269 research outputs found

    User-centric IoT: challenges and perspectives

    Get PDF
    International audienceThe Internet of Things (IoT), this emerging technology connecting everyone, and everyone’s things’, is not about objects, gadgets, databases, applications and profits to be made from it, but about people, it enriches. Researchers, developers, industries, telecommunication companies, and scientific communities have been interested in this paradigm and have proposed different solutions from different perspectives. They are mainly focused on the technical level, like performance, interoperability, integration, etc. However, whenever use cases are targeting human users, the focus must not be merely on these sides, but on human factors as well. Thus, it is essential to apply a user-centric approach allowing identification of application-specific features and understanding users needs, motivations and beliefs. This survey aims at encouraging other IoT system developers and researchers to pay attention to the relationship between people and IoT systems. We emphasize the value of adopting a user-centric vision. The goal is not to provide solutions, but rather to raise the right issues

    INTERNET OF THINGS IN SMART AGRICULTURE: APPLICATIONS AND OPEN CHALLENGES

    Get PDF
    Purpose of Study: The IoT is an emerging field nowadays and that can be used anywhere in automation, agriculture, controlling as well as monitoring of any object, which exists in the real world. We have to make use of IoT in Agriculture to increase productivity. Agro-industry processes could be more efficient by using IoT. It gives automation to agro-industry by reducing human intervention. In the current scenario, the sometime farmer doesn’t know the current status of the soil moisture and other things related to their land and don’t produce productive results towards crops. The purpose of this research study is to explore the usage of IoT devices and application areas that are being used in agriculture.  Methodology: The methodology behind this study is to identify trends and review the open challenges, application areas and architectures for IoT in agro-industry. This survey is based on a systematic literature review where related research is grouped into four domains such as monitoring, control, prediction, and logistics.  Main Findings: This research study presents a detailed work of the eminent researchers and designs of computer architecture that can be applied in agriculture for smart farming. This research study also highlights various unfolded challenges of IoT in agriculture. Implications: This study can be beneficial for farmers, researchers, and professionals working in agricultural institutions for smart farming. Novelty/Originality of the study: Various eminent researchers have been making efforts for smart farming by using IoT concepts in agriculture. But, a bouquet of unfolded challenges is still in a queue for their effective solution. This study makes some efforts to discuss past research and open challenges in IoT based agriculture

    Understanding the use of emerging technologies in the agrifood industry: a case study

    Get PDF
    The research aim is to understand how emerging technologies, and in particular the blockchain, affect business organization in the agrifood industry. In particular, it explores how decentration, distribution and digitalization ledged could be integrated in the precision agriculture in order to allow organizations to share information with stakeholder, to improve relationship with customers, and to develop a network with other firms. After, reviewing the IS literature on emerging technologies in agri-food industry, with peculiar reference to the blockchain technology for precision agriculture, it is analyzed the case of BioLu, a small innovative Italian farm located in Campa- nia Region. Our results shown how emerging technologies support precision ag- riculture through data collection and exploitation for entrepreneur (e.g., decision- making) and consumers (e.g., food traceability), rather than agrifood supply chain

    Utilization of Internet of Things and wireless sensor networks for sustainable smallholder agriculture

    Get PDF
    Agriculture is the economy’s backbone for most developing countries. Most of these countries suffer from insufficient agricultural production. The availability of real-time, reliable and farm-specific information may significantly contribute to more sufficient and sustained production. Typically, such information is usually fragmented and often does fit one-on-one with the farm or farm plot. Automated, precise and affordable data collection and dissemination tools are vital to bring such information to these levels. The tools must address details of spatial and temporal variability. The Internet of Things (IoT) and wireless sensor networks (WSNs) are useful technology in this respect. This paper investigates the usability of IoT and WSN for smallholder agriculture applications. An in-depth qualitative and quantitative analysis of relevant work over the past decade was conducted. We explore the type and purpose of agricultural parameters, study and describe available resources, needed skills and technological requirements that allow sustained deployment of IoT and WSN technology. Our findings reveal significant gaps in utilization of the technology in the context of smallholder farm practices caused by social, economic, infrastructural and technological barriers. We also identify a significant future opportunity to design and implement affordable and reliable data acquisition tools and frameworks, with a possible integration of citizen science

