
Using the Adelfa Proof Assistant to Construct
Proofs of Programming Language Properties

Undergraduate Honors Thesis

Daniel Luick

May 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Minnesota Digital Conservancy

https://core.ac.uk/display/429667456?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

0.1 Acknowledgements
I would like to thank my faculty advisor, Gopalan Nadathur, for taking the time to carefully explain
the topics I needed to learn to finish this thesis, and for helping me with my thesis, my research,
and my career in general.

I would also like to thank Mary Southern, the creator of the proof assistant used by this honors
thesis, for additionally helping me with research while writing her Ph.D. thesis.

I would also like to thank Professor Favonia, Professor Eric Van Wyk and Professor Nick Hopper
for agreeing to serve on my honors thesis committee.

Work on this honors thesis was partially supported by the National Science Foundation through
an REU supplement associated with Grant No. CCF-1617771. Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

0.2. ABSTRACT 3

0.2 Abstract
In this thesis, we demonstrate stating and proving properties of a programming language using a
dependently typed lambda calculus called LF and a system called Adelfa which provides mechanized
support for reasoning about statements concerning typing derivations in LF. Proving properties in
this manner allows the proofs to be undertaken using a formal logic, and builds greater trust
in the proofs because the details of the steps are checked mechanically. The property that we
consider in our demonstration is subject reduction for the Simply Typed Lambda Calculus. The
Simply Typed Lambda Calculus is the theoretical foundation for many important programming
languages and more complex lambda calculi, and subject reduction is a nontrivial properties with
important equivalents in these more complex systems. Therefore, this proof constitutes a nontrivial
demonstration of the usefulness of LF and Adelfa for proving properties of programming languages.

4

Contents

0.1 Acknowledgements . 2
0.2 Abstract . 3

1 Introduction 7

2 The Edinburgh Logical Framework 9
2.1 Canonical LF . 9

2.1.1 Syntax . 9
2.1.2 Typing Rules . 10
2.1.3 Metatheoretic Properties . 12

2.2 Representing Rule Based Systems in LF . 13
2.2.1 First Order Specifications . 13
2.2.2 Simply Typed Lambda Calculus . 13
2.2.3 The Adequacy of Encodings . 15

2.3 Reasoning informally about LF specifications . 17

3 The Adelfa System 19
3.1 The Logic Underlying Adelfa . 19
3.2 Proving Theorems in Adelfa . 21

4 Subject Reduction 27
4.1 Informal Proof of Subject Reduction . 27
4.2 Proving Subject Reduction in Adelfa . 28

5 Conclusion 35

5

6 CONTENTS

Chapter 1

Introduction

It is often useful to prove properties of programming languages. However, proofs of properties
of programming languages are often difficult: in addition to requiring complex thinking, they are
tedious and error prone, requiring many small details to be just right in order for the proof to hold.
Formalizing these proofs can help, as this may allow for the proof to be automatically checked for
correctness, or written within a proof assistant, which can take care of some of the bookkeeping
aspects of the proof.

One method for formalizing proofs involves LF. LF is a dependently typed lambda calculus
which allows for the encoding of rule based systems as specifications. In these specifications,
relations between objects of the object system can be encoded as a family of types dependent on
such objects, and elements of those dependent types represent proofs that specific relations hold. It
is then possible to automatically type check an LF object, which allows for automatically checking
if a relation holds.

While being able to automatically check if relations between objects hold is useful, it is also often
desirable to state properties about relations within the object system, often making use of typical
logic constructions such as quantification, implication, conjunction and disjunction. In her PhD
thesis [Sou21], Mary Southern describes a logic containing such constructions for stating theorems
about specifications encoded in LF, along with a system for proving these properties. She also
describes a proof assistant, Adelfa, which implements this logic, and so allows for stating, proving,
and automatically checking theorems about specifications encoded in LF.

The goal of this thesis is to demonstrate the usefulness of Adelfa in proving properties of
programming languages. To this end, we consider the encoding in Adelfa of the proofs of properties
of the Simply Typed Lambda Calculus (the STLC). The STLC is the theoretical foundation for
many practical programming languages and more complicated lambda calculi. It is simple enough
that proofs of its properties are relatively simple, but complex enough that these properties often
translate to useful properties of more complicated languages, and allows the STLC to serve as a
useful test of a proof assistant’s capabilities. We consider specifically the proof of a property of the
STLC that is known as subject reduction. This property states that evaluation does not change a
term’s type. This is an example of a useful property of a programming language, which translates
into a useful equivalent property for more practical languages, and which provides a useful test of
the proof assistant.

In Chapter 2 of the thesis, we introduces LF, including its syntax, typing rules and meta-
theoretic properties, along with a demonstration of encoding two rule based systems as LF specifi-
cations and how properties proven of LF specifications can correspond to proofs about the original
rule based system. Chapter 3 presents the logic for reasoning about LF specifications that underlies

7

8 CHAPTER 1. INTRODUCTION

Adelfa, and then shows how Adelfa can be used to construct proofs using a simple example con-
cerning computations on lists. Chapter 4 then introduces subject reduction, proves it informally,
and formalizes the proof in Adelfa.

Chapter 2

The Edinburgh Logical Framework

This chapter introduces the Edinburgh Logical Framework, known more simply as LF. LF is a
dependently typed lambda calculus capable of formalizing rule based systems. In particular, it
provides a means through lambda abstractions and contexts for generalizing the notion of binding.
The original version [HHP93] allowed a large class of terms, which were then grouped together as
equivalence classes of an equality relation. The version of LF used in this thesis, Canonical LF
(hereafter just LF), only admits canonical terms.

This chapter begins with an introduction of LF: its syntax, typing rules and several metatheo-
rems. It then demonstrates how rule based systems can be encoded in LF and how proofs about
LF encodings can correspond to proofs about the rule based systems themselves. In particular, it
introduces an LF encoding of the append relation for lists and the STLC.

