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People are becoming increasingly more connected to each other as social networks continue to grow both in

number and variety, and this is true for autonomous software agents as well. Taking them as a collection, such

social platforms can be seen as one complex network with many different types of relations, different degrees

of strength for each relation, and a wide range of information on each node. In this context, social media posts

made by users are reflections of the content of their own individual (or local) knowledge bases; modeling

how knowledge flows over the network—or how this can possibly occur—is therefore of great interest from

a knowledge representation and reasoning perspective. In this article, we provide a formal introduction to

the network knowledge base model, and then focus on the problem of how a single agent’s knowledge base

changes when exposed to a stream of news items coming from other members of the network. We do so

by taking the classical belief revision approach of first proposing desirable properties for how such a local

operation should be carried out (theoretical characterization), arriving at three different families of local

operators, exploring concrete algorithms (algorithmic characterization) for two of the families, and proving

properties about the relationship between the two characterizations (representation theorem). One of the

most important differences between our approach and the classical models of belief revision is that in our

case the input is more complex, containing additional information about each piece of information.
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1 INTRODUCTION

Online platforms for sharing content with both friends and perfect strangers, commonly known
today as social media, now dominate many aspects of communications among people, between a
person and their government, as well as between companies and the people who consume their
products and services. One of the most important aspects of this is how information flow has
changed with respect to how things were less than two decades ago—television, radio, and printed
media have been largely replaced with content on a wide variety of social media platforms such
as Twitter, Facebook, Instagram, YouTube, Weibo, Quora, Pinterest, and LinkedIn—among many
others—where information ranges from simple text comments and “likes” or “up/down votes,” to
multimedia content such as audio, photos, and video. The 2016 presidential elections in the US
and the Brexit vote in the UK are clear examples of how such content can have an influence on
people’s opinions and beliefs and, through this, on world-changing events [40, 45, 48]. The recent
surge in so-called fake news is another reminder of the power of these platforms [2, 56].

In this article, we address the broad issue of understanding how information is shared by people
(or in general autonomous agents) that are part of one or more social networks. Since there are a
wide variety of such networks, and most people are active on at least two, we developed a model
that is capable of representing the salient aspects of a wide variety of data and communication
structures: Nodes represent agents and can be labeled with different pieces of information about
them (such as the date that they joined specific platforms, city of residence, age, etc.), while edges
represent their relationships with other agents and can also be labeled with relevant information
(for instance, nature and strength of the relationship); finally, each node has a local knowledge base
representing the beliefs currently held by each entity. One of the key advantages of this so-called
Network Knowledge Base (NKB) model [22, 25] is its ability to seamlessly integrate different
data sources into a single model. This underlying idea of combining sources into one network
model is not new—several such models have been proposed in the wide-reaching social networks
literature, which includes contributions from many different disciplines like psychology, sociology,
biology, computer science, and physics; they can in general be grouped under the name multilayer

or multiplex networks—cf. Reference [37] for a recent survey of the most prominent models.
However, the problem of studying the design and implementation of principled operations for

characterizing the flow of knowledge in these generalized social networks has only recently started
to be addressed [23, 25]. Here, we continue this line of research by taking the classical belief re-
vision approach [1, 33] of proposing a set of theoretical properties, called postulates, of how such
operations should be carried out, proposing concrete algorithms to implement them in practice,
and studying how the two approaches are related. Though an experimental evaluation of our the-
oretical and algorithmic characterizations is outside the scope of this article, we refer the reader
to Reference [25] for some preliminary results obtained using our NKB model to characterize user

types in Twitter based on the tone adopted in their posts in relation to the tone observed in their
individual feeds. Another recent work focused on extending this to the application of our model
in conjunction with machine learning classifiers to predict user reactions to the content of their
feeds [24].

The following is an example of an application of our Network Knowledge Base model.
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Fig. 1. Example of a Network Knowledge Base—a generalized social network with different kinds of weighted
relations and knowledge bases associated with each node.

Example 1.1 (Integration of Social Media Platforms). We now describe a setting that we use as
a running example to motivate and illustrate the presentation. Consider a social media platform
like Facebook, Weibo, Instagram, or Twitter, where people are connected to each other and share
thoughts and ideas in the form of text comments or visual content such as photos and videos. We
not only wish to model that connections exist between users but also the different levels of strength

or weight of these relations. Furthermore, we would like to model the information that is available
for each user, such as age, gender, current city, and so on.

Figure 1 shows a network consisting of seven users; their relationships are represented with la-
beled edges—in general multiple relationships can exist between two people, e.g., Dan and Beth are
work and sports partners; these labels can of course also represent follow/friend relationships on dif-
ferent social platforms. Labels indicating how close they are as a value in the real unit interval are
called weights; these can be automatically calculated (as discussed below). Labels associated with
nodes (not included in this example for simplicity of presentation) can represent their attributes,
such as age, place of work, or the date on which they joined a social platform. Finally, each vertex
has associated a local set of beliefs, which we refer to as the agent’s local knowledge base. �

A note on weighted edges. There are many ways in which weights can be automatically calculated
based on user activity on social platforms. For instance, for an edge from user u to user v labeled
Facebook friend, it could be based on easy-to-compute1 metrics such as the proportion of posts byv
that involve reactions byu, the frequency with whichu initiates a private conversation withv , how
many groups they both belong to, or more explicit signals such as whether or not u has marked v
as a favorite or close friend. Such metrics can also be refined by taking into account further as-
pects, such as how long it typically takes u to react to posts by v , the kind of reaction, the average
comment length, and so on. Assigning weights to relationships has also been previously consid-
ered in the multi-layer/multiplex networks literature; for example, Reference [41] studies how
the strength of ties can be calculated from Facebook data, Reference [46] studies weighted multi-
plex networks, focusing on empirical evidence of edge weights in a dataset of articles published
in American Physical Society (APS) journals, and Reference [6] illustrates how this can be done
in another scientific collaboration dataset as well as in a dataset describing connections between
airports.

1Assuming access to the relevant data is available.
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In this setting, posts made by users are seen by all their connections; when this occurs, we
assume that each user adopts a position regarding the information that they receive from their
friends. For instance, it could be seen but ignored, or perhaps an evaluation is made to see if the
knowledge has enough epistemic value to be integrated into their own knowledge base. Users
therefore generally have many possible sources of information that can be both mutually incon-
sistent (e.g., friend A stating “α” and friend B “¬α”), and/or posts that contradict their local belief
base (e.g., friends A and B stating “¬α” when the user in question’s local knowledge base currently
contains α ). In such cases, it would be natural for users to resort to the closeness of the friend who
made the post, how many friends share the opinion, and so on, to make up their minds regarding
the content in question.

Given the expressive power of the NKB model, there are plenty of domains in which this model
could be useful. For instance, in the problem of selecting the best users to be included in a mar-
keting campaign based on social media; users who have the greatest number of connections are
not always the best candidates for being chosen as “seeds” of online marketing campaigns [14]. In
this scenario, our model could provide a broad view for identifying the potentially most influential
users according to the current state of their knowledge bases and the contagion effect that can be
leveraged to reach many users in the network. Another possible application of this model is as a
support tool—in combination with NLP and ML tools, among others—for detecting unfair compe-
tition, for instance via sock puppets2; in this setting, NKBs could be useful in detecting information
flow patterns that are typical of sock puppet campaigns.

The main contributions of this article are the following:

• Formal introduction of the Network Knowledge Base model and the associated global and
local belief revision problems.
• Introduction of a set of desirable properties for local belief revision operations (postulates).
• Theoretical characterization of three families of local belief revision operators: restrained,

weakly restrained, and social.
• Algorithmic characterization of the restrained and weakly restrained families of local opera-

tors.
• Representation theorem relating the proposed theoretical and algorithmic characterizations.
• Time and space complexity analysis of our proposed algorithm for implementing restrained

and weakly restrained operators.

These contributions appear in the rest of this article as follows: Section 2 formally presents the
concept of NKBs; then, Section 3 discusses the general global and local belief revision processes
that can occur in NKBs as agents react to content posted by others, focusing especially on the local
revision operators that govern how each agent changes its own knowledge base—we present a set
of postulates and characterize three general families of local operators. Section 4 discusses the con-
struction (algorithmic characterization) of restrained and weakly restrained operators, and presents
our main representation theorem. Finally, Sections 5 and 6 present related work and conclusions,
respectively. Additional material can be found in Appendix A.

2 NETWORK KNOWLEDGE BASES

In this section, we provide a formal introduction to the concept of NKBs; this model was first briefly
proposed in Reference [23] and also appeared in a less formal presentation in Reference [25].

2This term refers to a false identity assumed by a member of an Internet community who speaks to, or about, themselves

while pretending to be another person.
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We assume a language L built from a finite set of propositional symbols Pred, in which the only
connective is ¬; therefore, all elements in our language are ground literals. We say that two literals
l1, l2 are contradictory if and only if l1 ≡ ¬l2. We also have two arbitrary but fixed disjoint sets
VP, EP of vertex and edge n-ary predicate symbols (with n ≥ 0), respectively, and a finite set of
constants Δ. We use LV (respectively, LE ) to denote ground atoms over VP (respectively, EP) built
from VP (respectively, EP) and Δ. We first recall the definition of a social network, presenting a
slight variation of the one in Reference [55].

Definition 2.1. A Social network is a 4-tuple (V ,E, lvert, ledge), where

(1) V is a finite set whose elements are called vertices.
(2) E ⊆ V ×V is a finite set whose elements are called edges.
(3) lvert : V → 2LV is a function called a vertex labeling function.
(4) ledge : E → 2T is a function called an edge labeling function, where T = {〈b,w〉 | b ∈ LE ,w ∈

[0, 1]}.

Note that this definition of social network allows for multiple relations to exist between the
same pair of nodes, since multiple labels can be attached to the same edge. Also, multiple labels
can be attached to a vertex. Multiple relation labels allow to model the fact that two vertices, for
instance, are both neighbors and classmates, while multiple vertex labels allow to represent user
data such as age, nationality, place of work, and so on. A network knowledge base is then simply a
social network in which a set of propositional literals is associated with each vertex.

