7 research outputs found

    Unlocking the Future of Drug Development:Generative AI, Digital Twins, and Beyond

    Get PDF
    This article delves into the intersection of generative AI and digital twins within drug discovery, exploring their synergistic potential to revolutionize pharmaceutical research and development. Through various instances and examples, we illuminate how generative AI algorithms, capable of simulating vast chemical spaces and predicting molecular properties, are increasingly integrated with digital twins of biological systems to expedite drug discovery. By harnessing the power of computational models and machine learning, researchers can design novel compounds tailored to specific targets, optimize drug candidates, and simulate their behavior within virtual biological environments. This paradigm shift offers unprecedented opportunities for accelerating drug development, reducing costs, and, ultimately, improving patient outcomes. As we navigate this rapidly evolving landscape, collaboration between interdisciplinary teams and continued innovation will be paramount in realizing the promise of generative AI and digital twins in advancing drug discovery

    Linking generative semi-supervised learning and generative open-set recognition

    Full text link
    This study investigates the relationship between semi-supervised learning (SSL) and open-set recognition (OSR) in the context of generative adversarial networks (GANs). Although no previous study has formally linked SSL and OSR, their respective methods share striking similarities. Specifically, SSL-GANs and OSR-GANs require their generators to produce samples in the complementary space. Subsequently, by regularising networks with generated samples, both SSL and OSR classifiers generalize the open space. To demonstrate the connection between SSL and OSR, we theoretically and experimentally compare state-of-the-art SSL-GAN methods with state-of-the-art OSR-GAN methods. Our results indicate that the SSL optimised margin-GANs, which have a stronger foundation in literature, set the new standard for the combined SSL-OSR task and achieves new state-of-other art results in certain general OSR experiments. However, the OSR optimised adversarial reciprocal point (ARP)-GANs still slightly out-performed margin-GANs at other OSR experiments. This result indicates unique insights for the combined optimisation task of SSL-OSR

    Diffusion Models and Semi-Supervised Learners Benefit Mutually with Few Labels

    Full text link
    In an effort to further advance semi-supervised generative and classification tasks, we propose a simple yet effective training strategy called dual pseudo training (DPT), built upon strong semi-supervised learners and diffusion models. DPT operates in three stages: training a classifier on partially labeled data to predict pseudo-labels; training a conditional generative model using these pseudo-labels to generate pseudo images; and retraining the classifier with a mix of real and pseudo images. Empirically, DPT consistently achieves SOTA performance of semi-supervised generation and classification across various settings. In particular, with one or two labels per class, DPT achieves a Fr\'echet Inception Distance (FID) score of 3.08 or 2.52 on ImageNet 256x256. Besides, DPT outperforms competitive semi-supervised baselines substantially on ImageNet classification tasks, achieving top-1 accuracies of 59.0 (+2.8), 69.5 (+3.0), and 74.4 (+2.0) with one, two, or five labels per class, respectively. Notably, our results demonstrate that diffusion can generate realistic images with only a few labels (e.g., <0.1%) and generative augmentation remains viable for semi-supervised classification. Our code is available at https://github.com/ML-GSAI/DPT.Comment: Accepted to NeurIPS 202
    corecore