2.1 Canonical LF

2.1.1 Syntax

Kinds K ::= Type | Πx:A.K

Canonical Type Families A ::= P | Πx:A1. A2

Atomic Type Families P ::= a | P M

Canonical Terms M ::= R | λx.M
Atomic Terms R ::= c | x | R M

Signatures Σ ::= · | Σ, c : A | Σ, a : K

Contexts Γ ::= · | Γ, x : A

Figure 2.1: The Syntax of LF Expressions

The syntax of LF [HL07] is shown in Figure 2.1. LF has three categories of expressions: terms,
types which classify terms, and kinds which classify types. Terms include the typical lambda
calculus operations of abstraction and application along with variables and constants. Types include
a binding operator written as Πx:A1. A2. This type can be thought of as similar to the typical
lambda calculus arrow type, A1 → A2, which is the type of functions which take a term of type
A1 and return a term of type A2. However, unlike in the STLC, terms can appear in LF types,
allowing for the construction of types that are dependent on terms. In the type Πx:A1. A2, x may

9

10 CHAPTER 2. THE EDINBURGH LOGICAL FRAMEWORK

⊢ Σ sig

⊢ · sig SIG_EMPTY

⊢ Σ sig · ⊢Σ A type c#Σ

⊢ Σ, c : A sig SIG_TERM

⊢ Σ sig · ⊢Σ K kind a#Σ

⊢ Σ, a : K sig SIG_FAM

⊢Σ Γ ctx

⊢Σ · ctx CTX_EMPTY

⊢Σ Γ ctx Γ ⊢Σ A type x#Γ

⊢Σ Γ, x : A ctx CTX_TERM

Figure 2.2: The Typing Rules for LF Signatures and Contexts

appear in A2, making this a function type in which the type of the output may depend on what
exactly is supplied as the argument. Types also include constants and applications of types to
terms. We will also make use of the syntax A1 → A2 as a shorthand for Πx:A1. A2 when x does not
appear in A2. Kinds include a distinguished type used to classify base types, along with a similar
Π abstraction used to classify dependent types.

The binding operators Π and λ introduce the usual notions of scope and free or bound variables.
We also assume the principle of α-conversion: two expressions are considered equal if they differ
only in the choices of the names for bound variables.

The syntax given divides terms between canonical terms and atomic terms, and types between
canonical types and atomic types. The division in types becomes useful later during typing judge-
ments, to ensure terms are η-long. The division in terms ensures that terms formed using this
syntax never have a β-redex, as the first term of an application can never be a lambda abstraction.

2.1.2 Typing Rules

We can formalize the relationship between terms and types, and types and kinds, by using five
different kinds of judgements, each defined by several inference rules. These rules make use of
contexts, a list of the variables that may appear free in an expression along with the type of that
variable, and signatures, which define the base types and terms which are used as constants.

• ⊢ Σ sig shows that Σ is a valid signature

• ⊢Σ Γ ctx shows that Γ is a valid context using signature Σ

• Γ ⊢Σ K kind shows that K is a well formed kind using context Γ and Σ

• Γ ⊢Σ A type and Γ ⊢Σ P ⇒ K show that A and P are well formed canonical and atomic
types, respectively.

2.1. CANONICAL LF 11

Γ ⊢Σ K kind

Γ ⊢Σ Type kind CANON_KIND_TYPE

Γ ⊢Σ A type Γ, x : A ⊢Σ K kind
Γ ⊢Σ Πx:A.K kind CANON_KIND_PI

Γ ⊢Σ A type

Γ ⊢Σ P ⇒ Type
Γ ⊢Σ P type CANON_FAM_ATOM

Γ ⊢Σ A1 type Γ, x : A1 ⊢Σ A2 type
Γ ⊢Σ Πx:A1. A2 type CANON_FAM_PI

Γ ⊢Σ P ⇒ K

a : K ∈ Σ
Γ ⊢Σ a ⇒ K

ATOM_FAM_CONST

Γ ⊢Σ P ⇒ Πx:A.K1 Γ ⊢Σ M ⇐ A K1J{⟨x,M, (A)−⟩}K = K

Γ ⊢Σ P M ⇒ K
ATOM_FAM_APP

Γ ⊢Σ M ⇐ A

Γ ⊢Σ R ⇒ P

Γ ⊢Σ R ⇐ P
CANON_TERM_ATOM

Γ, x : A1 ⊢Σ M ⇐ A2

Γ ⊢Σ λx.M ⇐ Πx:A1. A2
CANON_TERM_LAM

Γ ⊢Σ R ⇒ A

x : A ∈ Γ
Γ ⊢Σ x ⇒ A

ATOM_TERM_VAR c : A ∈ Σ
Γ ⊢Σ c ⇒ A

ATOM_TERM_CONST

Γ ⊢Σ R ⇒ Πx:A1. A2 Γ ⊢Σ M ⇐ A1 A2J{⟨x,M, (A1)
−⟩}K = A

Γ ⊢Σ R M ⇒ A
ATOM_TERM_APP

Figure 2.3: The Typing Rules for LF Kinds, Types, and Terms

12 CHAPTER 2. THE EDINBURGH LOGICAL FRAMEWORK

• Γ ⊢Σ M ⇐ A and Γ ⊢Σ R ⇒ A show that M and R are well formed canonical and atomic
types, respectively.

The inference rules for deriving these judgements are given in Figures 2.2 and 2.3. To be
well-formed, a signature must assign types or kinds to distinct constants. Similarly, a well-formed
context must assign types to distinct variables. Use is made of the notation c#Σ, a#Σ, and x#Γ in
the rules towards this end; this notation means that c and a are fresh to Σ and x is similarly fresh
to Γ. All the other judgements require that the signature and context in use is valid. In addition,
Γ ⊢Σ P ⇒ K requires K to be a well formed kind, and Γ ⊢Σ M ⇐ A and Γ ⊢Σ R ⇒ A require
A to be a well formed type. For the rules to be coherent, it must be the case that in deriving a
typing judgement that satisfies these requirements we only need to use further typing judgements
that also satisfy the requirements. It can be verified that this property in fact holds for the rules
in Figures 2.2 and 2.3.

The rules for typing the application of a type to a term and the application of a term to a
term requires us to consider the substitution of a term into a kind and a type, respectively. The
canonical nature of the calculus requires any such substitution to be accompanied by a conversion of
the resulting term into a canonical form. Use is made towards this end of the notion of hereditary
substitution. To ensure that the conversion process terminates, substitutions are indexed by a
special kind of types called arity types that, intuitively, determine the number of arguments that
terms possessing them will take. Formally, these types are constructed from the constant type
o using the function type constructor →. These types can be viewed as a coarsened form of
dependent types, identified by (A)− for each dependent type A and given as follows: (P)− = o
and (Πx:A1. A2)

− = (A1)
− → (A2)

−. Substitutions are now defined to be finite collections of
triples of the form {x,M,α}, where x is a variable, M is a canonical term and α is an arity type.
If θ is a substitution and E is an expression into when we need to make this substitution, we
denote the result of applying such a substitution using the expression EJθK. The types indexing
the substitution are used to guide the application in such a way that the process is guaranteed to
terminate. While it is not guaranteed that the application will always have a result, the constraints
accompanying the typing judgements we consider will ensure this to be the case for the typing
rules in Figure 2.3. The precise definition of the application of hereditary substitutions and the
observations about their use in the typing rules may be found in [Sou21].