Definition 2.2. A Network KB (nkb for short) is a 5-tuple (V ,E, lvert, ledge,K ), where the first four

elements comprise a social network, and K : V → 2L is a mapping assigning a knowledge base to
each vertex. Given v , K (v ) is called the knowledge base associated with vertex v .

Additionally, we further enrich the notion of network with a set of constraints that conditions
(and relates) both the structural part of the network (i.e., its relationships) and the knowledge

bases (KBs, for short) of their users.

Definition 2.3. A constraint C over an nkb (V ,E, lvert, ledge,K ) is a pair (S,B) where, given
{v1, . . . ,vn } ⊆ V , and {e1, . . . , em } ⊆ E ∩ {v1, . . . ,vn } × {v1, . . . ,vn },

(1) S , called the structural part, contains a Boolean combination (i.e., using ∧, ∨, and ¬) of con-
ditions that can be of either of the following forms:
• (a ∈ lvert (v )), with a ∈ LV and v ∈ {v1, . . . ,vn };
• (〈b,w〉 ∈ ledge (e )), with 〈b,w〉 ∈ T , where T = {〈b,w〉 | b ∈ LE ,w ∈ [0, 1]}.

(2) B is called the belief part and contains a Boolean combination (i.e., using ∧, ∨, and ¬) of
statements of the form either (c ∈ K (v )), with c ∈ L and v ∈ V .

Satisfaction and Consistency. Given a constraint C = (S,B), we say that a set of vertices
{v1, . . . ,vn } and edges {e1, . . . , em } satisfy S if all the conditions of the formula hold when we re-
place the vertices and the edges appropriately. Similarly, we say that a set of vertices {v1, . . . ,vn }
satisfies B if there exists a way to replace the vertices such that the formula holds. Finally, an nkb
satisfies C if for every subset of vertices and edges that satisfy S , B is also satisfied. Given this
semantics, it may also be convenient to write constraints as S → B.

Example 2.1. Let v1, v2 ∈ V , and e (v1,v2), e (v2,v1) ∈ E; we have a constraint C1 = (S1,B1)
defined by:

• S1: 〈employee,w1〉 ∈ ledдe (v1,v2) ∧ 〈boss,w2〉 ∈ ledдe (v2,v1);

• B1:
(
(δ ∈ K (v1)) ∧ (δ ∈ K (v2))

)
∨
(
(¬δ ∈ K (v1)) ∧ (¬δ ∈ K (v2))

)
.
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ConstraintC1 says that if there is an edge labeled with employee between two vertices and another
edge in the opposite direction labeled with boss (formula S1), then the knowledge bases for these
vertices should either both be positive or both negative with respect to proposition δ (formula B1).
In Figure 1 we can see that although S1 holds, B1 does not, since δ belongs to Cate’s KB and ¬δ
belongs to Dan’s—C1 is therefore not satisfied. �

We are now ready to define consistency of an nkb.

Definition 2.4. Given a finite set of constraints IC, we say that an nkb = (V ,E, lvert, ledge,K ) is
consistent w.r.t. IC if it satisfies all constraints in IC and for every v ∈ V , K (v ) does not contain
contradictory literals.

The Network Belief Dynamics Problem. Consider an epistemic input comprised of a set of
decisions coming from the neighbor nodes about how their beliefs are changing; we call such
decisions news items:

Definition 2.5. A news item consists of a triple (o, l ,d ), where o ∈ V is the origin, l ∈ L is a literal,
and d is an indication of its new status in the origin node’s belief base: a (l was added to K (o)) or
r (l was removed from K (o)).

We assume that news items are only created when they are not redundant—therefore, for (o, l ,a)
we have that l � K (o), and for (o, l , r ) we have that l ∈ K (o) (in both cases before the operation).
We also point out that news items should not be interpreted as facts, but rather as statements made
by actors in social platforms who may have different motivations. News items are thus part of an
epistemic input (as discussed in the next section) that merely characterizes what users are posting
(which may or may not accurately reflect their beliefs).

Definition 2.6. A set of news items P is consistent if there do not exist p1 = (o1, l1,d1) and p2 =

(o2, l2,d2) such that:

(i) o1 = o2, l1 = l2, and d1 � d2.
(ii) o1 = o2, l1 ≡ ¬l2, and either
• d1 = d2 = a, or
• d1 = d2 = r .

For instance, P1 = {(u,α ,a), (u,α , r )} is inconsistent (case i), since the same user is both adding
and removing the same literal.

In the rest of the article, we assume all sets of news items to be consistent. This constraint could
be eliminated by admitting any set of items and assuming the existence of a filtering function as
in operators of selective revision [20] or a condition on the set of credible sentences in operators
of credibility limited revision [34]. Another simplifying assumption that we make here is that
we can derive news items from social media posts; one way in which this can be tackled is via
the guided application of machine learning techniques for natural language processing tasks (cf.
Reference [64] for a survey of such approaches). For instance, in the posts illustrated in Figure 2, the
specific dimensions (price, parking, veggie, etc.) could be fixed beforehand, and automated Natural

Language Processing (NLP) tools applied to posts to determine if they are relevant to each one.
The following example illustrates how a set of news items can be generated in a scenario in

which people talk about a restaurant in their social media feeds.

Example 2.2. Consider the nkb from Example 1.1 (Figure 1), and let us take user Dan’s perspec-
tive when the people he is connected to give their opinions and feedback on a certain restaurant,
which we illustrate in Figure 2. These posts refer to certain aspects of the restaurant, which we
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Fig. 2. Posts seen by Dan in his feed. Social media post sources are Facebook, Twitter, and Weibo, represented
by squares labeled F, T, and W on the left-hand side, respectively.
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Fig. 3. Outline of the general belief revision process over a Network Knowledge Base.

will map to literals for convenience as follows: suitable prices (α ), ample parking (β), vegetarian
menu (γ ), good food (δ ), table availability (ϵ), and kind service (ζ ). The figure shows the original
posts on the left-hand side, and how they can be represented as news items on the right.

Summarizing, Dan sees the following news items in his feed (here, organized by literal); note
that, for clarity, henceforth we use the vertices’ labels instead of their names (so, for instance,
“Alice” instead of “v1”):

price : (Alice,¬α , r ),

parkinд : (Beth,¬β,a), (Alice, β,a), (Eric, β,a), (Fred, β, r ),

veддie : (Beth,γ ,a), (Fred,γ ,a), (Eric,¬γ ,a), (Alice,¬γ , r ),

f ood : (Cate,δ , r ), (Beth,δ ,a),

table : (Alice, ϵ,a), (Beth, ϵ,a), (Cate, ϵ,a), (Eric,¬ϵ,a),

service : (Fred, ζ ,a), (Beth, ζ , r ), (Eric,¬ζ ,a), (Cate,¬ζ , r ).

It is clear that there is considerable disagreement among his connections regarding several as-
pects: for instance, Cate and Beth on “good food” (δ ) or Fred and Eric on “veggie friendly” (γ ).
Other disagreements may seem less problematic, such as Beth and Eric on “kind service” (ζ ), since
one adds the literal while the other removes its negation. �

With the basic definitions in place, we are ready to formulate and address belief dynamics in
NKBs, which is the topic of the next section.

3 BELIEF DYNAMICS IN NETWORK KNOWLEDGE BASES

The overall belief dynamics process we propose is as follows: Consider Figure 3, where we have
agents producing news items in one or more social platforms; depending on who follows whom,
these news items will appear in different users’ feeds (in the figure, we have only B andC receiving
news items). A local belief revision process is then carried out over K (B) and K (C ), taking into
account these users’ own perspective in the NKB. As a result of these operations, the new resulting
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network KB (NKB′) might violate one or more integrity constraints, since each local revision was
carried out in parallel—a consistency/integrity maintenance process is thus required. The output of
the global process might make structural changes to the underlying network; for instance, agent B
might no longer follow agent C on Instagram. This generates “fresh” news items, which take part
in the next cycle.

In this article, we will only address the local revision step—global revision will be tackled in
future work. A key aspect of the effort of developing local revision operators for the setting of
social platform users is that user behaviors typically go beyond what is modeled by classical belief
dynamics. Consider for instance a user who is simply in complete opposition to what some other
user or group of users post; classical postulates do not capture this generality, and this is one
of the differences between our work and he classical setting. Nevertheless, as we describe below,
in this article we focus on the most basic kinds of operators, laying the groundwork for future
developments.

Basic Assumptions. As described above, we assume that local revisions are carried out in parallel
and synchronously, triggered by a global “clock.” As a consequence of this, and the assumption
that sets of news items are consistent, we assume that all sets of news items only contain the last
decision regarding a given predicate symbol; e.g., if agent o removed α (news item (o,α , r )) and
later added it again (news item (o,α ,a)) before local revision is carried out, then the input will only
contain the news item (o,α ,a). Furthermore, we assume that each news item takes part in a single
local revision process for each node—i.e., news items are “consumed” after each local revision.

In the rest of this section, we will present a set of rationality postulates that provide the basis
for theoretical characterizations of different kinds of local revision operators, before moving on to
their algorithmic characterization in Section 4.

3.1 Local NKB Belief Revision: Preliminary Definitions and Notation

In the following, we denote with NKB the universe of all possible network knowledge bases,
and with P the universe of all possible news items. Given a Network Knowledge Base nkb =
(V ,E, lvert, ledge,K ), a consistent set of news items P = {p1, . . . ,pn }, and vertex v ∈ V , we use
Pv = {p = (o, l ,d ) ∈ P | (o,v ) ∈ E} to denote the set of news items seen by v . Furthermore, given
news item p = (o, l ,d ) ∈ P, we use src(p) = o, lit(p) = l , and dec(p) = d to denote the origin, literal,
and decision involved in p, respectively. Given P ∈ P, lit (P ) is the set consisting of the literals of
each p ∈ P ; similarly, litneg (P ) = {¬l | l ∈ lit (P )}. Finally, for ease of presentation we assume that
for literal l expressions of the form “¬¬l” are always simplified to “l”.

