431,374 research outputs found

    Oral tolerance to cancer can be abrogated by T regulatory cell inhibition

    Get PDF
    Oral administration of tumour cells induces an immune hypo-responsiveness known as oral tolerance. We have previously shown that oral tolerance to a cancer is tumour antigen specific, non-cross-reactive and confers a tumour growth advantage. We investigated the utilisation of regulatory T cell (Treg) depletion on oral tolerance to a cancer and its ability to control tumour growth. Balb/C mice were gavage fed homogenised tumour tissue – JBS fibrosarcoma (to induce oral tolerance to a cancer), or PBS as control. Growth of subcutaneous JBS tumours were measured; splenic tissue excised and flow cytometry used to quantify and compare systemic Tregs and T effector (Teff) cell populations. Prior to and/or following tumour feeding, mice were intraperitoneally administered anti-CD25, to inactivate systemic Tregs, or given isotype antibody as a control. Mice which were orally tolerised prior to subcutaneous tumour induction, displayed significantly higher systemic Treg levels (14% vs 6%) and faster tumour growth rates than controls (p<0.05). Complete regression of tumours were only seen after Treg inactivation and occurred in all groups - this was not inhibited by tumour feeding. The cure rates for Treg inactivation were 60% during tolerisation, 75% during tumour growth and 100% during inactivation for both tolerisation and tumour growth. Depletion of Tregs gave rise to an increased number of Teff cells. Treg depletion post-tolerisation and post-tumour induction led to the complete regression of all tumours on tumour bearing mice. Oral administration of tumour tissue, confers a tumour growth advantage and is accompanied by an increase in systemic Treg levels. The administration of anti-CD25 Ab decreased Treg numbers and caused an increase in Teffs. Most notably Treg cell inhibition overcame established oral tolerance with consequent tumor regression, especially relevant to foregut cancers where oral tolerance is likely to be induced by the shedding of tumour tissue into the gut

    A theoretical study of the response of vascular tumours to different types of chemotherapy

    Get PDF
    In this paper we formulate and explore a mathematical model to study continuous infusion of a vascular tumour with isolated and combined blood-borne chemotherapies. The mathematical model comprises a system of nonlinear partial differential equations that describe the evolution of the healthy (host) cells, the tumour cells and the tumour vasculature, coupled with distribution of a generic angiogenic stimulant (TAF) and blood-borne oxygen. A novel aspect of our model is the presence of blood-borne chemotherapeutic drugs which target different aspects of tumour growth (cf. proliferating cells, the angiogenic stimulant or the tumour vasculature). We run exhaustive numerical simulations in order to compare vascular tumour growth before and following therapy. Our results suggest that continuous exposure to anti-proliferative drug will result in the vascular tumour being cleared, becoming growth-arrested or growing at a reduced rate, the outcome depending on the drug’s potency and its rate of uptake. When the angiogenic stimulant or the tumour vasculature are targeted by the therapy, tumour elimination can not occur: at best vascular growth is retarded and the tumour reverts to an avascular form. Application of a combined treatment that destroys the vasculature and the TAF, yields results that resemble those achieved following successful treatment with anti-TAF or anti-vascular therapy. In contrast, combining anti-proliferative therapy with anti-TAF or antivascular therapy can eliminate the vascular tumour. In conclusion, our results suggest that tumour growth and the time of tumour clearance are highly sensitive to the specific combinations of anti-proliferative, anti-TAF and anti-vascular drugs

    The role of acidity in solid tumour growth and invasion

    Get PDF
    Acidic pH is a common characteristic of human tumours. It has a significant impact on tumour progression and response to therapies. In this paper, we develop a simple model of three-dimensional tumour growth to examine the role of acidosis in the interaction between normal and tumour cell populations. Both vascular and avascular tumour dynamics are investigated, and a number of different behaviours are observed. Whilst an avascular tumour always proceeds to a benign steady state, a vascular tumour may display either benign or invasive dynamics, depending on the value of a critical parameter. Analysis of the model allows us to assess novel therapies directed towards changing the level of acidity within the tumour

    Wilms Tumour with Intracardiac Extension.

    Get PDF
    Wilms tumour or nephroblastoma is the most common renal tumour of in children. It accounts for 6% of all pediatric tumours and is the second most frequent intrabdominal solid organ tumour in children. Inferior vena cava (IVC) involvement by Wilms tumour occurs in 4-10% of patients and right atrium thrombus extension in less than 1%. Using a multidisciplinary approach, overall survival is excellent in Wilms tumour. We are presenting this case because Wilms tumour with right atrial thrombus is relatively rare and continues to remain a challenge for treating physicians

    The relationship between tumour budding, the tumour microenvironment and survival in patients with primary operable colorectal cancer