2.1.3 Metatheoretic Properties
There are several properties of LF which arise as consequences of the typing rules which are useful
in constructing arguments about typing judgements. Properties of this kind, which hold of all LF
judgements irrespective of their specific content, are referred to as metatheoretic properties of LF.
We present three such properties below that we will refer to later in this thesis. The proofs of these
properties can be found in [HL07].

Theorem 2.1 (Instantiation). If Γ1, x : A,Γ2 ⊢Σ M2 ⇐ A2, Γ1 ⊢Σ M ⇐ A and M2J{x,M}K = M ′
2,

Γ2J{x,M}K = Γ′
2, and A2J{x,M}K = A′

2, then Γ1,Γ
′
2 ⊢Σ M ′

2 ⇐ A′
2.

Theorem 2.2 (Weakening). Assume Γ ⊆ Γ′ and Σ ⊆ Σ′.

1. For all five formation judgements J , if Γ ⊢Σ J then Γ′ ⊢Σ′ J .

2. If ⊢Σ Γ ctx then ⊢Σ′ Γ′ ctx.

3. If ⊢ Σ sig then ⊢ Σ′ sig.

2.2. REPRESENTING RULE BASED SYSTEMS IN LF 13

nat z z-nat nat N
nat (s N)

s-nat

list nil nil-list nat N list L
list (cons N L)

cons-list

list L
app nil L L

app-nil
nat N app L1 L2 L3

app (cons N L1) L2 (cons N L3)
app-cons

Figure 2.4: Rules for Appending Lists

Theorem 2.3 (Permutation). For all five formation judgements J , if Γ, x1 : A1, x2 : A2,Γ
′ ⊢Σ J

and x1 does not appear in A2, then Γ, x2 : A2, x1 : A1,Γ
′ ⊢Σ J

2.2 Representing Rule Based Systems in LF
The primary reason for the interest in LF for this thesis is its ability to encode rule based systems.
Rule based systems are systems which define relations of interest based on rules. In this section,
we demonstrate two different LF encodings. We also discuss how to be sure that an encoding is
correct, and how LF contexts can enable the usage of higher order abstract syntax to ease the
creation of encodings.

2.2.1 First Order Specifications

As an first example of such encodings we consider the append relation on lists of natural numbers.
To specify this relation we must first identify natural numbers as well as lists over such numbers.
We do this in Figure 2.4 and then follow this up with a rule-based presentation of the append
relation over such lists.

We can encode this collection of rules in the LF signature Σapp, as seen in Figure 2.5. In
this signature, natural numbers and lists are encoded as expressions whose types are given by two
type-level constants nat and list. Each formation rule for a number or list corresponds to an LF
constructor for that type.

Relations are encoded in LF using dependent types. Each relation becomes an LF type family
indexed by the terms which could make up the relation. Append is a relation between three lists;
therefore append is indexed by three lists and has the kind ΠL1:list.ΠL2:list.ΠL3:list. type. Each
rule then becomes a constructor, with the arguments corresponding to the prerequisites and the
result type corresponding to the result of the inference rule. The append-nil and append-cons rules
then become the signature constants append-nil and append-cons. Any type append L1 L2 L3 can
then be viewed as the type of proofs that L1 and L2 appended together are L3. In the rule based
system, this would be proven by uses of append-nil and append-cons rules. In LF, a concrete proof
would be a term of this type, constructed using the append-nil and append-cons constants.

2.2.2 Simply Typed Lambda Calculus

Another system we wish to encode is the Simply Typed Lambda Calculus (STLC). The STLC is
the theoretical basis for many practical programming languages, and is the foundation for more
complicated lambda calculi. It is complex enough that proofs of its properties contain many of
the essential difficulties of proving these properties of more complicated languages, but are still

14 CHAPTER 2. THE EDINBURGH LOGICAL FRAMEWORK

nat : type
z : nat
s : ΠN :nat.nat

list : type
nil : list
cons : ΠN :nat.ΠL:list. list

append : ΠL1:list.ΠL2:list.ΠL3:list. type
append-nil : ΠL:list. append nil L L
append-cons : ΠN :nat.ΠL1:list.ΠL2:list.ΠL3:list.

ΠD:append L1 L2 L3. append (cons N L1) L2 (cons N L3)

Figure 2.5: Σapp, LF signature for appending lists

relatively simple. Because of this, it is an ideal language for demonstrating proof of properties of
languages.

Terms M,N ::= x | M N | λx : T.M

Types T ::= unit | T1 � T2

Contexts Γ ::= · | Γ, x : T

Figure 2.6: The Syntax of STLC terms, types and contexts

The syntax of the STLC is given in figure 2.6. In this version of the STLC, types include an
arrow type T1 � T2 to represent functions from T1 to T2, along with a base type unit with no
constructors. Terms include variables x, applications (M N) and lambda abstractions λx : T.M ;
note that parentheses can be inserted in expressions to disambiguate the scope of constructions, as
is commonly understood. Contexts are lists of variables of various types. The same variable name
cannot appear twice in a context.

The STLC also defines a typing judgement Γ ⊢ M : T to indicate that term M has type T in
context Γ. The rules for this judgement are given in Figure 2.7.

We also define small step reduction for the STLC in Figure 2.8. Reduction in the STLC corre-
sponds to evaluation in other programming languages. Beta reduction makes use of substitution,

x : T ∈ Γ
Γ ⊢ x : T

of_var

Γ, x : T1 ⊢ M : T2

Γ ⊢ λx : T1.M : T1 � T2
of_lam

Γ ⊢ M1 : T1 � T2 Γ ⊢ M2 : T1

Γ ⊢ M1 M2 : T2
of_lam

Figure 2.7: The Typing Rules for the STLC

2.2. REPRESENTING RULE BASED SYSTEMS IN LF 15

M1 ⇒ M3

M1 M2 ⇒ M3 M2
step_app1 M2 ⇒ M3

M1 M2 ⇒ M1 M3
step_app2

M1 ⇒ M2

λx : T.M1 ⇒ λx : T.M2
step_lam

(λx : T.M1) M2 ⇒ M1[x/M2]
step_beta

Figure 2.8: The Reduction Rules for the STLC

which is defined as usual for lambda calculi.

