61,916 research outputs found

    Trust and privacy management support for context-aware service platforms

    Get PDF
    In a context-aware service platform, service providers adapt their services to the current situation of the service users using context information retrieved from context information providers. In such a service provisioning platform, important trust and privacy issues arise, because different entities responsible for different tasks have to collaborate in the provisioning of the services. Context information is privacy sensitive by nature, making the communication and processing of this information a potential privacy threat. The main goal of this thesis is to learn how to support users and providers of context-aware services in managing the trade-off between privacy protection and context-based service adaptation. More and more precise context information retrieved from trustworthy context information providers allows context-aware service provider to adapt their services more reliably. However, more and more precise context information also means a higher risk for the service users in case of a privacy violation

    A Distributed Context-Aware Trust Management Architecture

    Get PDF
    The realization of a pervasive context-aware service platform imposes new challenges for the security and privacy aspects of the system in relation to traditional service platforms. One important aspect is related with the management of trust relationships, which is especially hard in a pervasive environment because users are supposed to interact with entities unknown before hand in an ad-hoc and dynamic manner. Current trust management solutions do not adapt nor scale well in this dynamic service provisioning scenario because they require previously defined trust relationships in order to operate. The objective of this thesis is to design, prototype and validate a context-aware distributed trust management architecture in order to address: (a) the lack of integration between available trust solutions and security and privacy management languages, and (b) the dynamic characteristics of a context-aware service platform

    Trustworthiness and Quality of Context Information

    Get PDF
    Context-aware service platforms use context information to customize their services to the current users’ situation. Due to technical limitations in sensors and context reasoning algorithms, context information does not always represent accurately the reality, and Quality of Context (QoC) models have been proposed to quantify this inaccuracy. The problems we have identified with existing QoC models is that they do not follow a standard terminology and none of them clearly differentiate quality attributes related to instances of context information (e.g. accuracy and precision) from trustworthiness, which is a quality attribute related to the context information provider. In this paper we propose a QoC model and management architecture that supports the management of QoC trustworthiness and also contributes to the terminology alignment of existing QoC models.\ud In our QoC model, trustworthiness is a measurement of the reliability of a context information provider to provide context information about a specific entity according to a certain quality level. This trustworthiness value is used in our QoC management architecture to support context-aware service providers in the selection of trustworthy context\ud providers. As a proof of concept to demonstrate the feasibility of our work we show a prototype implementation of our QoC model and management architecture

    Middleware Technologies for Cloud of Things - a survey

    Get PDF
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Middleware Technologies for Cloud of Things - a survey

    Full text link
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017
    corecore