    The Applications of the Internet of things in the Medical Field

    Get PDF
    The Internet of Things (IoT) paradigm promises to make “things” include a more generic set of entities such as smart devices, sensors, human beings, and any other IoT objects to be accessible at anytime and anywhere. IoT varies widely in its applications, and one of its most beneficial uses is in the medical field. However, the large attack surface and vulnerabilities of IoT systems needs to be secured and protected. Security is a requirement for IoT systems in the medical field where the Health Insurance Portability and Accountability Act (HIPAA) applies. This work investigates various applications of IoT in healthcare and focuses on the security aspects of the two internet of medical things (IoMT) devices: the LifeWatch Mobile Cardiac Telemetry 3 Lead (MCT3L), and the remote patient monitoring system of the telehealth provider Vivify Health, as well as their implementations

    A Survey on Smart Agriculture: Development Modes, Technologies, and Security and Privacy Challenges

    Get PDF
    With the deep combination of both modern information technology and traditional agriculture, the era of agriculture 4.0, which takes the form of smart agriculture, has come. Smart agriculture provides solutions for agricultural intelligence and automation. However, information security issues cannot be ignored with the development of agriculture brought by modern information technology. In this paper, three typical development modes of smart agriculture (precision agriculture, facility agriculture, and order agriculture) are presented. Then, 7 key technologies and 11 key applications are derived from the above modes. Based on the above technologies and applications, 6 security and privacy countermeasures (authentication and access control, privacy-preserving, blockchain-based solutions for data integrity, cryptography and key management, physical countermeasures, and intrusion detection systems) are summarized and discussed. Moreover, the security challenges of smart agriculture are analyzed and organized into two aspects: 1) agricultural production, and 2) information technology. Most current research projects have not taken agricultural equipment as potential security threats. Therefore, we did some additional experiments based on solar insecticidal lamps Internet of Things, and the results indicate that agricultural equipment has an impact on agricultural security. Finally, more technologies (5 G communication, fog computing, Internet of Everything, renewable energy management system, software defined network, virtual reality, augmented reality, and cyber security datasets for smart agriculture) are described as the future research directions of smart agriculture

    Survey: Benefits of integrating both wireless sensors networks and cloud computing infrastructure

    Get PDF
    Cloud computing has the capabilities of powerful processing and scalable storage with the ability of offline and online data analysis and mining of the collected sensed data from body areas networks. Cloud computing can be considered as the main enabler for modern manufacturing industries. Cloud computing can efficiently serve key areas of manufacturing by aspects of the pay-as-you-go business model, scaling up and down production according to certain demands, more customized solutions, and flexible deployments. In cloud manufacturing, the distributed sensors and resources can be managed in centralized architecture that allows cloud users to request more specific product design, testing at all the stages of the product. This study covers the main points of Integrating Both Wireless Sensors Networks and Cloud Computing Infrastructure and gives a view of the various advantage and disadvantages of methods in integration

    Remote monitoring of our environment: A data fusion problem

    Get PDF
    Remote monitoring of our environment can be done, even in the harshest conditions, using a combination of sensors. The health and wellness of a river can be monitored by measuring water depth, turbidity, pH, conductivity, and nutrient content (nitrogen and phosphate), some of these being cheap and off-the-shelf, others being more expensive, and all suffering from problems of calibration and biofouling. Similarly for a coastal area like a bay, we can measure sea surface temperature, wave height, chlorophyll content and water composition with the same issues of calibration and biofouling. Each of the sensors we use to monitor environments, especially water-based environments, produce streams of data values which need to be woven together in order to get an holistic overview of the health of the area being monitored. In this presentation I will describe how environmental monitoring using multiple sensor streams is really a problem of data fusion where each of the incoming data streams has accuracy and reliability issues. I will also describe how we have developed, and deployed, a trust and reputation framework to address these issues and how we have put this into effect in remote monitoring of two coastal regions

    Path Loss Determination Using Linear and Cubic Regression Inside a Classic Tomato Greenhouse

    Get PDF
    The production of tomatoes in greenhouses, in addition to its relevance in nutrition and health, is an activity of the agroindustry with high economic importance in Spain, the first exporter in Europe of this vegetable. The technological updating with precision agriculture, implemented in order to ensure adequate production, leads to a deployment planning of wireless sensors with limited coverage by the attenuation of radio waves in the presence of vegetation. The well-known propagation models FSPL (Free-Space Path Loss), two-ray, COST235,Weissberger, ITU-R (International Telecommunications Union—Radiocommunication Sector), FITU-R (Fitted ITU-R), offer values with an error percentage higher than 30% in the 2.4 GHz band in relation to those measured in field tests. As a substantial improvement, we have developed optimized propagation models, with an error estimate of less than 9% in the worst-case scenario for the later benefit of farmers, consumers and the economic chain in the production of tomatoes.This research received fund by the Ibero-American Postgraduate University Association (AUIP)
    • 

    corecore