The STLC can be encoded in LF as Σstlc, given in Figure 2.9. An aspect to note about the
STLC, in contrast to the language of lists considered in the previous section, is that expressions
in this calculus embody a notion of binding. There are properties associated with binding, such
as the fact that two expressions are considered equal if they differ only in the choice of names
for bound variables and that substitutions into expressions must respect binding, that should be
accounted for in the encoding that is used for this notion. The approach that is chosen in the
encoding displayed in Figure 2.9 is based on the approach of higher-order abstract syntax. In this
approach, binding in object expressions, i.e., in the expressions being represented, is encoded using
binding in the meta-language, i.e. the language in which the representations are constructed. The
proper treatment of binding in the meta-language then provides a simple and direct treatment of
binding in the object language. This choice of representation is to be seen specifically in the way
abstraction in STLC is encoded. The constructor lam that is used to encode such expressions takes
as arguments the representation of an STLC type and a function term of type tm → tm. Thus,
the STLC expression λx : unit.x would be represented by the LF expression (lam unit λx. x). One
of the benefits of this representation is to be seen in the encoding of step_beta, the STLC rule for
β-contraction; the substitution that is necessary in effecting this operation is realized transparently
through application, and the associated β-conversion, in LF.

The higher-order treatment that we have just described means that we may sometimes have to
consider typing judgements where the type in question may contain a Π operator. This is to be
seen, for example in the encoding of the typing rule for abstractions in the STLC. For example, in
determining if the STLC expression λx : unit.x has the type unit → unit, we would need to construct
an LF term that has the LF type (of (lam unit λx. x) (arr unit unit)). This would, in turn, lead us
to consider the inhabitation of the LF type Πx:tm.Πd:of x unit. of ((λy. y) x) unit and, eventually,
to checking the existence of an LF term of type (of x unit) in the context x : tm, d : of x unit.

2.2.3 The Adequacy of Encodings

We want eventually to reason about object systems but we think of doing this through their
encodings in LF. It is desirable in this context to to show that our LF signature correctly represents
the object system. This is a property known as the adequacy of the encoding. If adequacy is present,
then properties of the LF encoding, such as certain relations holding or theorems proven about the
encoding, also hold for the encoded system. Proving adequacy requires establishing an isomorphism
between the entities of the encoded system and its LF representation. While this is important to
the overall enterprise, we will not actually provide proofs of adequacy in this thesis.

16 CHAPTER 2. THE EDINBURGH LOGICAL FRAMEWORK

ty : type
unit : ty
arr : ΠT1:ty.ΠT2:ty. ty

tm : type
app : ΠY1:tm.ΠY2:tm. tm
lam : ΠZ:ty.ΠY :Πx:tm. tm. tm

of : ΠM :tm.ΠT :ty. type
of_app : ΠM :tm.ΠN :tm.ΠT :ty.ΠU :ty.

Πa1:of M (arr U T).Πa2:of N U. of (app M N) T
of_lam : ΠR:Πx:tm. tm.ΠT :ty.ΠU :ty.

Πa1:(Πx:tm.Πd:of x T . of (R x) U). of (lam T R) (arr T U)

step : ΠM1:tm.ΠM2:tm. type
step-app1 : ΠM1:tm.ΠM2:tm.ΠN :tm.ΠD:step M1 M2.

step (app M1 N) (app M2 N)
step-app2 : ΠM :tm.ΠN1:tm.ΠN2:tm.ΠD:step N1 N2.

step (app M N1) (app M N2)
step-beta : ΠT :ty.ΠR:(Πx:tm. tm).ΠN :tm.

step (app (lam T R) N) (R N)
step-lam : ΠT :ty.ΠR1:(Πx:tm. tm).ΠR2:(Πx:tm. tm).

ΠD:Πx:tm.Πd:x : T . step (R1 x) (R2 x).
step (lam T R1) (lam T R2)

Figure 2.9: Σstlc, LF signature for the STLC

2.3. REASONING INFORMALLY ABOUT LF SPECIFICATIONS 17

2.3 Reasoning informally about LF specifications
It is often the case that we wish to prove some property of a rule based system. For instance, it is
fairly obvious that appending a nil list to the end of another list results in the same list. This fact,
however, does not immediately follow from our informal definition of append. However, this fact
can be proven fairly easy by induction on the structure of the list in induction. The nil case follows
from the app-nil rule, while the cons case follows from the inductive hypothesis and the app-cons
rule.

We can prove the same property of the LF encoding. Due to adequacy, a theorem proven about
an LF encoding will also hold of the original rule based system. This allows for the benefits of LF,
such as being able to automatically check typing judgements, while still proving the theorem for
the original system.

Theorem 2.4. For all terms L, if · ⊢Σapp L : list then there exists a term D such that · ⊢Σapp D :
append L nil L holds.

Proof. By induction on the structure of L.
If L is nil, then append-nil nil has type append nil nil nil.
If L is cons N L′, then we know that · ⊢Σapp N : nat and · ⊢Σapp L′ : list. By the induc-

tive hypothesis, there exists a D′ such that · ⊢Σapp D′ : append L′ nil L′. We then know that
(append-cons L′ nil L′ ND′) has type (append (cons N L′) nil cons N L′) which is a suitable term
for D′.

18 CHAPTER 2. THE EDINBURGH LOGICAL FRAMEWORK

Chapter 3

The Adelfa System

This chapter provides a brief introduction to the Adelfa system. Adelfa is a proof assistant that aids
in the construction of proofs of properties about LF specifications [Sou21]. Underlying Adelfa is a
logic for stating such properties and a proof system that supports the mechanization of arguments
based on this logic. We describe the logic in the first section below. The next section sketches how
statements in this logic can be shown to be true using Adelfa; while we do not discuss the proof
system explicitly, its underlying characteristics will become clear in the course of the discussion of
Adelfa.

3.1 The Logic Underlying Adelfa
The logic underlying Adelfa has been designed by Nadathur and Southern. A detailed presentation
of it can be found in [Sou21]. We explain below the structure of this logic to the extent needed in
this thesis.

The starting point for the logic are LF types and terms. This logic is parameterized by a valid
LF signature that can be used in constructing these expressions. LF terms and types appearing
in formulas in the logic use the same syntax as in Section 2.1.1, with two exceptions. A new
method of constructing valid atomic terms is through a nominal constant n. Nominal constants
are used to represent variables in a context, and are treated much like other context for operations
such as hereditary substitution. Additionally, terms and types can contain variables introduced by
universal or existential quantifiers.