We now provide a first definition of local NKB belief revision operator, which will then serve as
the basis for more refined ones guided by the satisfaction of a subset of our postulates.

Definition 3.1. Local network knowledge base revision operators are partial functions of the form
� : NKB × V × 2P → NKB, where the sets of news items are assumed to be consistent (cf.
Definition 2.6).

Given a Network Knowledge Base nkb ∈ NKB, a local revision operator �, and a vertexv ∈ V ,
from now on we use the following notation to refer to the result of a local revision operation:

nkb′ = �(nkb,v, P ) = (V ′,E ′, l ′vert, l
′
edge
,K ′).

Furthermore, given set of news items P , we use the following to denote the sets of all posi-
tive/added and negative/removed news items in P , respectively:

P+ = {p ∈ P | dec(p) = a}
P− = {p ∈ P | dec(p) = r }.
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That is, P+ is the set of news items that refer to additions, while P− is the set of those that refer
to removals; note that it always holds that P = P+ ∪ P−.

We propose two sets of postulates as reasonable properties for local NKB revision: Those related
only with epistemic issues and others that involve network properties. Note that not all postulates

are meant to hold for all operators—we will discuss this further in Section 4.

3.2 Local NKB Belief Revision: Epistemic Postulates

Notation: K ′(v ) denotes the revised local knowledge base, and Pv the set of news items seen by
node v .

• Inclusion: K ′(v ) ⊆ K (v ) ∪ lit (Pv ) ∪ litneg (Pv ).

No unwarranted information should be added as part of a revision.

• Weak Positive Success: lit (P+v ) ⊆ K ′(v ) when K (v ) ∪ lit (P+v ) is consistent.

Additions are guaranteed to be accepted if they are consistent with the KB.

• Negative Success: lit (P−v ) ∩ K ′(v ) = ∅.
The literals in the input relating to removals should not be present in the revised KB.

• Consistency: K ′(v ) �⊥.

The revised KB must be consistent.

• Vacuity 1: If l � K (v ) and ¬l � K (v ), then:

— If lit (p) � l and lit (p) � ¬l for all p ∈ Pv , then l � K ′(v ).
— Otherwise, if lit (p) = l implies dec(p) = r , for all p ∈ Pv , then l � K ′(v ).

If there is no evidence in the input about adding a literal, and the local KB does not contain the
literal, then it should not be added as part of the revision. In other words, no information is added
to the local KB without justification.

• Vacuity 2: If l ∈ K (v ), then:

— If lit (p) � l and lit (p) � ¬l for all p ∈ Pv , then l ∈ K ′(v ).
— Otherwise, if either lit (p) = ¬l implies dec(p) = r , or lit (p) = l implies dec(p) = a, for all

p ∈ Pv , then l ∈ K ′(v ).

As a dual of Vacuity 1, this postulate identifies two conditions under which a literal that is part
of the KB should be kept as part of the revision. The first is whenever there is no reference to the
literal in the set of news items. The second is divided into two cases: (i) whenever all references to
the negation of the literal have remove as a decision or (ii) whenever all references to the literal
itself have add as a decision.

• Weak Vacuity 1: If l � K (v ), then, if lit (p) � l and lit (p) � ¬l for all p ∈ Pv , then l � K ′(v ).

An element is not added into the local KB for which no information is received.

• Weak Vacuity 2: If l ∈ K (v ), then, if lit (p) � l and lit (p) � ¬l for all p ∈ Pv , then l ∈ K ′(v ).

No element is removed from the local KB without receiving information about its negation.

• Congruence: Given set of news items P ′′v and the resulting revision nkb′′ = �(nkb,v, P ′′v ) =
(V ′′,E ′′, l ′′vert , l

′′
edge
,K ′′), if Pv = P ′′v then K ′(v ) = K ′′(v ).
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If two sets of news items are equivalent,3 then the respective local KBs should be identical—in
other words, the result does not depend on the syntax used to express the input. In belief change,
congruence conditions require that the result of changes (revisions or contraction) should not
depend on syntactic properties of the sentences to be modified: only their logical content should
count. These postulates in the AGM (Alchourrón, Gärdenfors, and Makinson) model [1] are also
called extensionality. A logic is extensional if it allows logically equivalent sentences to be freely
substituted for each other [33].

• Removal Monotonicity: Given set of news items P ′′v and the resulting revision nkb′′ =
�(nkb,v, P ′′v ) = (V ′′,E ′′, l ′′vert , l

′′
edge
,K ′′), if P+v = P ′′+v and P−v ⊆ P ′′−v , then K ′′(v ) ⊆ K ′(v ).

This postulate can be seen as a weaker version of the previous property, stating that if both
inputs are identical with respect to the content they add, but one of the inputs removes a superset
of what the other removes, then the output for the former is a subset of the output for the latter.

• Uniformity: If P and Q are two sets of news items such that P = Q , then �(nkb,v, P ) =
�(nkb,v,Q ).

This postulate is an adaptation of the classical Uniformity postulate from Reference [31], which
was proposed for revisions where the epistemic input is a single sentence. Uniformity stipulates
that if the literals in two sets of news items are consistent with the same subsets of the original
local KB K (v ), then the respective erased sentences of K (v ) should be identical. In our setting, this
postulate holds trivially, since we only consider literals.

3.3 Local NKB Belief Revision: Network Postulates

The following postulates describe how network properties affect how the local revision operation
is carried out. Recall once again that K ′(v ) is the revised local knowledge base and Pv is the set of
news items seen by node v .

• Local Effect: ∀w ∈ V s.t. w � v,K ′(w ) = K (w ).

Applying a local revision operator must not have any effect on other agents’ KBs.

• Structural Preservation: V = V ′,E = E ′, lvert = l
′
vert , and ledge = l

′
edge

.

The set of vertices, edges, and labeling functions remain unchanged after a local revision oper-
ation.

The next two postulates make use of two values, wPos and wNeg, calculated as follows:

wPos = wf + (nkb,v, P , l ) and

wNeg = wf − (nkb,v, P , l ).

where wf + and wf − are real functions ranging over [0, 1]. Intuitively, these functions represent
(weighted) votes in favor or against a given literal in a set of news items. We only impose that
the functions range over the real unit interval; if other properties—like monotonicity—are desired,
then they can be designed to satisfy them. Two simple examples of such functions are: (i) direct
counting, where for each literal l function wf + counts how many times l was added, while wf −

counts how many times ¬l was added; and (ii) a variant of the previous function in which news
itsms for specific users are ignored (or counted as negative when they are in fact positive).

• Weak Voting: Let l ∈ Pred such that l ∈ lit(P ) or ¬l ∈ lit(P ). Then, if wPos > wNeg, then
¬l � K ′(v ); if wPos < wNeg, then l � K ′(v ).

3Note that here we use “=” instead of “≡” because we only deal with literals.
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This postulate is similar to the Majority postulate proposed in Reference [39]; the basic idea is to
allow votes to be weighted according to the relationship between the agent and the origin of each
news item. The intuition behind wf +and wf −is that both functions calculate a value representing
opinions for and against a certain literal, respectively, taking into account network properties.

• Strong Voting: Let l ∈ Pred such that l ∈ lit(P ) or ¬l ∈ lit(P ). Then, if wPos > wNeg, then
l ∈ K ′(v ); if wPos < wNeg, then ¬l ∈ K ′(v ).

As a variant of Weak Voting, when the reasons for a literal outweigh those against it, the literal
should be included in the resulting KB; otherwise, its negation should be included.

There are some basic relations among our postulates. Trivially, Vacuity 1 and Vacuity 2 logically
imply Weak Vacuity 1 and Weak Vacuity 2. Finally, we have the following less direct result.

Proposition 3.1. If a local NKB revision operator satisfies Inclusion, then it also satisfies Weak

Vacuity 1.

Proof. Let nkb = (V ,E, lvert, ledge,K ), v ∈ V , Pv be a set of a news items for v , and l � K (v ). We
want to show that if lit (p) � l and lit (p) � ¬l for all p ∈ Pv , then l � K ′(v ).

Let us suppose toward a contradiction that the local revision operator satisfies Inclusion but it
does not satisfy Weak Vacuity 1, i.e., there is l such that for all p ∈ Pv we have lit (p) � l and
lit (p) � ¬l , and l ∈ K ′(v ). By Inclusion we know that l ∈ K (v )∪ lit (Pv ) ∪ litneg (Pv ); thus, l ∈ K (v ),
l ∈ lit (Pv ), or l ∈ litneg (Pv ). Next, by hypothesis we have that l � K (v ), so it must be the case that
l ∈ lit (Pv ) or l ∈ litneg (Pv ), which contradicts our hypothesis. �

The most important difference between our approach and the classical postulates from the be-
lief revision literature is that—even though we restrict the language to literals—in our case the
epistemic input is more complex, since it contains additional information about each individual
literal (i.e., its origin, and whether the decision was to add or remove it). Therefore, the decision of
what to accept from the input and/or how to make changes to the KB in response to its contents
may also depend on other aspects at a more global level, such as the relationships between users
or their individual features.

The following example illustrates the application of some of the previous postulates.

Example 3.1. Consider the set of news items from Example 2.2 and the scenario from the running
example; let us see some of the options that Dan has in this case. Recall that K (Dan) = {¬β,¬δ ,η}
and the news item set PDan = { (Alice,¬α , r ), (Beth,¬β,a), (Alice, β,a), (Eric, β,a), (Fred, β, r ),
(Beth,γ ,a), (Fred,γ ,a), (Eric,¬γ ,a), (Alice,¬γ , r ), (Cate,δ , r ), (Beth,δ ,a), (Alice, ϵ,a),
(Beth, ϵ,a), (Cate, ϵ,a), (Eric,¬ϵ,a), (Fred, ζ ,a), (Beth, ζ , r ), (Eric,¬ζ ,a), (Cate,¬ζ , r ) }:
• For the analysis of both Success postulates, we first need the definition of the next two sets:

P+Dan =

{
(Beth,¬β,a), (Alice, β,a), (Eric, β,a), (Beth,γ ,a), (Fred,γ ,a),

(Eric,¬γ ,a), (Fred, ζ ,a), (Beth,δ ,a), (Alice, ϵ,a), (Beth, ϵ,a),

(Cate, ϵ,a), (Eric,¬ϵ,a), (Eric,¬ζ ,a)
}
,and

P−Dan =

{
(Alice,¬α , r ), (Fred, β, r ), (Cate,δ , r ), (Alice,¬γ , r ), (Beth, ζ , r ),

(Cate,¬ζ , r )
}
.