    Get PDF
    Background: Tumour budding has been reported to reflect invasiveness, metastasis and unfavourable prognosis in colorectal cancer. The aim of the study was to examine the relationship between tumour budding and clinicopathological characteristics, tumour microenvironment and survival in patients with primary operable colorectal cancer. Methods: A total of 303 patients from a prospective data set of patients with primary operable colorectal cancer were included in the study. The presence of budding was determined through assessment of all tumour-containing H&amp;E slides and the number of tumour buds was counted using a 10 high-powered field method. Routine pathologic sections were used to assess: tumour necrosis, the tumour inflammatory cell infiltrate using Klintrup–Makinen (KM) grade and tumour stroma percentage (TSP) combined as the Glasgow Microenvironment Score (GMS). Results: High-grade tumour budding was present in 39% of all tumours and in 28% of node-negative tumours respectively. High-grade budding was significantly associated with T stage (P&lt;0.001), N stage (P&lt;0.001), TNM stage (P&lt;0.001), serosal involvement (P&lt;0.001), venous invasion (P&lt;0.005), KM grade (P=0.022), high tumour stroma (P&lt;0.001) and GMS (P&lt;0.001). Tumour budding was associated with reduced cancer-specific survival (CSS) (HR=4.03; 95% confidence interval (CI), 2.50–6.52; P&lt;0.001), independent of age (HR=1.47; 95% CI, 1.13–1.90; P=0.004), TNM stage (HR=1.52; 95% CI, 1.02–2.25; P=0.040), venous invasion (HR=1.73; 95% CI, 1.13–2.64; P=0.012) and GMS (HR=1.54; 95% CI, 1.15–2.07; P=0.004). Conclusions: The presence of tumour budding was associated with elements of the tumour microenvironment and was an independent adverse prognostic factor in patients with primary operable colorectal cancer. Specifically high tumour budding stratifies effectively the prognostic value of tumour stage, venous invasion and GMS. Taken together, tumour budding should be assessed routinely in patients with primary operable colorectal cancer

    Fractal analysis of CE CT lung tumours images

    Get PDF
    AIM The fractal dimension (FD) of a structure provides a measure of its complexity. This pilot study aims to determine FD values for lung cancers visualised on Computed Tomography (CT) and to assess the potential for tumour FD measurements to provide an index of tumour aggression. METHOD Pre-and post-contrast CT images of the thorax acquired from 15 patients with lung cancers of greater than 10mm were transformed to fractal dimension images using a box-counting algorithm at various scales. A region of interest (ROI) was determined covering tumour locations, which were more apparent on FD images as compared to images before processing. The average tumour FD (FDavg) was computed and compared with the intensity average before FD processing. FD values were correlated with 2 markers of tumour aggression: tumour stage and tumour uptake of fluorodeoxyglucose (FDG) as determined by Positron Emission Tomography. RESULTS For pre-contrast images, the tumour FDavg correlated with tumour stage (r = 0.537, p = 0.0387) and FDG uptake (r= 0.64, p< 0.001). FDavg decreased following contrast enhancement for most tumours. CONCLUSION Fractal analysis of CT images of lung tumours could potentially provide additional information about likely tumour aggression and so impact on clinical management decisions and choice of treatment

    Modelling of Tirapazamine effects on solid tumour morphology

    Get PDF
    Bioreductive drugs are in clinical practice to exploit the resistance from tumour microenvironments especially in the hypoxic region of tumour. We pre-sented a tumour treatment model to capture the pharmacology of one of the most prominent bioreductive drugs, Tirapazamine (TPZ) which is in clinical trials I and II. We calculated solid tumour mass in our previous work and then integrated that model with TPZ infusion. We calculated TPZ cytotoxicity, concentration, penetra-tion with increasing distance from blood vessel and offered resistance from micro-environments for drug penetration inside the tumour while considering each cell as an individual entity. The impact of these factors on tumour morphology is also showed to see the drug behaviour inside animals/humans tumours. We maintained the heterogeneity factors in presented model as observed in real tumour mass es-pecially in terms of cells proliferation, cell movement, extracellular matrix (ECM) interaction, and the gradients of partial oxygen pressure (pO2) inside tumour cells during the whole growth and treatment activity. The results suggest that TPZ high concentration in combination with chemotherapy should be given to get maximum abnormal cell killing. This model can be a good choice for oncologists and re-searchers to explore more about TPZ action inside solid tumour

    Tumour angiogenesis: The gap between theory and experiment

    Get PDF
    A common experimental technique for viewing in vivo angiogenesis utilises tumours implanted into a test animal cornea. The cornea is avascular but the tumour promotes vascularisation from the limbus and the new blood vessels can be readily observed through the transparent cornea. Many of the early mathematical models for tumour angiogenesis used this scenario as their experimental template and as such assumed that there is a large gap, of the order of 2 mm, between the tumour and neighbouring vasculature at the onset of angiogenesis. In this work we consider whether the assumption that there is a significant gap between the tumour and neighbouring vasculature is unique to intra-cornea tumour implants, or whether this characterises avascular tumour growth more generally. To do this we utilise a simple scaling argument, derive a multi-compartment model for tumour growth, and consider in vivo images. This analysis demonstrates that the corneal implant experiments and the corresponding mathematical models cannot generally be applied to a clinical setting
    • …
    corecore