abstracts - Sunday Poster Presentations: no. 382During mitosis, interpolar microtubules from two spindle pole bodies (SPBs) interdigitate to create an antiparallel microtubule array for accommodating numerous regulatory proteins. Among these proteins, the kinesin-5 cut7p/Eg5 is the key player responsible for sliding apart antiparallel microtubules and thus helps in establishing the bipolar spindle. At the onset of mitosis, two SPBs are adjacent to one another with most microtubules running nearly parallel toward the nuclear envelope, creating an unfavorable microtubule configuration for the kinesin-5 kinesins. Therefore, how the cell organizes the antiparallel microtubule array in the first place at mitotic onset remains enigmatic. Here, we show that a novel protein psrp1p localizes to the SPB and plays a key role in organizing the antiparallel microtubule array. The absence of psr1+ leads to a transient monopolar spindle and massive chromosome loss. Further functional characterization demonstrates that psr1p is recruited to the SPB through interaction with the conserved SUN protein sad1p and that psr1p physically interacts with the conserved microtubule plus tip protein mal3p/EB1. These results suggest a model that psr1p serves as a linking protein between sad1p/SUN and mal3p/EB1 to allow microtubule plus ends to be coupled to the SPBs for organization of an antiparallel microtubule array. Thus, we conclude that psr1p is involved in organizing the antiparallel microtubule array in the first place at mitosis onset by interaction with SUN/sad1p and EB1/mal3p, thereby establishing the bipolar spindle.postprin

    Removal of antagonistic spindle forces can rescue metaphase spindle length and reduce chromosome segregation defects

    Get PDF
    Regular Abstracts - Tuesday Poster Presentations: no. 1925Metaphase describes a phase of mitosis where chromosomes are attached and oriented on the bipolar spindle for subsequent segregation at anaphase. In diverse cell types, the metaphase spindle is maintained at a relatively constant length. Metaphase spindle length is proposed to be regulated by a balance of pushing and pulling forces generated by distinct sets of spindle microtubules and their interactions with motors and microtubule-associated proteins (MAPs). Spindle length appears important for chromosome segregation fidelity, as cells with shorter or longer than normal metaphase spindles, generated through deletion or inhibition of individual mitotic motors or MAPs, showed chromosome segregation defects. To test the force balance model of spindle length control and its effect on chromosome segregation, we applied fast microfluidic temperature-control with live-cell imaging to monitor the effect of switching off different combinations of antagonistic forces in the fission yeast metaphase spindle. We show that spindle midzone proteins kinesin-5 cut7p and microtubule bundler ase1p contribute to outward pushing forces, and spindle kinetochore proteins kinesin-8 klp5/6p and dam1p contribute to inward pulling forces. Removing these proteins individually led to aberrant metaphase spindle length and chromosome segregation defects. Removing these proteins in antagonistic combination rescued the defective spindle length and, in some combinations, also partially rescued chromosome segregation defects. Our results stress the importance of proper chromosome-to-microtubule attachment over spindle length regulation for proper chromosome segregation.postprin
    corecore