Regarding Weak Positive Success, the postulate’s premise does not hold, since K (Dan) ∪
lit (P+Dan) = {¬β,¬δ ,η} ∪ {β , ¬β , γ , ¬γ , ζ , ¬ζ , δ , ϵ , ¬ϵ } is clearly inconsistent; thus, this
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postulate is satisfied even if none of the symbols from the input are added to the KB. How-
ever, no literal from lit (PDan− ) = {¬α , β,δ ,¬γ , ζ ,¬ζ } can be included in K (Dan) as the result
of a revision satisfying Negative Success.
• For Vacuity 1 to hold, he should not add completely new knowledge into his KB, such as

“the restaurant has delivery service” represented by θ . Moreover, he has no reason to believe
that the restaurant does not have suitable prices—this is caused by the presence of news item
(Alice,¬α , r ). In other words, he should not add ¬α to his KB. However, he could include γ ,
¬γ , ϵ , ¬ϵ , ζ , ¬ζ , or α into his KB (but not ¬α ). Now, considering ¬β and ¬δ that belong to
K (Dan), Vacuity 1 holds trivially, since the postulate’s precondition does not hold for those
literals.
• Considering Vacuity 2, because not all news items referring to the negation of ¬δ (i.e., δ )

remove it (e.g., (Beth,δ ,a)), and none of the news item contains ¬δ , the postulate holds
regardless of whether Dan keeps or eliminates ¬δ .
Regarding ¬β , for Vacuity 2 to hold Dan should not remove that literal from his KB, since the
(ii) of the postulate’s second condition holds; i.e., every news item containing the literal ¬β
has addition as decision (the only news item containing the literal is (Beth,¬β,a)). However,
insomuch as the postulate’s premise does not hold for the symbol α (i.e., neither α nor ¬α
belong to the KB), Dan can ignore or add either α or ¬α to his KB. Finally, because no new
information respect to η is in the feeds, Dan cannot remove it from his KB if he wants to
satisfy Vacuity 2.
• Now, to satisfy Weak Vacuity 1, Dan should not add unjustified knowledge into his KB, as

with the Vacuity 1 postulate. However, he could add γ , ¬γ , ϵ , ¬ϵ , ζ , or ¬ζ into his KB. In
contrast to the Vacuity 1 postulate, since at least one news item refers to α or ¬α , he can add
either α or ¬α .
• Moreover, since Weak Vacuity 2 does not hold for¬β nor¬δ , Dan could remove them. Lastly,

similar to the Vacuity 2 case, he cannot remove η from his KB as a result of this postulate.
• Finally, let us suppose we want to satisfy both Weak and Strong Voting in the revision of
K (Dan) by PDan. Let us analyze the cases of ¬β , ¬δ , and ϵ , and further suppose that Dan’s
valuation functions are as follows:

wPos = wf + (NKB,Dan, PDan, l ) =

∑
e ∈I

(
wgh(e ) ·w+

)

|I | ,

wNeg = wf − (NKB,Dan, PDan, l ) =

∑
e ∈J

(
wgh(e ) ·w−

)

|J | ,

where
◦ given 〈b,w〉 ∈ ledge, wgh(〈b,w〉) = w ; this function returns the weight of a given edge’s

label. Furthermore, we use an additional function for defining the sets I and J : given two
verticesv1,v2 ∈ V , highestWeight(v1,v2) = 〈b,w〉, such thatw is the highest weight among
all the edge’s labels between these two vertices.

◦ I =
{
〈b,w〉 ∈ ledge (e ) | e = (Dan, src(p)),w = highestWeight(e ),(

lit (p) = l y dec(p) = a
)

or
(
lit (p) = ¬l y dec(p) = r

)
, con p ∈ PDan

}
.

Since there can be more than one label in an edge between two vertices, I is the set of the
edges with the highest weight among Dan and each one of those connections who either
adopt a certain literal or remove its negation.
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◦ J =
{
〈b,w〉 ∈ ledge (e ) | e = (Dan, src(p)),w = highestWeight(e ),(

lit (p) = ¬l y dec(p) = a
)

or
(
lit (p) = l y dec(p) = r

)
, con p ∈ PDan

}
.

The set J is similar to I , but in this case the connections who either remove a certain literal
or adopt its negation are considered.
◦ w+,w− ∈ [0, 1] are the weakening values. They represent the agent’s tendency to give

more importance to positive or negative opinions about a certain literal.
Let us suppose that Dan gives more importance to positive information by defining w+ = 1
and w− = 0.5 for wPos and wNeg, respectively.
◦ Considering ¬β :

I¬β = { (Dan,Beth) (max label is work partner, weight 0.9),
(Dan, Fred) (max label is fan, weight 0.6)}

J¬β = { (Dan,Alice) (max label is couple, weight 0.8),
(Dan, Eric) (max label is student, weight 0.6)}.

For ease of presentation, in this example sets I and J include information on the pair
(v1,v2) for each label so it is possible to note the edges that they are attached to. Then,
wPos = (0.9 × 1 + 0.6 × 1)/2 = 0.75, and wNeg = (0.8 × 0.5 + 0.6 × 0.5)/2 = 0.175.
To satisfy Weak Voting, Dan must not adopt β but he can remove ¬β . However, to satisfy
Strong Voting he cannot remove ¬β from his KB.
◦ Now, considering ¬δ we have the following:

I¬δ = { (Dan,Cate) (max label is employee, weight 0.4)}
J¬δ = { (Dan,Beth) (max label is work partner, weight 0.9)}.

So, wPos = (0.4 × 1)/1 = 0.4, and wNeg = (0.9 × 0.5)/1 = 0.45.
To satisfy Weak Voting, Dan should remove ¬δ from his KB and—if he wants, he can adopt
δ . On the contrary, to satisfy Strong Voting he must add δ .
◦ Regarding ϵ , we have:

Iϵ = { (Dan,Alice) (max label is couple, weight 0.8),
(Dan,Beth) (max label is work partner, weight 0.9),
(Dan,Cate) (max label is employee, weight 0.4)},

Jϵ = { (Dan, Eric) (max label is student, weight 0.6)}.

Then, wPos = (0.8 × 1 + 0.9 × 1 + 0.4 × 1)/3 = 0.7, and wNeg = (0.6 × 0.5)/1 = 0.3.
Dan cannot add ¬ϵ into his KB if he wants to satisfy Weak Voting. On the contrary, to
satisfy Strong Voting Dan must adopt ϵ .
◦ Regarding α , γ , and ζ , we have the following:

Iα = { (Dan,Alice) (max label is couple, weight 0.8)}
Jα = ∅

Then, wPos = (0.8 × 1)/1 = 0.8, and wNeg = 0.
Iγ = { (Dan,Alice) (max label is couple, weight 0.8),

(Dan,Beth) (max label is work partner, weight 0.9),
(Dan, Fred) (max label is fan, weight 0.6)},

Jγ = { (Dan, Eric) (max label is student, weight 0.6)}.

So, wPos = (0.8 × 1 + 0.9 × 1 + 0.6 × 1)/3 ≈ 0.77, and wNeg = (0.6 × 0.5)/1 = 0.3.
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Iζ = { (Dan,Cate) (max label is employee, weight 0.4),
(Dan, Fred) (max label is fan, weight 0.6)}

Jζ = { (Dan,Beth) (max label is work partner, weight 0.9),
(Dan, Eric) (max label is student, weight 0.6)}.

Next, wPos = (0.4 × 1 + 0.6 × 1)/2 = 0.5, and wNeg = (0.9 × 0.5 + 0.6 × 0.5)/2 = 0.375.
According to these results, because of Weak Voting Dan cannot add ¬α , ¬γ , nor ¬ζ to his
KB; however, he must add α , γ , and ζ to satisfy Strong Voting.
◦ With respect to η, Dan can keep or remove it. Unlike the previous postulates in this exam-

ple, Dan can add unjustified information—e.g.,θ : “the restaurant has delivery service”—and
yet still satisfy both Voting postulates. �

The following definition characterizes the operators considered to be minimally reasonable.

Definition 3.2. A local NKB revision operator � is basic if it satisfies Structural Preservation,
Local Effect, Consistency, Uniformity, and Inclusion.

Using this basic set of postulates, we will define three families of operators. The first two, called
restrained and weakly restrained, model revisions that are closer to rational reactions to the content
of news items; the other, called social, is meant to capture revisions that are based on other kinds
of influences such as the opinions expressed by others on social media. In this article, we will focus
on these three families to build a foundation that can later be extended to other kinds of operators;
going beyond this initial step is outside the scope of this article, since the range of possible user
behaviors is too great. Future work will be dedicated to the development of operators that model
specific kinds of online users; as discussed in the related work section, we have already taken some
steps in this direction.

Definition 3.3. Let � be a basic local NKB revision operator:

• � is restrained if it satisfies Congruence, Vacuity 1, and Vacuity 2.
• � is weakly restrained if it satisfies Removal Monotonicity, Weak Vacuity 1, and Weak Vacu-

ity 2.
• � is social if it satisfies Weak Vacuity 1, Weak Vacuity 2, and either Weak Voting or Strong

Voting.

In the following example, we illustrate some of the differences among these general classes of
operators.

