1,747 research outputs found

    Numerical Predictive Control for Delay Compensation

    Get PDF
    We present a delay-compensating control method that transforms exponentially stabilizing controllers for an undelayed system into a sample-based predictive controller with numerical integration. Our method handles both first-order and transport delays in actuators and trades-off numerical accuracy with computation delay to guaranteed stability under hardware limitations. Through hybrid stability analysis and numerical simulation, we demonstrate the efficacy of our method from both theoretical and simulation perspectives

    Output-feedback anti-disturbance predictor-based control for discrete-time systems with time-varying input delays

    Full text link
    [EN] This paper investigates the robust stabilization of discrete-time systems with time-varying input delays and model uncertainties by predictor-based anti-disturbance output-feedback control strategies. Here, a novel predictor-feedback control combined with an extended state observer is proposed. The objective is to counteract the negative effects of input delays while actively rejecting disturbance signals typically encountered in engineering practice, such as steps or harmonics. Differently from previous approaches, unknown but bounded time-varying delays are taken into consideration. Moreover, the complexity of the algorithm for control synthesis is notably reduced. Finally, an illustrative example from the literature is provided to show that better robust performance can be achieved with the proposed method.This work was partially supported by projects TIN201786520C31R, Ministerio de Economia y Competitividad (Spain) , and PGC2018098719BI00, MCIU/AEI/FEDER, UE, and Group DGA T4517R, Spain. The material in this paper was not presented at any conference. This paper was recommended for publication in revised form by Associate Editor Bin Zhou under the direction of Editor Ian R. Petersen.González Sorribes, A.; García Gil, PJ. (2021). Output-feedback anti-disturbance predictor-based control for discrete-time systems with time-varying input delays. Automatica. 129:1-8. https://doi.org/10.1016/j.automatica.2021.109627S1812

    An LMI Condition for the Robustness of Constant-Delay Linear Predictor Feedback with Respect to Uncertain Time-Varying Input Delays

    Get PDF
    This paper discusses the robustness of the constant-delay predictor feedback in the case of an uncertain time-varying input delay. Specifically, we study the stability of the closed-loop system when the predictor feedback is designed based on the knowledge of the nominal value of the time-varying delay. By resorting to an adequate Lyapunov-Krasovskii functional, we derive an LMI-based sufficient condition ensuring the exponential stability of the closed-loop system for small enough variations of the time-varying delay around its nominal value. These results are extended to the feedback stabilization of a class of diagonal infinite-dimensional boundary control systems in the presence of a time-varying delay in the boundary control input.Comment: Published in Automatica as a brief pape

    New predictive scheme for the control of LTI systems with input delay and unknown disturbances

    Get PDF
    International audienceA new predictive scheme is proposed for the control of Linear Time Invariant (LTI) systems with a constant and known delay in the input and unknown disturbances. It has been achieved to include disturbances effect in the prediction even though there are completely unknown. The Artstein reduction is thenrevisited thanks to the computation of this new prediction. An extensive comparison with the standard scheme is presented throughout the article. It is proved that the new scheme leads to feedback controllers that are able to reject perfectly constant disturbances. For time-varying ones, a better attenuation is achieved for a wide range of perturbations and for both linear and nonlinear controllers. A criterion is given to characterize this class of perturbations. Finally, some simulations illustrate the results

    Robust control strategies for unstable systems with input/output delays

    Full text link
    Los sistemas con retardo temporal aparecen con frecuencia en el ámbito de la ingeniería, por ejemplo en transmisiones hidráulicas o mecánicas, procesos metalúrgicos o sistemas de control en red. Los retardos temporales han despertado el interés de los investigadores en el ámbito del control desde finales de los años 50. Se ha desarrollado una amplia gama de herramientas para el análisis de su estabilidad y prestaciones, especialmente durante las dos últimas décadas. Esta tesis se centra en la estabilización de sistemas afectados por retardos temporales en la actuación y/o la medida. Concretamente, las contribuciones que aquí se incluyen tienen por objetivo mejorar las prestaciones de los controladores existentes en presencia de perturbaciones. Los retardos temporales degradan, inevitablemente, el desempeño de un bucle de control. No es de extrañar que el rechazo de perturbaciones haya sido motivo de estudio desde que emergieron los primeros controladores predictivos para sistemas con retardo. Las estrategias presentadas en esta tesis se basan en la combinación de controladores predictivos y observadores de perturbaciones. Estos últimos han sido aplicados con éxito para mejorar el rechazo de perturbaciones de controladores convencionales. Sin embargo, la aplicación de esta metodología a sistemas con retardo es poco frecuente en la literatura, la cual se investiga exhaustivamente en esta tesis. Otro inconveniente de los controladores predictivos está relacionado con su implementación, que puede llevar a la inestabilidad si no se realiza cuidadosamente. Este fenómeno está relacionado con el hecho de que las leyes de control predictivas se expresan mediante una ecuación integral. En esta tesis se presenta una estructura de control alternativa que evita este problema, la cual utiliza un observador de dimensión infinita, gobernado por una ecuación en derivadas parciales de tipo hiperbólico.Time-delay systems are ubiquitous in many engineering applications, such as mechanical or fluid transmissions, metallurgical processes or networked control systems. Time-delay systems have attracted the interest of control researchers since the late 50's. A wide variety of tools for stability and performance analysis has been developed, specially over the past two decades. This thesis is focused on the problem of stabilizing systems that are affected by delays on the actuator and/or sensing paths. More specifically, the contributions herein reported aim at improving the performance of existing controllers in the presence of external disturbances. Time delays unavoidably degrade the control loop performance. Disturbance rejection has been a matter of concern since the first predictive controllers for time-delay systems emerged. The key idea of the strategies presented in this thesis is the combination of predictive controllers and disturbance observers. The latter have been successfully applied to improve the disturbance rejection capabilities of conventional controllers. However, the application of this methodology to time-delay systems is rarely found in the literature. This combination is extensively investigated in this thesis. Another handicap of predictive controllers has to do with their implementation, which can induce instability if not done carefully. This issue is related to the fact that predictive control laws take the form of integral equations. An alternative control structure that avoids this problem is also reported in this thesis, which employs an infinite-dimensional observer, governed by a hyperbolic partial differential equation.Sanz Díaz, R. (2018). Robust control strategies for unstable systems with input/output delays [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/111830TESI

    LTV stochastic systems stabilization with large and variable input delay

    Get PDF
    In this paper we propose a solution to the state-feedback and output-feedback stabilization problem for linear time-varying stochastic systems affected by arbitrarily large and variable input delay. It is proved that under the proposed controller the underlying stochastic process is exponentially centered and mean square bounded. The solution is given through a set of delay differential equations with cardinality proportional to the delay bound. The predictor is based on the semigroup generated by the closed-loop system in absence of delay, and its computation is described by a numerically reliable and robust method. In the deterministic case this method generates the same optimal trajectories as in the delay-less case
    corecore