Block Declarations ∆ ::= · | ∆, y : A
Block Schema B ::= {x1 : α1, . . . , xn : αn}∆

Context Schema C ::= · | C,B

Figure 3.1: The Syntax of Context Schema

One new construction appearing in formulas is context schemas, which are used in universal
quantification over contexts. Quantifying over all contexts is not particularly useful; it is better to
quantify over contexts which match a certain pattern. A context schema specifies such a pattern. As
an example, a useful context schema for Σstlc would restrict LF contexts such that they corresponded
to STLC contexts. Any LF context which fit that criteria would consist of a sequence of two
variables, the first having type tm, the second having type of y x where y is the previous variable
of type tm and x is some STLC type. That is represented by the LF context schema {x : α}y1 :

19

20 CHAPTER 3. THE ADELFA SYSTEM

tm, y2 : of y1 x. A context schema consists of some number of block schemas; the example context
schema is a single block schema. A block schema of a list of declarations associating variables with
types. It is preceded by a header listing variables, indexed by arity types, which may appear in the
declaration. A context matching some context schema can be constructed by concatenating zero
or more repetitions of any block schema, with the headers instantiated with terms of the correct
arity.

Context Expressions G ::= · | Γ | G,n : A
Formulas F ::= {G ⊢ M : A} | ⊤ | ⊥ | F1 ⊃ F2 | F1 ∧ F2 | F1 ∨ F2 |

ΠΓ : C.F | ∀x : α.F | ∃x : α.F

Figure 3.2: The Syntax of Formulas

The syntax for formulas in the logic is given in Figure 3.2. Formulas make use of contexts,
which are specified as a list of nominal constants with specific types, possibly preceded by a context
variable Γ. Atomic formulas, representing LF typing judgements of the form Γ ⊢Σ M ⇐ A, have the
form {G ⊢ M : A}. Formulas also include typical logical constructs, such as ⊤ and ⊥ as true and
false ⊃, ∧ and ∨ for implication, conjunction and disjunction. ∀ and ∃ can be used for universal
and existential quantification over LF terms, indexed by an arity type. Π is used for universal
quantification over contexts restricted by context schemas.

Finally, we wish to define when a formula in the logic is valid. If a formula F is well formed
according to the syntax, then its validity is defined by recursion on the formula structure as follows:

• ⊤ is valid, and ⊥ is not.

• {G ⊢ M : A} is valid when ⊢Σ G ctx, G ⊢Σ A type and G ⊢Σ M ⇐ A are provable in LF,
with nominal constants interpreted as variables bound in a context.

• F1 ⊃ F2 is valid if, whenever F1 is valid, F2 is valid.

• F1 ∧ F2 is valid if F1 and F2 are valid.

• F1 ∨ F2 is valid if either F1 or F2 are valid.

• ΠΓ : C.F is valid if, for any context G which matches the context schema C, F is valid when
Γ is replaced by G.

• ∀x : α.F is valid if, for any term M of arity type α, F J{x,M,α}K is valid.

• ∃x : α.F is valid if there exists a term M of arity type α such that F J{x,M,α}K is valid.

It is good to show that validity is in fact useful in distinguishing between formulas, by demon-
strating that there are in fact valid and invalid formulas. An example of a valid formula is given later
in the chapter. An example of an invalid formula, using Σstlc, is ∀d : α. {· ⊢ d : of (lam unit λx.x) unit}.
This formula is well formed, but there is no term for which this is a valid formula since a lambda
expression cannot have type unit. Therefore this formula is not valid, and validity is therefore
capable of distinguishing between formulas.

As an example of using this logic that does not include the use of context quantification to state
a useful property, we can restate the theorem from Section 2.3 as follows:

3.2. PROVING THEOREMS IN ADELFA 21

∀L : o. {· ⊢ L : list} → ∃D : o. {· ⊢ D : append L nil L}

This formula is a sensible formalization of the theorem about LF derivability relative to Σapp

that we saw in Theorem 2.4. To understand this, we observe that, by the semantics of the logic,
the formula is claiming that for every LF expression L that can be assigned the type list relative
to the signature Σapp, it is the case that the righthand side of the implication is true. However,
that formula is true only if there is an inhabitant of the type (append L nil L), which is what
Theorem 2.4 requires us to show. In addition, since Theorem 2.4 is a formalization of the original
property stated about the informal rule based system, the formula in this logic also formalizes the
original property stated about the informal rule based system.

3.2 Proving Theorems in Adelfa
This section will show how the Adelfa system can be used to prove the theorem about append that
was expressed in the formula at the end of the previous section.

Adelfa works with a specific LF signature. This signature must be written out in a text file
with a .elf extension, using a syntax similar to that from Twelf [PS02]. A term or type constant
declaration c : A is written c:A., ended with a period. The base kind, type, is written type. A
lambda expression λx.M is written [x] M, and a pi expression Πx:A1. A2 is written {x:A1} A2. %
begins a single line comment. Parentheses can be used for grouping. The append signature Σapp is
written as follows:

% append signature

nat : type.
z : nat.
s : {N:nat} nat.

list : type.
nil : list.
cons : {N:nat} {L:list} list.

append : {L1:list} {L2:list} {L3:list} type.
append-nil : {L:list} append nil L L.
append-cons : {N:nat} {L1:list} {L2:list} {L12:list} {D:append L1 L2 L12}

append (cons N L1) L2 (cons N L12).

Adelfa is a command line program, and is run by issuing commands and tactics ending in a
period. The first command, Specification, loads a signature file.

~/adelfa$ adelfa.byte
Welcome!
>> Specification "append.elf".

Beginning the proof of a theorem is done with the Theorem command, which is stated using a
formula as defined in Section 3.1. The syntax uses true, false, F1 /\ F2, F1 \/ F2, F1 => F2,

22 CHAPTER 3. THE ADELFA SYSTEM

ctx G:c, F, forall M, F, exists M, F, and {G |- M : A} to represent formulas in the logic. In
addition, atomic formulas with an empty context can simply be stated as {M : A}. Also note that
the forall and exists quantifiers can infer the arities of their quantifiers, and multiple quantifiers
can be chained together as a space separated list, as in forall M1 M2 M3, F. The append theorem
from Section 2.3, named app-nil here, is stated as follows.

>> Theorem app-nil : forall L, {L : list} => exists D, {D : append L nil L}.