Example 3.2. In Example 3.1 we analyzed the restrictions enforced by some postulates in isola-
tion. Here, we continue that example and compare how the operators make the possible changes
with respect to the symbols implicated in the local revisions of K (Dan) by PDan (recall that simple
weighted counts are used for the wf + and wf − functions):

• Symbol α (α � K (Dan), ¬α � K (Dan))
◦ Restrained operator: Dan cannot add ¬α but he can add α .
◦ Weakly Restrained operator: He can add either α or ¬α .
◦ Social operator: He cannot add ¬α , and he must add α into his KB.
• Symbol β (¬β ∈ K (Dan))
◦ Restrained and Weakly Restrained operator: Dan can keep or remove ¬β .
◦ Social operator: For Weak Voting he can remove ¬β but cannot add β . However, if Strong

Voting is used, then Dan cannot remove ¬β . Recall that the social operator requires that
one of the two Voting postulates be satisfied.
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Fig. 4. Summary of all possible combinations according to each local revision operator per symbol from
Example 3.2. “WV” and “SV” stand for Weak Voting and Strong Voting, respectively.

• Symbols γ , ϵ, and ζ (none of these symbols belongs to K (Dan)):
◦ Restrained and Weakly Restrained operators: Dan can add γ , ¬γ , ϵ , ¬ϵ , ζ , or ¬ζ into his

KB, or do nothing.
◦ Social operator: He cannot add ¬ζ ,¬γ , nor ¬ϵ ; he must add ζ ,γ , and ϵ into his KB.
• Symbol δ (¬δ ∈ K (Dan)):
◦ Restrained and Weakly Restrained operators: Dan can keep or remove ¬δ .
◦ Social operator: For Weak Voting, Dan has to remove ¬δ and—if he wants—he can add δ ;

for String Voting he must add δ into his KB.
• Concerning η ∈ K (Dan): Regardless of the operator, Dan cannot remove η from his KB.

Although we saw in the previous example that both Voting postulates allow to change η
freely, social operators further require Weak Vacuity 2, which precludes the removal.
• Regarding the possibility of “making up” new knowledge, the three operators avoid it, since

they must satisfy Inclusion.
To illustrate the variety of possible operator behaviors in this example, the table in Figure 4
summarizes all possible operations for each symbol. �

In the following section, we continue with the algorithmic characterization of the first two
families of operators.

4 A CONSTRUCTION FOR RESTRAINED AND WEAKLY RESTRAINED OPERATORS

In Section 3, we provided the basis for the theoretical characterization of local NKB revision
operations—essentially, such a characterization is based on the satisfaction of a specific set of
properties that the revision must satisfy. In this section, we take the next step toward imple-
menting specific operators by devising an algorithmic characterization for restrained and weakly

restrained operators (cf. Definition 3.3). We ultimately conclude that the two characterizations are
closely related.

We begin by analyzing different kinds of relations that exist between an agent’s beliefs and
a news item, or between two news items; as we discuss below, this will define one of the main
building blocks of our operator.

Definition 4.1 (Relations Between Local KBs and News Items). Let KB be a local knowledge base,
and p be a news item. There are four types of relations that can hold between a knowledge base
and a news item:

• Type 1 (T1 relation, or “hard conflict”): ¬lit(p) ∈ KB and dec(p) = a.
• Type 2 (T2 relation, or “soft conflict”): lit(p) ∈ KB and dec(p) = r .
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• Type 3 (T3 relation, or “negative suggestion”): lit(p) � KB and ¬lit(p) � KB, and dec(p) = r .
• Type 4 (T4 relation, or “positive suggestion”): lit(p) � KB and ¬lit(p) � KB, and dec(p) = a.

Intuitively, hard conflicts (T1) occur when the contents of the KB and the news item are in
direct conflict with each other; a decision must be made so that only one of the two is kept. In soft
conflicts (T2), the news item can be seen as an undercut for the agent’s beliefs; a decision may or
may not be made between the two pieces of information as a response. Finally, in negative and
positive suggestions (T3 and T4), a decision may or may not be made regarding content that is
not present in the knowledge base. We now define the corresponding relations between two news
items.

Definition 4.2 (Relations Between News Items). Let p1,p2 be news items. There are two types of
relations that can hold between any such pair:

• Type 1 (T1 relation, or “hard conflict”): dec(p1) = a, dec(p2) = a, and lit(p1) = ¬lit(p2).
• Type 2 (T2 relation, or “soft conflict”): dec(p1) = a, dec(p2) = r , and lit(p1) = lit(p2).

These relations are then used in the definition of the local revision choice graph.

Definition 4.3. Let KB be a local knowledge base and P be a set of news items. The revision choice

graph is defined as an undirected graph G = (V ,E) such that:

• Nodes: There is one node inV for each news item p ∈ P , one node for each s such that either
s ∈ lit(p) or ¬s ∈ lit(p), for some p ∈ P , one node for each element in KB, and one additional
node labeled inertia.
• Edges: There is one edge in E between each pair of nodes such that:
◦ the corresponding literal in KB and the corresponding news item are in one of the relations

defined in Definition 4.1;
◦ the corresponding news items are in one of the relations defined in Definition 4.2; and
◦ between inertia and all nodes corresponding to news itemsp such that lit(p) � KB,¬lit(p) �

KB, and either
� dec(p) = a, or
� dec(p) = r whenever there is no news itemp ′ such that lit(p) = lit(p ′) or lit(p) = ¬lit(p ′),

and dec(p ′) = a.

Essentially, choice graphs show us the pairs of nodes for which a decision should be made;
the special node inertia represents the predicate symbols for which there is no position in the
knowledge base (i.e., neither l nor ¬l belong to the KB). Figure 5 shows the choice graph for the
running example. Regarding the negative suggestions (T3), note that every time a literal is only
referenced with a remove decision in the news item set (such as ¬α in the running example), the
conflict is represented between the remove node and inertia.

As we discuss next, the choice graph is the basic semantic structure on which we build our
algorithmic characterization. Essentially, the unordered binary relations contained in the graph
indicate a choice that will ultimately decide the contents of the knowledge base after the revision.
This initial formulation of the graph is general and, depending on the properties that we wish to
build into the operator, refinements need to be made by changing undirected edges to directed ones,
signaling that the operator is constrained to make a specific choice for that pair—this is the same
kind of approach as taken in, for instance, defining preferred repairs in inconsistent databases [58].
In this article, we will focus only on the restrained and weakly restrained operator types defined
above.
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Fig. 5. Revision choice graph generated from the set of news items from Example 2.2. Since K (Dan) =
{¬β,¬δ ,η}, there is an edge between each node representing a symbol that does not belong to the KB (i.e.,
α , γ , ϵ , and ζ ) and the inertia node.

4.1 Data Structures

Starting from the choice graph introduced above, we define several data structures that will play
key roles in our main algorithm; we describe each of them in turn before presenting their use.
We begin with summarized predicate graphs, an example of which is presented in Figure 6. Such
graphs arise from a set of patterns (shown in Figure 7), and a record data structure is associated
with their nodes (with fields as described in Figure 8).

4.1.1 Summarized Predicate Symbol Graphs. One of the main advantages of limiting the lan-
guage in local knowledge bases to literals is that they can essentially be independently modeled
and treated. We can thus take the general choice graph from Definition 4.3 and derive one sum-

marized predicate symbol graph for each symbol s as follows; we assume that v is the node in the
NKB whose knowledge base is being revised, and that we are given a set P of news items:

• If s ∈ KB, then the graph contains a node labeled “s”; if ¬s ∈ KB, then the graph contains a
node labeled “¬s”. Otherwise, this node is labeled “sinertia”.
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Fig. 6. Example summarized predicate symbol graphs: (Left) General data structure; (right) example instance
(T13 from Figure 7), where nodes and edges that are not used are shown in gray. Note that, since the literal
in question is ¬β , the literals in nodes N1–N4 are negated; in particular, since ¬¬β ≡ β , nodes N3 and N4 are
simply labeled “β”.

• The graph contains one node for each of the four possible combinations of elements p ∈ P
such that lit(p) = s or lit(p) = ¬s:

(1) lit(p) = s and dec(p) = a;
(2) lit(p) = s and dec(p) = r ;
(3) lit(p) = ¬s and dec(p) = a; or
(4) lit(p) = ¬s and dec(p) = r .

Each such node represents the set of elements in p ∈ P satisfying those conditions, and are
labeled with s , dec(p), and the number of news items in P satisfying them.
• Node sinertia appears only when there are news items p ∈ P such that lit(p) = s or lit(p) = ¬s ,
s � KB, and ¬s � KB.
• Nodes corresponding to news items have an associated record (called stateRecord) of the

form shown in Figure 8, holding the set of agents that posted that particular kind of news
item—for computational convenience, it also stores the cardinality of these sets.
• Finally, the graph contains one edge between the nodes that represent nodes in the choice

graph that have edges between them.

Figure 6 shows an example of a summarized predicate symbol graph where, for simplicity of pre-
sentation, we only display the number of agents and not the set associated with news item nodes.
Note that the inertia nodes only appear when no removals are being proposed; this is to avoid re-
dundant cases, since otherwise equivalent outcomes would arise—in these cases, the removal nodes

represent the decision to leave the knowledge base as it is with respect to that symbol. Note that if the
literal in question is already negated, then the literals in nodes N3 and N4 are simplified, since, as
we mentioned above, ¬¬l ≡ l .

These graphs are intuitively abstractions of the choice graph—as such, a key property is that
there is a fixed number of possible instances of them that can arise in practice. In Figure 7, we
provide the full list, giving each of them an identifier that will be used later. Note that whenever
the literal in the KB is already negated, the literals in nodes N3 and N4 are simplified (i.e., without
the negation), since ¬¬l ≡ l , as was previously mentioned. For this reason, the conflict pattern for
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Fig. 7. All possible combinations of summarized predicate symbol graphs.

Fig. 8. Records associated with news item nodes in summarized predicate symbol graphs.

β is T13 instead of T11; in other words, as #collapsed NIs (number of collapsed news items) is 3 (cf.
Figure 7), the amounts for determining its pattern are as follows:

numPosAdd = 1 ({(Beth,¬β,a)}),
numPosRem = 0,
numNegAdd = 2 ({(Alice, β,a), (Eric, β,a)}),
numNegRem = 1 ({(Fred, β, r )}).

