7,919 research outputs found

    A Composite Trust Model for Secure Routing in Mobile Ad-Hoc Networks

    Get PDF
    It is imperative to address the issue of secure routing in mobile ad-hoc networks (MANETs) where the nodes seek for cooperative and trusted behaviour from the peer nodes in the absence of well-established infrastructure and centralized authority. Due to the inherent absence of security considerations in the traditional ad-hoc routing protocols, providing security and reliability in the routing of data packets is a major challenge. This work addresses this issue by proposing a composite trust metric based on the concept of social trust and quality-of-service (QoS) trust. Extended from the ad-hoc on-demand distance vector (AODV) routing protocol, we propose an enhanced trust-based model integrated with an attack-pattern discovery mechanism, which attempts to mitigate the adversaries craving to carry out distinct types of packet-forwarding misbehaviours. We present the detailed mode of operations of three distinct adversary models against which the proposed scheme is evaluated. Simulation results under different network conditions depict that the combination of social and QoS trust components provides significant improvement in packet delivery ratio, routing overhead, and energy consumption compared to an existing trust-based scheme

    Enhanced dynamic source routing for verifying trust in mobile ad hoc network for secure routing

    Get PDF
    Secure data transfer in mobile ad hoc network (MANET) against malicious attacks is of immense importance. In this paper, we propose a new enhanced trust model for securing the MANET using trust-based scheme that uses both blind trust and referential trust. In order to do this, the trust relationship function has to be integrated with the dynamic source routing (DSR) protocol for making the protocol more secure. We thoroughly analyze the DSR protocol and generate the performance matrices for the data pertaining to packets sent, packets received, packets loss, and throughput. We also analyze the outcome attained from the improvised trust establishment scheme by using the three algorithm implementations in NS2 simulator for detecting and preventing various types of attacks

    F3TM: flooding factor based trust management framework for secure data transmission in MANETs

    Get PDF
    Due to the absence of infrastructure support, secure data dissemination is a challenging task in scalable mobile ad hoc networks (MANETs) environment. In most of the traditional routing techniques for MANETs, either security has not been taken into account or only one aspect of security concern has been addressed without optimizing the routing performance. This paper proposes Flooding Factor based Framework for Trust Management (F3TM) in MANETs. True flooding approach is utilized to identify attacker nodes based on the calculation of trust value. Route Discovery Algorithm is developed to discover an efficient and secure path for data forwarding using Experimental Grey Wolf algorithm for validating network nodes. Enhanced Multi-Swarm Optimization is used to optimize the identified delivery path. Simulations are carried out in ns2 to assess and compare the performance of F3TM with the state-of-the-art frameworks: CORMAN and PRIME considering the metrics including delay, packet delivery ration, overhead and throughput. The performance assessment attests the reliable security of F3TM compared to the state-of-the-art frameworks

    Design & Evaluation of Path-based Reputation System for MANET Routing

    Get PDF
    Most of the existing reputation systems in mobile ad hoc networks (MANET) consider only node reputations when selecting routes. Reputation and trust are therefore generally ensured within a one-hop distance when routing decisions are made, which often fail to provide the most reliable, trusted route. In this report, we first summarize the background studies on the security of MANET. Then, we propose a system that is based on path reputation, which is computed from reputation and trust values of each and every node in the route. The use of path reputation greatly enhances the reliability of resulting routes. The detailed system architecture and components design of the proposed mechanism are carefully described on top of the AODV (Ad-hoc On-demand Distance Vector) routing protocol. We also evaluate the performance of the proposed system by simulating it on top of AODV. Simulation experiments show that the proposed scheme greatly improves network throughput in the midst of misbehavior nodes while requires very limited message overhead. To our knowledge, this is the first path-based reputation system proposal that may be implemented on top of a non-source based routing scheme such as AODV

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Secure Routing in Wireless Mesh Networks

    Get PDF
    Wireless mesh networks (WMNs) have emerged as a promising concept to meet the challenges in next-generation networks such as providing flexible, adaptive, and reconfigurable architecture while offering cost-effective solutions to the service providers. Unlike traditional Wi-Fi networks, with each access point (AP) connected to the wired network, in WMNs only a subset of the APs are required to be connected to the wired network. The APs that are connected to the wired network are called the Internet gateways (IGWs), while the APs that do not have wired connections are called the mesh routers (MRs). The MRs are connected to the IGWs using multi-hop communication. The IGWs provide access to conventional clients and interconnect ad hoc, sensor, cellular, and other networks to the Internet. However, most of the existing routing protocols for WMNs are extensions of protocols originally designed for mobile ad hoc networks (MANETs) and thus they perform sub-optimally. Moreover, most routing protocols for WMNs are designed without security issues in mind, where the nodes are all assumed to be honest. In practical deployment scenarios, this assumption does not hold. This chapter provides a comprehensive overview of security issues in WMNs and then particularly focuses on secure routing in these networks. First, it identifies security vulnerabilities in the medium access control (MAC) and the network layers. Various possibilities of compromising data confidentiality, data integrity, replay attacks and offline cryptanalysis are also discussed. Then various types of attacks in the MAC and the network layers are discussed. After enumerating the various types of attacks on the MAC and the network layer, the chapter briefly discusses on some of the preventive mechanisms for these attacks.Comment: 44 pages, 17 figures, 5 table
    corecore