7 research outputs found

    Trust-sensitive belief revision

    Get PDF
    Belief revision is concerned with incorporating new information into a pre-existing set of beliefs. When the new information comes from another agent, we must first determine if that agent should be trusted. In this paper, we define trust as a pre-processing step before revision. We emphasize that trust in an agent is often restricted to a particular domain of expertise. We demonstrate that this form of trust can be captured by associating a state partition with each agent, then relativizing all reports to this partition before revising. We position the resulting family of trust-sensitive revision operators within the class of selective revision operators of Fermé and Hansson, and we examine its properties. In particular, we show how trust-sensitive revision is manipulable, in the sense that agents can sometimes have incentive to pass on misleading information. When multiple reporting agents are involved, we use a distance function over states to represent differing degrees of trust; this ensures that the most trusted reports will be believed

    Trust-sensitive belief revision

    Get PDF
    Belief revision is concerned with incorporating new information into a pre-existing set of beliefs. When the new information comes from another agent, we must first determine if that agent should be trusted. In this paper, we define trust as a pre-processing step before revision. We emphasize that trust in an agent is often restricted to a particular domain of expertise. We demonstrate that this form of trust can be captured by associating a state partition with each agent, then relativizing all reports to this partition before revising. We position the resulting family of trust-sensitive revision operators within the class of selective revision operators of Fermé and Hansson, and we examine its properties. In particular, we show how trust-sensitive revision is manipulable, in the sense that agents can sometimes have incentive to pass on misleading information. When multiple reporting agents are involved, we use a distance function over states to represent differing degrees of trust; this ensures that the most trusted reports will be believed

    Trust as a precursor to belief revision

    Get PDF
    Belief revision is concerned with incorporating new information into a pre-existing set of beliefs. When the new information comes from another agent, we must first determine if that agent should be trusted. In this paper, we define trust as a pre-processing step before revision. We emphasize that trust in an agent is often restricted to a particular domain of expertise. We demonstrate that this form of trust can be captured by associating a state partition with each agent, then relativizing all reports to this partition before revising. We position the resulting family of trust-sensitive revision operators within the class of selective revision operators of Ferme and Hansson, and we prove a representation result that characterizes the class of trust-sensitive revision operators in terms of a set of postulates. We also show that trust-sensitive revision is manipulable, in the sense that agents can sometimes have incentive to pass on misleading information

    Joint trust for belief revision

    Get PDF
    The process of belief revision is impacted by trust relationships between agents. In the simplest case, information is reported from a single source and the belief change that occurs is dependent on the extent to which that source is trusted over a particular domain. In this paper, we are concerned with the more complicated case where the new information is reported by a set of agents. We first introduce a simple model of trust in an agent, and show how it influences the process of belief revision. We then define an joint notion of trust that is built by combining the trust held in each individual agent in the reporting set. We use this formal framework to define precisely when a collection of agents can be seen as a trusted authority over a particular formula for revision. While our framework is based on a particular model of trust, we argue that this approach can be used to define a suitable notion of joint trust in a wide range of settings

    Local Belief Dynamics in Network Knowledge Bases

    Get PDF
    People are becoming increasingly more connected to each other as social networks continue to grow both in number and variety, and this is true for autonomous software agents as well. Taking them as a collection, such social platforms can be seen as one complex network with many different types of relations, different degrees of strength for each relation, and a wide range of information on each node. In this context, social media posts made by users are reflections of the content of their own individual (or local) knowledge bases; modeling how knowledge flows over the network? or how this can possibly occur? is therefore of great interest from a knowledge representation and reasoning perspective. In this article, we provide a formal introduction to the network knowledge base model, and then focus on the problem of how a single agents knowledge base changes when exposed to a stream of news items coming from other members of the network. We do so by taking the classical belief revision approach of first proposing desirable properties for how such a local operation should be carried out (theoretical characterization), arriving at three different families of local operators, exploring concrete algorithms (algorithmic characterization) for two of the families, and proving properties about the relationship between the two characterizations (representation theorem). One of the most important differences between our approach and the classical models of belief revision is that in our case the input is more complex, containing additional information about each piece of information.Fil: Gallo, Fabio Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Simari, Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Martinez, Maria Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Abad Santos, Natalia Vanesa. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Falappa, Marcelo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentin
    corecore