Subgoal app-nil:

==================================
forall L, {L : list} => exists D, {D : append L nil L}

Adelfa works by maintaining a proof state, which is a list of nominal constants that are used
for term variables bound in the contexts of atomic formulas relevant to the proof state, a list
of implicitly universally quantified term variables appearing in the proof state, a similar list of
implicitly universally quantified context variables appearing in the proof state, a list of assumption
formulas, and a goal formula that needs to be proved. There then exist proof rules which can be
used to move between proof states in a way that maintains the soundness of the system. Rather
than use these proof rules directly, the command line program is controlled by issuing tactics, which
change the state using one or more proof rules.

The informal proof of app-nil uses induction on the structure of the list. It then immediately
considers all of the cases in which · ⊢Σ L ⇐ list could have been proven. In Adelfa, this can
be accomplished with three tactics. The first is induction, which signals that we intend to use
induction on a specific assumption in the goal formula. This adds an assumption which matches
the goal formula, but where the inductive assumption must have a shorter derivation (marked
with *) than the original assumption (marked with @). The second tactic, intros, introduces any
assumptions in the goal formula as assumptions in the proof state. The third tactic, case, splits
the proof into multiple subgoals, one for each case a specific assumption could have been proven.
The results of issuing these commands is seen as follows.

app-nil>> induction on 1.

Subgoal app-nil:

IH:forall L, {L : list}* => exists D, {D : append L nil L}

==================================
forall L, {L : list}@ => exists D, {D : append L nil L}

app-nil>> intros.

Subgoal app-nil:

Vars: L:o
IH:forall L, {L : list}* => exists D, {D : append L nil L}
H1:{L : list}@

3.2. PROVING THEOREMS IN ADELFA 23

==================================
exists D, {D : append L nil L}

app-nil>> case H1.

Subgoal app-nil.1:

Vars: N:o, L1:o
IH:forall L, {L : list}* => exists D, {D : append L nil L}
H2:{N : nat}*
H3:{L1 : list}*

==================================
exists D, {D : append (cons N L1) nil (cons N L1)}

Subgoal app-nil.2 is:
exists D, {D : append nil nil nil}

Due to the order in which the append relation was declared in Adelfa, we first wish to deal with
the case where the list was formed using cons. In the informal proof, this case requires applying
the inductive hypothesis and then supplying the right term using append-cons for an existential
quantifier. We can translate this to Adelfa with three more tactics. apply applies one assumption
formula (in this case, the inductive hypothesis) to one or more other assumption formulas. exists
fills an existential quantifier in the goal formula with a given term. Finally, search enables some
basic proof search to complete the subgoal.

app-nil.1>> apply IH to H3.
Matching formula {L1 : list}* to formula {?1 : list}*

Subgoal app-nil.1:

Vars: D:o, N:o, L1:o
IH:forall L, {L : list}* => exists D, {D : append L nil L}
H2:{N : nat}*
H3:{L1 : list}*
H4:{D : append L1 nil L1}

==================================
exists D, {D : append (cons N L1) nil (cons N L1)}

Subgoal app-nil.2 is:
exists D, {D : append nil nil nil}

app-nil.1>> exists append-cons N L1 nil L1 D.

Subgoal app-nil.1:

24 CHAPTER 3. THE ADELFA SYSTEM

Vars: D:o, N:o, L1:o
IH:forall L, {L : list}* => exists D, {D : append L nil L}
H2:{N : nat}*
H3:{L1 : list}*
H4:{D : append L1 nil L1}

==================================
{append-cons N L1 nil L1 D : append (cons N L1) nil (cons N L1)}

Subgoal app-nil.2 is:
exists D, {D : append nil nil nil}

app-nil.1>> search.
Searching for derivation of:
{append-cons N L1 nil L1 D : append (cons N L1) nil (cons N L1)}
Searching for derivation of:
{N : nat}
Searching for derivation of:
{L1 : list}
Searching for derivation of:
{nil : list}
Searching for derivation of:
{L1 : list}
Searching for derivation of:
{D : append L1 nil L1}

Subgoal app-nil.2:

IH:forall L, {L : list}* => exists D, {D : append L nil L}

==================================
exists D, {D : append nil nil nil}

Finally, proving the nil case is trivial and can be done with tactics already introduced.

app-nil.2>> exists append-nil nil.

Subgoal app-nil.2:

IH:forall L, {L : list}* => exists D, {D : append L nil L}

==================================
{append-nil nil : append nil nil nil}

app-nil.2>> search.
Searching for derivation of:
{append-nil nil : append nil nil nil}
Searching for derivation of:

3.2. PROVING THEOREMS IN ADELFA 25

{nil : list}
Proof Completed!

26 CHAPTER 3. THE ADELFA SYSTEM

Chapter 4

Subject Reduction

One useful property to prove of the STLC is subject reduction. Subject reduction for the STLC
states that any term that is obtained by one step of evaluation from a given STLC term will have
the same type as the original term. This property corresponds to type safety in more practical
programming languages with the STLC as a theoretical foundation, which ensures a programming
language will never break the rules of its type system, which helps prevent the language from illegally
tampering with memory. Subject reduction is also a good property with which to test prospective
proof systems, as it is relatively simple but makes use of concepts such as STLC contexts.

4.1 Informal Proof of Subject Reduction
To begin, we will prove subject reduction informally using the STLC as presented in Section 2.2.2.
In the proof, we make use of the property that types are preserved in the STLC under substitution,
a fact stated precisely in the following theorem.

Theorem 4.1 (Substitution). If Γ, x : T1 ⊢ M2 : T2 and Γ ⊢ M1 : T1, then Γ ⊢ M2[M1/x] : T2.

This property can be proved by induction on the first typing judgement that translates effectively
into an induction on the structure of M2. We omit the details of the proof.

Theorem 4.2 (Subject Reduction of the STLC). For all contexts Γ, terms M1 and M2 and types
T , if Γ ⊢ M1 : T and M1 ⇒ M2, then Γ ⊢ M2 : T .

Proof. The proof is by induction on the derivation of the small-step evaluation relation, which
effectively translates into an induction on the structure of M1.

If M1 ⇒ M2 was proven using step_lam, we know T has the form T1 � T2, M1 has the
form λx : T1.M3, and M2 has the form λx : T1.M4, and that M3 ⇒ M4 is provable by a shorter
derivation than that for M1 ⇒ M2. Since Γ ⊢ M1 : T must have been proven using step_lam we
know Γ, x : T1 ⊢ M3 : T2 holds. By the inductive hypothesis, we know Γ, x : T1 ⊢ M4 : T2. We can
then use of_lam to show Γ ⊢ M2 : T .