A similar situation occurs with δ , whose conflict pattern isT10 instead ofT5. In other words, this
situation must be considered whenever a symbol is in the KB and the literal is negated.

4.1.2 Strict Partial Orders. Finally, the structures discussed above are mapped to possible out-

comes for the revised knowledge base. Taking advantage of the fact that summarized predicate
symbol graphs can be enumerated, we analyzed all possible directed graphs arising from each
undirected one (Types T1–T15 in Figure 7)—the set of undominated nodes (or skyline) in each case
denotes how the different pieces of information can be favored, and thus denote a possible way to
revise the knowledge base given the set of news items seen by the agent. Figure 9 shows examples
of such strict partial orders (SPOs) and their corresponding skylines; note that the one on the
left-hand side is an instance of the general structure shown in Figure 6 (right).
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Fig. 9. Example strict partial orders; these instances correspond to T 6
13, T 36

15 , and T 5
6 from Figures 13–15.

Dominated nodes are marked with a cross, while undominated ones (those belonging to the skyline) are
marked with a check.

Going through all such possibilities and keeping only the ones that satisfy the postulates re-
quired by (weakly) restrained operator types,4 we arrive at the list shown in Appendix A (Fig-
ures 13–15); we give each possibility an identifier that extends the ones from Figure 7. Figure 11
shows the array structure used in our algorithm to represent the set of SPOs thus computed.

4.2 The Main Algorithm

The pseudocode for Algorithm reviseForRestrained is presented in Figure 10; at this point, we have
described in detail the building blocks used to derive the possible outcome KBs for the revision
operation. In line 2, we compute the data structure shown in Figure 11; to represent the set of
SPOs; then, for each predicate symbol we first determine the conflict pattern—i.e., the presence or
absence of each possible type of news item—and then go on to determine its status with respect
to the input knowledge base. Once this is established, we can find the relevant SPOs in the tables
shown in Appendix A (Figures 13–15), which also depend on the user type (which can be either
restrained or weakly restrained). This step makes a choice for each symbol, which depending on the
status of that symbol in the KB, is always one of two options: keep or remove—the choose function
selects one of the possible operations per symbol.

Line 11 then calls a subroutine that simply applies the chosen operations to the input KB. The
following shows how the algorithm is applied in the running example.

Example 4.1. Consider the scenario from the running example, where we focus on how Dan
reacts to the news items he sees in his feed (the ones from Example 2.2); recall that his local
knowledge base is currently {¬β,¬δ ,η}.

According to the algorithm in Figure 10, the first step is to build the collP structure shown in
Figure 12. The conflict pattern is identified for each predicate symbol; β ’s pattern is T13, while for
the rest we have T4 (α ), T13 (γ ), T10 (δ ), T6 (ϵ), and T15 (ζ ). Since the symbol β belongs to Dan’s KB,
getSkylines-rel is called and the possible operations are obtained (the skylines associated with T 1

13

to T 8
13 from Figure 13), and one of them has to be chosen and stored in outcome.

4For restrained operators, the only change required is the removal of the cases marked with “(�)”.
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Fig. 10. Algorithm for local NKB revision restrained and weakly restrained agents.

Fig. 11. Structure for Algorithm in Figure 10: Collapsed news items.

Now consider γ , which is not in Dan’s KB; its set of associated SPOs is obtained from T 9
13–T 12

13 .
The remaining predicate symbols are processed in a similar way; the following are the options for
each one:

• α : {T 2
4 },

• β : {T 1
13, . . . ,T

8
13},
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Fig. 12. Data structure from Example 4.1.

• γ : {T 9
13, . . . ,T

12
13 },

• δ : {T 1
10, . . . ,T

4
10},

• ϵ : {T 5
6 , . . . ,T

12
6 }, and

• ζ : {T 33
15 , . . . ,T

40
15 }.

For ease of presentation, here we used “TX
Y ” to denote the outcome associated with that SPO.

The skylines of these SPOs encode actions that can be taken with respect to each predicate symbol;
let us see in detail what these actions are for three of the symbols:

• For α , the possible skylines are N4, N3 (only valid for weakly restrained users) and N1, which
are interpreted as “ignore α and ¬α”, “add ¬α”, and “add α”, respectively.
• The skylines for the symbol β (literal ¬β) are N0, N1, N3, and N4, which encode all possi-

ble operations: “keep ¬β”, “remove ¬β”, and “add β”. Note that the operation“remove ¬β” is
available only for the restrained case (i.e., it is not available for weakly-restrained revisions).
This is because of SPOT 6

13, whose skyline is N3, and is not allowed in the weakly restrained
case.
• For γ , the nodes in the respective skylines encode the operations “add γ ”, “add ¬γ ”, and

“ignore ¬γ ”. Note that the definition of “keep” and “ignore” depends on the status of the
symbol in the KB.
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According to line 6 and 8 in the algorithm, the function choose returns only one possible opera-
tion per symbol. Let us suppose that the choose function returns the following:

• Symbol α , given userType:
◦ restrained:

choose({“ignore α and ¬α”}, “add α”)→ “ignore α and ¬α”
◦ weakly_restrained:

choose({“ignore α and ¬α”}, “add α”, “add ¬α”)→ “add ¬α”
• Symbol β , given userType:
◦ restrained:

choose({“keep ¬β”})→ “keep ¬β”
◦ weakly_restrained:

choose({“keep ¬β”, “remove ¬β”, “add β”})→ “add β”
• Symbol γ : choose({“ignore γ and ¬γ ”, “add γ ”, “add ¬γ ” })→ “add ¬γ ”
• Symbol δ : choose({“keep ¬δ”, “remove ¬δ”, “add δ”})→ “keep ¬δ”
• Symbol ϵ : choose({“ignore ϵ and ¬ϵ”, “add ϵ”, “add ¬ϵ”})→ “ignore ϵ and ¬ϵ”
• Symbol ζ : choose({“ignore ζ and ¬ζ ”, “add ζ ”, “add ¬ζ ”})→ “add ζ ”

For the last four symbols we do not distinguish userType, since for both types the possible oper-
ations are the same in this example.

In summary, the chosen operations by userType are as follows:

• restrained:
outcome = {“ignore α and ¬α”, “keep ¬β”, “add ¬γ ”, “keep ¬δ”, “ignore ϵ and ¬ϵ”, “add ζ ”}.
Then, the revised KB is generated fromK (Dan) and the outcome set (line 11 in the algorithm),
thus arriving at K ′(Dan) = {¬β,¬γ ,¬δ , ζ ,η}.
• weakly_restrained:

outcome = {“add ¬α”, “add β”, “add ¬γ ”, “keep ¬δ”, “ignore ϵ and ¬ϵ”, “add ζ ”}. Then,
K ′(Dan) = {¬α , β,¬γ ,¬δ , ζ ,η}.

�

We now present our main representation theorem, which establishes a link between the theoret-
ical characterization (set of postulates) and the construction of the operators (general algorithmic
characterization). The value of this kind of result lies in that if future alternative constructions of
the same operators are developed, then they can be shown to be equivalent by proving that they
satisfy the same postulates.

Theorem 1. Let nkb = (V ,E, lvert, ledge,K ) be a network knowledge base, P = {p1, ...,pn } be set

of news items, and v ∈ V and restrained/weakly restrained local NKB operator �. Then, nkb′ =
�(nkb,v, P ) if and only if nkb′ is a possible output of Algorithm reviseForRestrained.

Proof. The proof consists of two parts:

Construction to postulates. We need to show that any revision that is produced by Algorithm
reviseForRestrained satisfies both the basic postulates (Structural Preservation, Local Effect, Con-
sistency, Uniformity, Inclusion and Congruence) as well as those for (weakly) restrained operators:
(Weak) Vacuity 1 and 2.

One key observation to make is that the revised KB is taken from a pool of possibilities that
is essentially determined by the SPOs in the table from Figures 13–15—this table was built by
first considering all possible ways in which the graphs from Figure 7 can be oriented, and then
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removing from consideration those that either contain cycles or do not satisfy the Inclusion or
Vacuity postulates. The rest of the postulates are easily shown to be satisfied:

Consistency: To guarantee Consistency, the algorithm first establishes conflicts via undirected edges
between contradictory literals and between those literals with different associated decisions. Even-
tually, only one of those decisions can make it into the resulting KB.

Congruence and Uniformity: These postulates hold trivially in the setting considered in this article,
since we only consider literals.

Structural Preservation and Local Effect: Since the algorithm does not modify any vertex or edge,
and it only applies over a single local KB as input, these postulates are satisfied.

Therefore, any output produced by the algorithm satisfies the required postulates.

Postulates to construction. We first prove the following lemma:

Lemma 1. Given the setup in Theorem 1, for each predicate symbol s appearing in an element from

Pv , ifK ′(v ) is the result of an arbitrary revision then there is at least one summarized predicate symbol

graph G such that there exists an orientation G ′ of G where the skyline nodes of G ′ characterize the

operations that transform the status of s in K (v ) into the one in K ′(v ).

Proof (Of The Lemma). For any revision K ′(v ) of K (v ) with respect to a predicate symbol s and
set of news items Pv , there exists a set of operations that when applied toK (v ) we arrive atK ′(v )—
these operations can be one of ignore, add, or remove for s . Therefore, it is clear that the revision
that yields K ′(v ) from K (v ) for symbol s with respect to the corresponding news items in Pv can
be characterized as an oriented summarized literal graph where the corresponding skyline yields
the prescribed revision with respect to that literal, and the statement follows. �

We now need to show that all possible local revisions that satisfy all postulates for re-
strained/weakly restrained operators are generated by our algorithm, and therefore could be cho-
sen as its output. The same argument used in the previous part of the proof can be used to
show that this is the case: the algorithm chooses its output from the outcomes in the table in
Figures 13–15. Since by Lemma 1 any revision can be mapped to at least one SPO arising from the
orientation of a summarized predicate symbol graph (for the relevant predicate symbols), and con-
sidering that these tables were built by exhaustively considering all possible summarized literal
graph patterns in Figure 7 and, for each one, all possible orientations, the property follows. �

Finally, we present the theoretical running time and space of our algorithm.

