58 research outputs found

    Storing and querying evolving knowledge graphs on the web

    Get PDF

    OSTRICH : versioned random-access triple store

    Get PDF

    Formal Concept Analysis for Semantic Compression of Knowledge Graph Versions

    Get PDF
    International audienceRecent years have witnessed the increase of openly available knowledge graphs online. These graphs are often structured according to the W3C semantic web standard RDF. With this availability of information comes the challenge of coping with dataset versions as information may change in time and therefore deprecates the former knowledge graph. Several solutions have been proposed to deal with data versioning, mainly based on computing data deltas and having an incremental approach to keep track of the version history. In this article, we describe a novel method that relies on aggregating graph versions to obtain one single complete graph. Our solution semantically compresses similar and common edges together to obtain a final graph smaller than the sum of the distinct versioned ones. Technically, our method takes advantage of FCA to match graph elements together. We also describe how this compressed graph can be queried without being unzipped, using standard methods

    Graph database management systems: storage, management and query processing

    Get PDF
    The proliferation of graph data, generated from diverse sources, have given rise to many research efforts concerning graph analysis. Interactions in social networks, publication networks, protein networks, software code dependencies and transportation systems are all examples of graph-structured data originating from a variety of application domains and demonstrating different characteristics. In recent years, graph database management systems (GDBMS) have been introduced for the management and analysis of graph data. Motivated by the growing number of real-life applications making use of graph database systems, this thesis focuses on the effectiveness and efficiency aspects of such systems. Specifically, we study the following topics relevant to graph database systems: (i) modeling large-scale applications in GDBMS; (ii) storage and indexing issues in GDBMS, and (iii) efficient query processing in GDBMS. In this thesis, we adopt two different application scenarios to examine how graph database systems can model complex features and perform relevant queries on each of them. Motivated by the popular application of social network analytics, we selected Twitter, a microblogging platform, to conduct our detailed analysis. Addressing limitations of existing models, we pro- pose a data model for the Twittersphere that proactively captures Twitter-specific interactions. We examine the feasibility of running analytical queries on GDBMS and offer empirical analysis of the performance of the proposed approach. Next, we consider a use case of modeling software code dependencies in a graph database system, and investigate how these systems can support capturing the evolution of a codebase overtime. We study a code comprehension tool that extracts software dependencies and stores them in a graph database. On a versioned graph built using a very large codebase, we demonstrate how existing code comprehension queries can be efficiently processed and also show the benefit of running queries across multiple versions. Another important aspect of this thesis is the study of storage aspects of graph systems. Throughput of many graph queries can be significantly affected by disk I/O performance; therefore graph database systems need to focus on effective graph storage for optimising disk operations. We observe that the locality of edges plays an important role and we address the edge-labeling problem which aims to label both incoming and outgoing edges of a graph maximizing the ‘edge-consecutiveness’ metric. By achieving a better layout and locality of edges on disk, we show that our proposed algorithms result in significantly improved disk I/O performance leading to faster execution of neighbourhood queries. Some applications require the integrated processing of queries from graph and the textual domains within a graph database system. Aggregation of these dimensions facilitates gaining key insights in several application scenarios. For example, in a social network setting, one may want to find the closest k users in the network (graph traversal) who talk about a particular topic A (textual search). Motivated by such practical use cases, in this thesis we study the top-k social-textual ranking query that essentially requires efficient combination of a keyword search query with a graph traversal. We propose algorithms that leverage graph partitioning techniques, based on the premise that socially close users will be placed within the same partition, allowing more localised computations. We show that our proposed approaches are able to achieve significantly better results compared to standard baselines and demonstrating robust behaviour under changing parameters
    corecore