If M1 ⇒ M2 was proven using step_app1, we know that M1 has the form M3 M4, that M2 is
M5 M4, and that M3 ⇒ M5 is provable by a shorter derivation than that for M1 ⇒ M2. Since
Γ ⊢ M1 : T must have been proven using of_app we know that for some type T2 Γ ⊢ M3 : T2 � T
and Γ ⊢ M4 : T2. By the inductive hypothesis, we know that Γ ⊢ M5 : T2 � T . We can then use
of_app to show Γ ⊢ M2 : T .

If M1 ⇒ M2 was proven using step_app2, we know that M1 has the form M3 M4, that M2 has
the form M3 M5, and that M4 ⇒ M5 is provable by a shorter derivation than that for M1 ⇒ M2.

27

28 CHAPTER 4. SUBJECT REDUCTION

ty : type.
unit : ty.
arr : {Z1:ty} {Z2:ty} ty.

tm : type.
app : {Y1:tm} {Y2:tm} tm.
lam : {Z:ty} {Y:{x:tm}tm} tm.

of : tm -> ty -> type.
of_app : {M:tm}{N:tm}{T:ty}{U:ty}

{a1:of M (arr U T)} {a2:of N U} of (app M N) T.
of_lam : {R : {x:tm} tm}{T:ty}{U:ty}

{a1:({x:tm}{z:of x T} of (R x) U)}
of (lam T R) (arr T U).

step : tm -> tm -> type.
step-app1 : {M1:tm} {M2:tm} {N:tm} {D : step M1 M2}

step (app M1 N) (app M2 N).
step-app2 : {M:tm} {N1:tm} {N2:tm} {D : step N1 N2}

step (app M N1) (app M N2).
step-beta : {T:ty} {R:{x:tm}tm} {N:tm}

step (app (lam T R) N) (R N).
step-lam : {T:ty} {R1:{x:tm}tm} {R2:{x:tm}tm}

{D : {x:tm} {d:of x T} step (R1 x) (R2 x)}
step (lam T R1) (lam T R2).

Figure 4.1: Adelfa encoding of Σstlc

Since Γ ⊢ M1 : T must have been proven using of_app we know that for some type T2 Γ ⊢ M3 :
T2 � T and Γ ⊢ M4 : T2. By the inductive hypothesis, we know that Γ ⊢ M5 : T2. We can then use
of_app to show Γ ⊢ M2 : T .

If M1 ⇒ M2 was proven using step_beta, we know that M1 has the form (λx : T2 � T.M3) M4

and M2 has the form M3[x/M4]. Since Γ ⊢ M1 : T must have been proven using of_app we know
that Γ, x : T2 ⊢ M3 : T and Γ ⊢ M4 : T2 hold. We can then use substitution to show Γ ⊢ M2 : T .

4.2 Proving Subject Reduction in Adelfa

Next, we will prove subject reduction of the STLC in Adelfa. To begin, we need a .elf file to
encode Σstlc. This is shown in Figure 4.1. One feature to note is that a lambda expression is
encoded as a term of type ty -> (tm -> tm) -> tm. This allows the variable in an expression
such as λx.x to be represented as an LF variable, making use of higher order abstract syntax. In
addition, the STLC context is represented by the LF context, which is assumed to be restricted
to a specific context schema as described in Section 3.1. This schema is named c and declared as
follows.

>> Schema c := {T}(x:tm,y:of x T).

4.2. PROVING SUBJECT REDUCTION IN ADELFA 29

Next, we declare the theorem. This follows much like declaring the append theorem in Sec-
tion 3.1. The new addition is that we use context quantification to express the phrase the idea of
quantifying over all STLC contexts.

>> Theorem subject_reduction : ctx Gamma:c, forall M1 M2 T D1 D2,
{Gamma |- D1 : step M1 M2} => {Gamma |- D2 : of M1 T} => exists D3,
{Gamma |- D3 : of M2 T}.

Like the informal proof, we prove subject reduction by induction on the given derivation of the
step judgement. We can use the intros, induction and case tactics to establish this, shown as
follows. Note that some of the original text has been replaced with ... for brevity.

subject_reduction>> induction on 1.

Subgoal subject_reduction:
...

subject_reduction>> intros.

Subgoal subject_reduction:
...

subject_reduction>> case H1.

Subgoal subject_reduction.1:

Vars: D:(o) -> (o) -> o, R1:(o) -> o, T1:o, R2:(o) -> o, D2:o, T:o
Nominals: n3:o, n2:o, n1:o, n:o
Contexts: Gamma{n3, n2, n1, n}:c[]
IH:

ctx Gamma:c.
forall M1, forall M2, forall T, forall D1, forall D2,
{Gamma |- D1 : step M1 M2}* =>

{Gamma |- D2 : of M1 T} => exists D3, {Gamma |- D3 : of M2 T}
H2:{Gamma |- D2 : of (lam T1 R1) T}
H3:{Gamma |- T1 : ty}*
H4:{Gamma, n:tm |- R1 n : tm}*
H5:{Gamma, n1:tm |- R2 n1 : tm}*
H6:{Gamma, n2:tm, n3:of n2 T1 |- D n2 n3 : step (R1 n2) (R2 n2)}*

==================================
exists D3, {Gamma |- D3 : of (lam T1 R2) T}

Subgoal subject_reduction.2 is:
exists D3, {Gamma |- D3 : of (R N) T}

Subgoal subject_reduction.3 is:
exists D3, {Gamma |- D3 : of (app M N2) T}

30 CHAPTER 4. SUBJECT REDUCTION

Subgoal subject_reduction.4 is:
exists D3, {Gamma |- D3 : of (app M4 N) T}

At the end of this, we have four cases, one for each step rule, with the current proof state
reflecting the step-lam case.

One new tactic used is the prune tactic. In the step-lam case, applying the inductive hypothesis
creates a term which must be applied to several unneeded nominal constants. This can be removed
using the prune tactic.

subject_reduction.1>> case H2.
...

subject_reduction.1>> apply IH to H6 H10.

...
H11:{Gamma, n5:tm, n6:of n5 T1 |- D1 n6 n5 n4 n3 n2 n1 n : of (R2 n5) T2}
...

subject_reduction.1>> prune H11.

...
H11:{Gamma, n5:tm, n6:of n5 T1 |- D1 n6 n5 : of (R2 n5) T2}
...

subject_reduction.1>> exists of_lam R2 T1 T2 ([x] [x1] D1 x1 x).