Theorem 2. Let nkb = (V ,E, lvert, ledge,K ) be a network knowledge base, P = {p1, . . . ,pn } be set

of news items, andv ∈ V and restrained local NKB operator �. Then, Algorithm reviseForRestrained
obtains a revised NKB in time O ( |P |); the data structures used by the algorithm use space O ( |P |).

Proof. The collapsed news items can be obtained in a single pass of set P (line 2). The for
loop in lines 3–10 is executed at most O ( |P |) times, since there can be at most one distinct symbol
per news item. In each iteration, the algorithm accesses the tables in Figures 13–15 (O (1) time)
to choose the outcome for the symbol in question. Finally, using adequate data structures, the
operations in lines 11–13 can be carried out in timeO (1) with respect to the size of the algorithm’s
input structures. Regarding space, note that the space used by the algorithm is dominated by the
collP data structure, which in the worst case has size |P | and is then traversed only once. �

Note that the choose operation, which is carried out for each symbol in lines 6 and 8, could
instead be done at the end; in this case, the algorithm would need to compute a set of possible
outcomes (one for each possible operation), and then choose the resulting KB. Though this would
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afford a global choice to be made, the running time of the algorithm would jump from O ( |P |) to
O (3 |P | ), since each symbol potentially has three operations associated with it.

5 RELATED WORK

We now discuss several approaches that are related to the work presented in this article; though
there are several research lines that are relevant for our work, to the best of our knowledge this is
the first line of research to effectively take a belief revision approach to the problem of modeling
knowledge dynamics in multiple social networks. As mentioned in Section 1, the underlying gen-
eralized network model can be seen as a multi-layer or multiplex network, and therefore our NKB
model can be seen as an extension of this well-studied, pervasive model; we refer the interested
reader to References [7, 37] for recent comprehensive surveys on this subject.

The two closest areas are belief dynamics in general, which we present in Section 5.1, and belief
dynamics in social media contexts, which is the topic of Section 5.2. Finally, in Section 5.3 we
discuss several other works that do not specifically fall within these two general areas but are
nonetheless connected to our work.

5.1 Belief Dynamics

The problem of modeling how knowledge bases (KBs) change in response to different kinds of
events is commonly known as belief dynamics; in particular, deciding how to integrate an epistemic
input into a knowledge base is called belief revision. This problem has been studied mainly from
two points of view: when KBs are comprised of formulas that are closed under logical consequence
(called belief sets) [1, 27] and when they are not, in which case they are called belief bases [30, 32].
For a general survey on this topic, see Reference [50].

For our setting, one of the most closely related problems is that of belief merging [38, 39, 42]
refers to the task of coherently combining several sources of information at once. During this pro-
cess, new evidence can be partially or completely ignored if old information has more epistemic
value; the operation integrates all the information into a consistent whole, whose result depends
on informational value and not necessarily on novelty. A considerable amount of work has been
developed in this area, in particular regarding theoretical studies. In Reference [39], an axiomatic
characterization of merging operators is proposed and the operators that satisfy those axioms are
called pure merging operators; later, Reference [38] considered the problem of merging several be-
lief bases in the presence of integrity constraints, showing that the commutative revision operators
from Reference [42] are a particular class of merging operators. Another line of work is related to
majority and arbitration operators; the former is the class of operators in which a piece of infor-
mation will persist in the final result of the merging if it came from many sources, while the latter
focus on achieving consensus among the different sources of information. Later, this work was ex-
tended in Reference [10] by dealing with merging operators in an infinite logical framework (with
countably many propositional variables)—their main result is a representation theorem where cer-
tain postulates had to be redefined to be appropriate for the infinite case. Also related to these
works is that of Reference [17], where the use of a unanimity condition is approached, i.e., the
acceptance of pieces of information based on the fact that it is shared by all the agents involved in
the process.

Multiple change belief revision operators are also related to belief merging; in this case, the
epistemic input is a set instead of a single sentence, and this approach is thus useful when combin-
ing different information sources. According to Reference [18], there are different types of multiple
change operators: those in which the epistemic input is fully accepted (prioritized change) [1], those
in which the epistemic input could be partially accepted (non-prioritized change) [19, 20, 30, 34], and
those in which input sentences could be either accepted nor rejected (symmetric change) [21, 38].
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NKB Local Revision vs. Belief Merging: A Closer Look. Belief revision is the process within
belief dynamics that seeks to take into account a new piece of information with respect to an
agent’s KB, where the main assumption is that the new information is somehow more reliable
or more important than the old information. Therefore, the task is to insert the new information
into the set of old beliefs without generating an inconsistency. Belief merging, however, considers
multiple KBs and the objective is that of judgment aggregation, that is to define an aggregation
procedure that preserves individual rationality at the collective level. In practical terms, it seeks
to build a new KB that somehow represents a consensus among the inputs.

In our setting, the focus is on individual agents and therefore a single KB, and the epistemic input
consists of a set of news items that the user comes into contact with. So, it can be seen as a form of
multiple revision that is not necessarily prioritized (i.e, the new information may not be accepted
or may not be accepted completely) and where the input can be itself inconsistent. Intuitively, the
goal is not to build a consensus from all news items, but rather to revise the agent’s KB in light of the
incoming information and without generating inconsistencies with previous beliefs. Furthermore,
while merging seeks a global consensus and belief revision focuses on minimal change, we seek
to define optimal changes in terms of particular behavioral characteristics of the users.

In a sense, the operators we seek to define cannot be considered to be merging operators but
are neither pure nor standard (multiple) revision operators. In Reference [23] we carried out an
extensive analysis of how existing merging and revision operators could be combined to fit this
setting and show that the resulting behavior is not general enough to capture the complexities of
social interactions and different types of social media users (in terms of behavior). We thus focused
on the development of a different set of postulates that we consider more appropriate (though
some of them are either generalizations or particularizations of revision postulates). The operators
we study in this work therefore correspond to different subsets of the proposed postulates, each
characterizing the behavior of different types of users. In future work, we plan to generalize this
initial set of operators to capture broader ranges of possible behaviors.

Towards Iterated Revision. Finally, another subarea of belief dynamics that is closely related to
our general approach is that of iterated revision [13, 47], in which operations are not considered in
isolation but rather as part of a sequence. In our setting, it is natural to pursue the development of
operators with this capability, since the overall NKB revision process can be seen as a cycle where
local revisions lead to global ones, and the process is then repeated (as shown in Figure 3). Since
our construction yields a new NKB in which there exist precedences over the remaining items of
the original NKB together with the new ones, then the new NKB is suitable for a new revision.
The study of the additional postulates and representation theorems, as well as an extension of the
underlying language, will be part of future work.

5.2 Belief Revision in Social Contexts

In previous work [22], we proposed a general model called Social Knowledge Bases and identi-
fied a series of desirable properties for systems that work with the kind of data that is produced
by agents in social media environments. The unique combination of challenges in this setting
involves, among others: (i) multiple attributes with different domain data types, (ii) multiple re-
lations between agents, (iii) uncertainty, (iv) reasoning with agents’ preferences, (v) dealing with
groups of agents as agents in their own right, (vi) belief revision, (vii) cascading processes, and
(viii) computational tractability constraints. This is clearly a very complex and general problem—
in this article, we tackled a subset of point (vi), defining concrete operators for local revision in
the case in which the language in local KBs is restricted to ground literals. As mentioned above,
in Reference [23] we took the first steps in this line of research by analyzing how traditional
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belief dynamics operators could be leveraged toward solving this generalized knowledge integra-
tion problem. In References [25, 26] we provided a preliminary presentation of some of the postu-
lates described in this work, and reported on some initial experimental results showing how this
framework can be used to detect user types in the Twitter network—this initial work informed the
construction presented in this article.

Several other works have tackled the problem of belief dynamics in environments related to
social media, where many different issues arise due to the interaction among agents. In Refer-
ence [29], trust among users is determined by profile similarity features; as a case study they
considered the Filmtrust social network, in which users rank movies. Profile features are used to
predict the trust of the users according to their similarities with other profiles—this kind of in-
formation could be part of the input in our setting to determine the strength in relations between
users. In Belief Revision Games (BRGs) [52] an approach similar in spirit to ours is taken, where
the belief dynamics in a group of agents communicating with each other are studied. In BRGs, at
each step every agent revises its own belief state by considering the beliefs of its acquaintances
according to a graph representation. There are several differences that separate this approach from
ours, both from the point of view of the basic model adopted as well as the problems studied. First,
quite different from our model, BRGs assume that agents have access to their connections’ KBs,
so agents cannot choose what to share, or whether or not to be truthful in what they share; the
concept of news item in NKBs, which captures the concept of post in a social platform, allows for
both aspects to be taken into account. Second, the underlying graph in BRGs is not labeled; as we
argued in the introduction, multilayer networks capture the combination of multiple social plat-
forms into one model, and allow a wide range of revision behaviors to take place (such as filtering
out or giving more priority to beliefs held by agents with specific values for certain attributes).
Third, BRGs assume that all beliefs are either in place when the game begins or arise as the result
of an interaction, whereas in NKBs we allow exogenous events to modify agents’ local KBs (which
models, for instance, beliefs formed by watching TV or speaking with people in real life). From
the point of view of the problems studied, in BRGs the concept of acceptability of beliefs is studied
from the point of view of the result of the interactions throughout the game, and so the authors are
more interested in problems such as studying conditions under which agents agree on some topic,
or when convergence (no further changes occur) is achieved. Finally, BRGs adopt belief merging
operators as the basis for all revisions, so their behavior is tied to the specific postulates proposed
for that kind of operation. Notwithstanding all of these differences, we consider BRGs to be of
interest for the future development and study of NKBs.

