5,727 research outputs found

    The First-Order Hypothetical Logic of Proofs

    Get PDF
    The Propositional Logic of Proofs (LP) is a modal logic in which the modality □A is revisited as [​[t]​]​A , t being an expression that bears witness to the validity of A . It enjoys arithmetical soundness and completeness, can realize all S4 theorems and is capable of reflecting its own proofs ( ⊢A implies ⊢[​[t]​]A , for some t ). A presentation of first-order LP has recently been proposed, FOLP, which enjoys arithmetical soundness and has an exact provability semantics. A key notion in this presentation is how free variables are dealt with in a formula of the form [​[t]​]​A(i) . We revisit this notion in the setting of a Natural Deduction presentation and propose a Curry–Howard correspondence for FOLP. A term assignment is provided and a proof of strong normalization is given.Fil: Steren, Gabriela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Bonelli, Eduardo Augusto. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Modular, Fully-abstract Compilation by Approximate Back-translation

    Full text link
    A compiler is fully-abstract if the compilation from source language programs to target language programs reflects and preserves behavioural equivalence. Such compilers have important security benefits, as they limit the power of an attacker interacting with the program in the target language to that of an attacker interacting with the program in the source language. Proving compiler full-abstraction is, however, rather complicated. A common proof technique is based on the back-translation of target-level program contexts to behaviourally-equivalent source-level contexts. However, constructing such a back- translation is problematic when the source language is not strong enough to embed an encoding of the target language. For instance, when compiling from STLC to ULC, the lack of recursive types in the former prevents such a back-translation. We propose a general and elegant solution for this problem. The key insight is that it suffices to construct an approximate back-translation. The approximation is only accurate up to a certain number of steps and conservative beyond that, in the sense that the context generated by the back-translation may diverge when the original would not, but not vice versa. Based on this insight, we describe a general technique for proving compiler full-abstraction and demonstrate it on a compiler from STLC to ULC. The proof uses asymmetric cross-language logical relations and makes innovative use of step-indexing to express the relation between a context and its approximate back-translation. The proof extends easily to common compiler patterns such as modular compilation and it, to the best of our knowledge, it is the first compiler full abstraction proof to have been fully mechanised in Coq. We believe this proof technique can scale to challenging settings and enable simpler, more scalable proofs of compiler full-abstraction

    Using the Adelfa Proof Assistant to Construct Proofs of Programming Language Properties

    Get PDF
    In this thesis, we demonstrate stating and proving properties of a programming language using a dependently typed lambda calculus called LF and a system called Adelfa which provides mechanized support for reasoning about statements concerning typing derivations in LF. Proving properties in this manner allows the proofs to be undertaken using a formal logic, and builds greater trust in the proofs because the details of the steps are checked mechanically. The property that we consider in our demonstration is subject reduction for the Simply Typed Lambda Calculus. The Simply Typed Lambda Calculus is the theoretical foundation for many important programming languages and more complex lambda calculi, and subject reduction is a nontrivial properties with important equivalents in these more complex systems. Therefore, this proof constitutes a nontrivial demonstration of the usefulness of LF and Adelfa for proving properties of programming languages.Work on this honors thesis was partially supported by the National Science Foundation through an REU supplement associated with Grant No. CCF-1617771. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation
    • …
    corecore