...

subject_reduction.1>> search.
Searching for derivation of:
{Gamma |- of_lam R2 T1 T2 ([x][x1]D1 x1 x) : of (lam T1 R2) (arr T1 T2)}
Searching for derivation of:
{Gamma |- R2 : {x:tm}tm}
Searching for derivation of:
{Gamma |- T1 : ty}
Searching for derivation of:
{Gamma |- T2 : ty}
Searching for derivation of:
{Gamma |- [x][x1]D1 x1 x : {x:tm}{z:of x T1}of (R2 x) T2}

Subgoal subject_reduction.2:

Vars: T1:o, R:(o) -> o, N:o, D2:o, T:o
Nominals: n:o
Contexts: Gamma{n}:c[]
IH: ...
H2:{Gamma |- D2 : of (app (lam T1 R) N) T}

4.2. PROVING SUBJECT REDUCTION IN ADELFA 31

H3:{Gamma |- T1 : ty}*
H4:{Gamma, n:tm |- R n : tm}*
H5:{Gamma |- N : tm}*

==================================
exists D3, {Gamma |- D3 : of (R N) T}

Subgoal subject_reduction.3 is:
exists D3, {Gamma |- D3 : of (app M N2) T}

Subgoal subject_reduction.4 is:
exists D3, {Gamma |- D3 : of (app M4 N) T}

The next case, dealing with step-beta, makes use of Adelfa’s inst tactic. This tactic allows for
the use of instantiation for LF, shown to be a meta-theoretic property of LF in Section 2.1.3. This
translates, in the informal proof, to the usage of the STLC meta-theoretic property of instantiation,
which comes automatically with the encoding due to higher order abstract syntax.

subject_reduction.2>> case H2.

...

subject_reduction.2>> case H10.

...
H7:{Gamma |- N : tm}
...
H15:{Gamma, n2:tm, n3:of n2 D3 |- D6 n2 n3 : of (R n2) T}
...

subject_reduction.2>> inst H15 with n2 = N.
Searching for derivation of:
{Gamma |- N : tm}
...
H11:{Gamma |- D5 : of N D3}
...
H16:{Gamma, n3:of N D3 |- D6 N n3 : of (R N) T}
...

subject_reduction.2>> inst H16 with n3 = D5.
Searching for derivation of:
{Gamma |- D5 : of N D3}

...
H17:{Gamma |- D6 N D5 : of (R N) T}
...

subject_reduction.2>> exists D6 N D5.

32 CHAPTER 4. SUBJECT REDUCTION

subject_reduction.2>> search.
Searching for derivation of:
{Gamma |- D6 N D5 : of (R N) T}

Subgoal subject_reduction.3:

Vars: D:o, N1:o, M:o, N2:o, D2:o, T:o
Contexts: Gamma{}:c[]
IH: ...
H2:{Gamma |- D2 : of (app M N1) T}
H3:{Gamma |- M : tm}*
H4:{Gamma |- N1 : tm}*
H5:{Gamma |- N2 : tm}*
H6:{Gamma |- D : step N1 N2}*

==================================
exists D3, {Gamma |- D3 : of (app M N2) T}

Subgoal subject_reduction.4 is:
exists D3, {Gamma |- D3 : of (app M4 N) T}

From here, the proof makes use of tactics which have already been covered to prove the
step-app2 and step-app1 cases. The full input to Adelfa for the entire proof shown in Figure 4.2.

4.2. PROVING SUBJECT REDUCTION IN ADELFA 33

Specification "stlc.elf".

Schema c :=
{T}(x:tm,y:of x T).

Theorem subject_reduction : ctx Gamma:c, forall M1 M2 T D1 D2,
{Gamma |- D1 : step M1 M2} => {Gamma |- D2 : of M1 T} => exists D3,
{Gamma |- D3 : of M2 T}.

induction on 1. intros. case H1.

% step-lam case
case H2.
apply IH to H6 H10.
prune H11.
exists of_lam R2 T1 T2 ([x] [x1] D1 x1 x).
search.

% step-beta case
case H2.
case H10.
inst H15 with n2 = N.
inst H16 with n3 = D5.
exists D6 N D5.
search.

% step-app2 case
case H2.
apply IH to H6 H12.
exists of_app M N2 T U a1 D3.
search.

% step-app1 case
case H2.
apply IH to H6 H11.
exists of_app M4 N T U D3 a2.
search.

Figure 4.2: Full proof of subject reduction

34 CHAPTER 4. SUBJECT REDUCTION

Chapter 5

Conclusion

This thesis demonstrates an example of a proof of a property of a programming language in Adelfa,
a proof assistant assisting in the creation and verification of proofs of rule based systems using
a logic for reasoning about encodings of those systems in LF. The particular property proven
is subject reduction of the Simply Typed Lambda Calculus. This property is a useful property
with a nontrivial proof, and is proven for a lambda calculus that is a useful model for practical
programming languages and more complicated lambda calculi. By demonstrating the proof of this
property, we hope to have demonstrated the usefulness of Adelfa in creating proofs of programming
languages.

One of the goals for this work was to identify enhancements to Adelfa that would make it a more
flexible system in formalizing properties of programming languages. A particular addition that we
suggest in this spirit is that of logic level definitions. Similar to the definitions in Abella [BCG+14],
these would allow for declaring a name, possibly indexed by terms, and a formula, and being able to
use the definition as an if or only if statement to create or use the declared definitions. This would
allow for a new method for encoding properties of interest. In particular, this would allow for the
usage of the full formula syntax of the logic when defining relations, rather than simply LF syntax.
This is useful as the formula syntax is richer, including existential and universal quantification.

35

36 CHAPTER 5. CONCLUSION

Bibliography

[BCG+14] David Baelde, Kaustuv Chaudhuri, Andrew Gacek, Dale Miller, Gopalan Nadathur,
Alwen Tiu, and Yuting Wang. Abella: A system for reasoning about relational specifi-
cations. Journal of Formalized Reasoning, 7(2), 2014.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.
Journal of the ACM, 40(1):143–184, 1993.

[HL07] Robert Harper and Daniel R. Licata. Mechanizing metatheory in a logical framework.
Journal of Functional Programming, 17(4–5):613–673, July 2007.

[PS02] Frank Pfenning and Carsten Schürmann. Twelf User’s Guide, 1.4 edition, December
2002.

[Sou21] Mary Southern. A Framework for Reasoning About LF Specifications. PhD thesis,
University of Minnesota, May 2021. http://arxiv.org/abs/2105.04110.

37