Cooperation in multi-agent systems also presents issues that can be tackled via coalitional
games, which can be seen as an extension of BRGs [11, 16] where the players (agents) receive
benefits when they engage in cooperation. In References [16, 65] a special class of coalitional
games is presented, called weighted voting games, where each player has an associated weight and
quota (threshold); when the total weight of the members participating in a coalition exceeds the
quota, those players are considered to be winners. The power of a player in such a game could be
determined, for instance, by well-known methods such as the Shapley-Shubik index [57] or the
Banzhaf index [5]. These measures are important, since players can engage in manipulation, for
instance toward reducing the power of another group [65]. In our approach, such direct manipula-
tions cannot occur since the full graph structure is not known to each individual agent, and once
news items are generated they cannot be taken back—studying other ways in which agents can
engage in manipulation is, however, an interesting topic for future work. Similar to power and
potential manipulation, influence has been studied in this kind of setting [43].

Belief negotiation models are introduced in Reference [8], which is a framework for merging
information from two different sources—the pieces of information are weakened incrementally via
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a negotiation process until “common ground” is reached, i.e., until they become consistent with
each other. Then, in Reference [9] that framework is extended by defining two families of social

contraction functions, and is also generalized to n sources of information. Another related line of
work is presented in Reference [59], where belief revision is also studied in the multi-agent systems
setting; the authors consider the credibility or trust associated with each agent (referred to as
informants), which is represented as a strict partial order among them. They define different kinds
of change operators (expansion, contraction, and both prioritized and non-prioritized revision),
and each operator is also able to modify the informant credibility relation as a response to new
perceptions.

In References [53, 54], the distinction is made between symmetric and asymmetric relations in
social media, which are also assumed to change over time. An epistemic logic of communities
is developed in Reference [53], and different types of operators to infer distributed knowledge
and relations are investigated—i.e., a query answering approach for knowledge in social media.
A similar approach is taken in Reference [54], where a precise language for exploring “logic in
the community” is developed and a two-dimensional modal logic is defined that allows to reason
about the changing patterns of knowledge and social relationships in networks, on the basis of
symmetric friendship relations.

Another important problem in belief dynamics in social settings is that of achieving minimal

change with respect to the agent’s previous beliefs. In Reference [15], a general framework for
minimization-based belief change is proposed; their approach models general domains by consid-
ering a set of connected points with data associated with each one—this approach is therefore close
in spirit to our work, but the model is different, since the set of points is structured in a simple
graph with a single formula attached to each point. The revision operator determines a formula
at each point by applying a minimization process; each new formula represents the integration
between the original information associated with each point and the information coming from its
related points. The notion of minimal change—similarly to Reference [28]—is given by the “close-
ness” among interpretations. Extensions are also defined to allow weights or reliability to be added
to edges, and to establish a preference relation over interpretations.

Belief dynamics can also be seen as a “negotiation” process among agents to decide the result of
the belief change operation for each agent. Conciliation operators are defined to characterize how
agents’ beliefs evolve according to an iterated merge-then-revise approach in Reference [28]. In that
setting, an agent’s new beliefs are obtained by confronting its previous beliefs. Two extreme ways
to deal with this situation consists of giving more priority to previous beliefs (sceptical agents), or
to give more importance to the beliefs of the group (credulous agents). In that work, the authors
assume that the same revision operator is used by all the agents.

5.3 Other Approaches Related to Social Networks

Complex networks have been investigated in many different fields; for instance, in decision making

in group contexts multiple experts are assumed to be expressing their opinions and a decision must
be made to reach a common solution. The inconsistency problem caused by disparate opinions is
addressed in Reference [44]; their aim is to generate customized advice for inconsistent experts
to achieve consensus by considering informant trust levels. Then, in Reference [62] a visual con-
sensus model is introduced to identify inconsistency and trust between unrelated users, which
includes visual identification of the preference values with respect to a given threshold, advice
generated by a recommendation simulation to increase current consensus, and the presentation of
possible consequences if experts do not accept the recommended preference values. Other related
problems addressed in complex networks in general are those of fake identity detection [12, 60]
and sentiment analysis (a broad topic, for recent surveys see References [3, 49]).
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Similarly to the works mentioned in the previous section, a critical factor in some group decision
making environments is to respect the opinion of the majority of the participants; this approach
is taken in Reference [4], where the authors define the Induced Ordered Weighted Averaging op-
erator, which is a generalization of the OWA operator from Reference [63]. This operator uses an
induced guiding principle to classify the outcome of several opinions into an aggregation mech-
anism. Also as mentioned above, another important aspect in these settings is that of trust and
influence; Reference [61] proposes a mechanism to calculate trust values between users that do
not know each other. In Reference [36], a model of trust that depends on the suitability with respect
to a certain domain is proposed by defining state partitions. They define a family of trust-sensitive
revision operators that are captured by the class of selective revision operators from Reference [20].
Before the revision, a trust evaluation process is carried out, and thus only trusted information is
considered in that revision.

Finally, social choice theory [35] is quite relevant to our setting, since it deals with the identifica-
tion, analysis, and evaluation of rules that can be used to make a collective decision. The intersec-
tion between this theory and computer science, called computational social choice [51], has been
studied for several decades, and has applications in many real-world domains. The main difference
between our approach and computational social choice is that local NKB revisions are “personal”
operations, and therefore the agent that is carrying out revision is dictatorial—i.e., it can be seen as
being open to opinions and suggestions, but they have the final say with respect to their own KB.
Of course, different postulates could constrain the outcome of the operation, causing it to behave
more like a social choice mechanism.

6 CONCLUSIONS AND FUTURE WORK

In this article, we have continued work on a general framework for modeling belief dynamics in
social domains, called Network Knowledge Bases; though the model and preliminary results were
presented in previous work, this is the first full formal treatment of the basic model, postulates,
construction, and representation theorem. We have shown how restricting the language in local
KBs to ground literals affords a construction based on enumerating orientations of base conflict
graphs, and choosing the decisions independently for each predicate symbol. Current and future
work is focused on generalizing the language to more complex formulas—we expect the approach
to generalize beyond the current language, but complications to arise due to interactions between
beliefs.

Another important topic of future work is to continue the empirical evaluations that we started
in Reference [25], which are limited to identifying user types. With an algorithmic characteriza-
tion now developed, we now wish to adapt it to real-world scenarios, and using the instantiated
algorithms to solve problems such as behavior prediction, fake identity detection, and modeling
complex processes such as cascades.

APPENDIX

A ADDITIONAL MATERIAL

Figures 13 and 14 show all the possible ways in which a summarized predicate symbol graph
(which is undirected) can be oriented in the case in which a literal with the corresponding predicate
symbol is already present in the KB; we use the following notation:

• N0 = (α ∈ K (v )); in the “skyline” column, stands for keep α .
• N1 = (α ,a, collP.α .numPosAdd ), stands for keep α .
• N2 = (α , r , collP.α .numPosRem), stands for remove α .
• N3 = (¬α ,a, collP.α .numNeдAdd ), and stands for add ¬α
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Fig. 13. (Part 1/2) Summarized predicate symbol graphs and corresponding SPOs for the case in which there
is a literal with the corresponding symbol in the local KB. The skylines marked with “(�)” are not valid for
restrained operators. The expression ei→j represents an edge from Ni to Nj . Non-SPOs (i.e., orientations
that yield cycles) are shown in gray.

• N4 = (¬α , r , collP.α .numNeдRem), stands for ignore ¬α , since it represents the removal of a
literal that is not in the KB.

The SPOs and skylines marked with “(�)” should not be considered in the case of restrained oper-
ators, since the operations they encode do not satisfy the operator’s postulates.
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Fig. 14. Part 2/2 – Continued from Figure 13.

For the case of symbols that are not in the KB, the corresponding information is presented in
Figure 15; the notation is as follows:

• N0 is a vinertia = (l ∈ lit (Pv ) s.t. l � K (v )), stands for ignore α .
• N1 = (α ,a, collP.α .numPosAdd ), stands for add α .
• N2 = (α , r , collP.α .numPosRem), stands for ignore α .
• N3 = (¬α ,a, collP.α .numNeдAdd ), stands for add ¬α .
• N4 = (¬α , r , collP.α .numNeдRem), stands for ignore ¬α .
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Fig. 15. Summarized predicate symbol graphs and corresponding SPOs for the case in which there is no
literal with the corresponding symbol in the local KB. The skylines marked with “(�)” are not valid for
restrained operators. The expression ei→j represents an edge from Ni to Nj . Non-SPOs (i.e., orientations
that yield cycles) are shown in gray.

Note that some SPOs in the table redirect to others (skyline column) (T 3
2 , T 2

4 , T 5
5 , T 6

5 , T 2
7 , T 5

8 , T 5
10,

T 6
10, and T 1

13–T 8
13). This allows for the possibility of considering the addition of a literal l or ¬l to

the KB in cases in which the symbol associated symbol only appears in the news item set with
remove as decision; otherwise, given the interpretation assigned to nodes N0–N4 in the skylines,
this operation could not be considered unless a news item contains the literal (or its negation)
with an add as decision. These operations need to be taken into account because some postulates
consider the possibility of adding a symbol that only has removals as decision in the feeds (e.g.,
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Weak Vacuity 1). Therefore, some SPOs are redirected to those that include the original nodes
plus the nodes N1 and N3 (which are interpreted as add l and add ¬l , respectively). However, to
determine the valid SPOs we must consider the original ones created arising from the news item
set and KB.

For instance, SPO T 2
7 in Figure 15—whose skylines column redirects to T 10

13 (�), among others—

the skyline for SPO T 10
13 contains the node N3, which is interpreted as “add ¬l” to the KB; since

this operation does not satisfy Vacuity 1, it is not valid for restrained operators (cf. Definition 3.3).
In other words, SPO T 2

7 for a restrained operator is redirected to those that contain the nodes N1

and N4 representing the news item set that has at least a news item adding l and one removing ¬l ,
and there is no other operation in the set referred to the symbol. However, the skyline T 10

13 is only
valid for weakly restrained operators, since it represents the possibility of adding ¬l to the KB; this
operation does not satisfy the Vacuity 1 postulate’s second condition. Informally, this postulate
establishes that given a symbol that is not in the KB, if every news item associated with the literal
¬l implies a remove decision (which is the case for SPO T 2

7 ), then the literal cannot be included in
the revised KB.
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