290,178 research outputs found

    Exploiting depth information for fast motion and disparity estimation in multi-view video coding

    Get PDF
    This research work is partially funded by the Strategic Educational Pathways Scholarship Scheme (STEPS-Malta). This scholarship is partly financed by the European Union – European Social Fund (ESF 1.25).Multi-view Video Coding (MVC) employs both motion and disparity estimation within the encoding process. These provide a significant increase in coding efficiency at the expense of a substantial increase in computational requirements. This paper presents a fast motion and disparity estimation technique that utilizes the multi-view geometry together with the depth information and the corresponding encoded motion vectors from the reference view, to produce more reliable motion and disparity vector predictors for the current view. This allows for a smaller search area which reduces the computational cost of the multi-view encoding system. Experimental results confirm that the proposed techniques can provide a speed-up gain of up to 4.2 times, with a negligible loss in the rate-distortion performance for both the color and the depth MVC.peer-reviewe

    Waveguide Holography: Towards True 3D Holographic Glasses

    Full text link
    We present a novel near-eye display concept which consists of a waveguide combiner, a spatial light modulator, and a laser light source. The proposed system can display true 3D holographic images through see-through pupil-replicating waveguide combiner as well as providing a large eye-box. By modeling the coherent light interaction inside of the waveguide combiner, we demonstrate that the output wavefront from the waveguide can be controlled by modulating the wavefront of input light using a spatial light modulator. This new possibility allows combining a holographic display, which is considered as the ultimate 3D display technology, with the state-of-the-art pupil replicating waveguides, enabling the path towards true 3D holographic augmented reality glasses

    Volumetric 3D Display System with Static Screen

    Get PDF
    Current display technology has relied on flat, 2D screens that cannot truly convey the third dimension of visual information: depth. In contrast to conventional visualization that is primarily based on 2D flat screens, the volumetric 3D display possesses a true 3D display volume, and places physically each 3D voxel in displayed 3D images at the true 3D (x,y,z) spatial position. Each voxel, analogous to a pixel in a 2D image, emits light from that position to form a real 3D image in the eyes of the viewers. Such true volumetric 3D display technology provides both physiological (accommodation, convergence, binocular disparity, and motion parallax) and psychological (image size, linear perspective, shading, brightness, etc.) depth cues to human visual systems to help in the perception of 3D objects. In a volumetric 3D display, viewers can watch the displayed 3D images from a completely 360 view without using any special eyewear. The volumetric 3D display techniques may lead to a quantum leap in information display technology and can dramatically change the ways humans interact with computers, which can lead to significant improvements in the efficiency of learning and knowledge management processes. Within a block of glass, a large amount of tiny dots of voxels are created by using a recently available machining technique called laser subsurface engraving (LSE). The LSE is able to produce tiny physical crack points (as small as 0.05 mm in diameter) at any (x,y,z) location within the cube of transparent material. The crack dots, when illuminated by a light source, scatter the light around and form visible voxels within the 3D volume. The locations of these tiny voxels are strategically determined such that each can be illuminated by a light ray from a high-resolution digital mirror device (DMD) light engine. The distribution of these voxels occupies the full display volume within the static 3D glass screen. This design eliminates any moving screen seen in previous approaches, so there is no image jitter, and has an inherent parallel mechanism for 3D voxel addressing. High spatial resolution is possible with a full color display being easy to implement. The system is low-cost and low-maintenance

    Spatial 3D imaging by synthetic and digitized holography

    Get PDF
    A novel method named digitized holography is proposed for 3D display systems. This is the technique replacing the whole process of classical holography with digital processing of optical wave-fields. The digitized holography allows us to edit holograms and reconstruct spatial 3D images including real-existent objects and CG-modeled virtual objects.2011 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON 2011), 16-18 May 2011, Antalya, Turke

    Numerical reconstruction of digital holograms for conventional 3D display

    Get PDF
    True hologram video displays are currently under development, but are not yet available. Because of this restriction, conventional 3D displays can be used with digital holographic data. However when using conventional 3D displays, holographic data has to be processed correctly to meet the requirements of the display. A unique property of digital holograms, namely that a single hologram encodes multiple perspectives, can be used to achieve this goal. Reconstructions from digital holograms at different perspectives are processed further to meet the requirements of the conventional 3D display, which are typically based on stereoscopic images of the scene

    Three dimensional volumetric display

    Get PDF
    Three dimensional (3D) displays are part of a growing market. These 3D displays are often seen in home entertainment and film industries. The most common three dimensional techniques require the use of glasses with special lenses to add the effect of “depth” in an animation. This project attempts to prove that a true three dimensional display can be made using low cost and accessible materials. The display is made from 625 Light Emitting Diodes (LEDs) on a Peggy 2LE LED matrix display. The Peggy 2LE board is spun around 15 Hz and held tight between two cylindrical bearings. Blender, an open source animation software, in tandem with Mathematica, a technical computing application, was used to convert three dimensional animation objects into a precise sequence of LED flashes. The sequence of abrupt LED flashes over the sweeping volume of the LED matrix created the appearance of a true three dimensional object. The three dimensional display created in this project had almost no loss of occlusion, enabling the display to be viewed with near perfect perspective at all angles without the need of special glasses. This report will include an introduction explaining how volumetric displays work as well as what other 3D technologies exist today. Then a generalized methodology explaining how the project was put together and finally the results of the project will be discussed

    Model implementation and analysis of a true three-dimensional display system

    Get PDF
    To model a true three-dimensional (3D) display system, we introduced the method of voxel molding to obtain the stereoscopic imaging space of the system. For the distribution of each voxel, we proposed a four-dimensional (4D) Givone–Roessor (GR) model for state-space representation—that is, we established a local state-space model with the 3D position and one-dimensional time coordinates to describe the system. First, we extended the original elementary operation approach to a 4D condition and proposed the implementation steps of the realization matrix of the 4D GR model. Then, we described the working process of a true 3D display system, analyzed its real-time performance, introduced the fixed-point quantization model to simplify the system matrix, and derived the conditions for the global asymptotic stability of the system after quantization. Finally, we provided an example to prove the true 3D display system’s feasibility by simulation. The GR-model-representation method and its implementation steps proposed in this paper simplified the system’s mathematical expression and facilitated the microcontroller software implementation. Real-time and stability analyses can be used widely to analyze and design true 3D display systems
    corecore