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Abstract: This article delves into the intersection of generative AI and digital twins within drug
discovery, exploring their synergistic potential to revolutionize pharmaceutical research and devel-
opment. Through various instances and examples, we illuminate how generative AI algorithms,
capable of simulating vast chemical spaces and predicting molecular properties, are increasingly
integrated with digital twins of biological systems to expedite drug discovery. By harnessing the
power of computational models and machine learning, researchers can design novel compounds
tailored to specific targets, optimize drug candidates, and simulate their behavior within virtual
biological environments. This paradigm shift offers unprecedented opportunities for accelerating
drug development, reducing costs, and, ultimately, improving patient outcomes. As we navigate
this rapidly evolving landscape, collaboration between interdisciplinary teams and continued inno-
vation will be paramount in realizing the promise of generative AI and digital twins in advancing
drug discovery.
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1. Introduction

Decades back, Alan Turing, often hailed as the visionary behind modern computer
science, stirred the imagination of generations with his bold inquiry into the essence of
machine cognition. In his seminal work “Computing Machinery and Intelligence”, he
challenged the boundaries of human understanding by introducing the enigmatic Turing
Test, sparking a timeless debate on the capacity of machines to think and emulate human
intelligence honestly [1]. His question, “Can machines think?”, eventually led to the birth
of artificial intelligence (AI). The term AI was coined in 1956 by John McCarthy during The
Dartmouth Summer Research Project on Artificial Intelligence [2]. Progressively, in the late
1950s, two key milestones were set: Arthur Samuel created the first self-learning program
for checkers, marking the introduction of machine learning (ML); and Frank Rosenblatt
developed the first perceptron, representing the earliest form of a neural network [3]. One
of the earliest instances of functional generative AI was the ELIZA chatbot, developed by
Joseph Weizenbaum in 1961 [4]. These milestones laid the foundation for the evolution of
AI and its applications in various fields, including medicine and drug discovery.

In recent years, a subset of AI, generative AI, has undergone significant advancements,
transforming various domains by generating realistic content. Generative AI refers to
a category of models designed to generate new content similar to, but not the same as,
the input data it was trained on [5–7]. Unlike traditional AI systems that are often task-
specific and deterministic, generative AI systems can produce novel outputs by learning
the underlying patterns and structures of the training data. Initially utilizing models
like hidden Markov models (HMMs) and Gaussian mixture models (GMMs), the field
witnessed a breakthrough with the introduction of generative adversarial networks (GANs)
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by Ian Goodfellow in 2014. GANs have been implemented in cardiology and used for
detecting Pneumonia, COVID-19, etc., as discussed later in this review [8–13]. Other
models, like recurrent neural networks (RNNs) and transformers, have also contributed
to the progress of generative AI, enabling tasks in natural language processing (NLP),
computer vision (CV), and digital twins (DT). These models are being increasingly applied
to improve healthcare and medicine (Table 1) [14–24]. Such advancements in generative AI
have enhanced content generation capabilities and found applications specifically in drug
discovery, where models are employed to design novel molecules with desired properties
to accelerate drug development and clinical trials, which will be discussed throughout
this review.

Table 1. Concise definitions of key terms in advanced machine learning and AI.

Term Definition

Digital Twins Virtual replicas of physical systems used for simulation, analysis, and optimization

Generative AI AI systems that create new content or data resembling real-world examples

Generative Adversarial Networks (GANs) Machine learning models comprising two neural networks, a generator and a
discriminator, that compete to improve each other

Variational Autoencoders (VAEs) Neural networks that encode data into a compressed latent space and decode it
back, allowing for data generation

Encoder–Decoder Transformer architecture A neural network design using self-attention mechanisms to process sequences of
data, commonly used in natural language processing tasks

Reinforcement Learning A type of machine learning where an agent learns to make decisions by receiving
rewards or penalties

Restricted Boltzmann Machines (RBMs) Energy-based neural networks for unsupervised learning, with one visible layer
and one hidden layer

Recurrent Neural Networks (RNNs) Neural networks designed to handle sequential data by maintaining a memory of
previous inputs

Hidden Markov Models (HMMs) Statistical models that represent systems with hidden states and observable events,
used for time-series analysis

Gaussian Mixture Models (GMMs) Probabilistic models representing data as a mixture of several Gaussian
distributions, useful for clustering and density estimation

Identifying and prioritizing chemical compounds for drug development can pose
significant challenges, as determining which compounds are most promising for treat-
ing specific diseases requires extensive laboratory screening and testing. Generative AI
streamlines this process by leveraging advanced chemistry models to analyze millions of
known chemical compounds based on their structure and functionality. By overlaying this
data with existing results from tested molecules, generative AI accelerates the screening
process and aids in identifying compounds with the highest potential for successful treat-
ment [25,26]. Research from the Tufts Centre for the Study of Drug Development indicates
that bringing a single drug to market typically requires ten years and USD 1.4 billion, with
about 80% of expenses attributed to clinical development [27]. This phase involves rigorous
testing of a medication’s safety and efficacy in human subjects, characterized by lengthy
timelines and strict regulatory requirements. Generative AI addresses these challenges by
increasing efficiency across clinical development. It achieves up to 50% cost reductions by
streamlining trial processes and automating document drafting, shortens trial timelines
by over 12 months, and enhances net present value by at least 20% through improved
health authority interactions, quality control, and signal management. The McKinsey
Global Institute estimates that generative AI could yield USD 60 billion to USD 110 billion
annually for the pharmaceutical and medical product sectors [28]. This potential economic
value stems from its ability to enhance productivity by expediting compound identification,
accelerating drug development and approval, and refining marketing strategies.
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2. Drug Discovery and Generative AI
2.1. Generative Adversarial Networks (GANs)

GANs consist of two neural networks, a generator and a discriminator, which are
trained simultaneously in a minimax. The generator creates synthetic data samples, while
the discriminator distinguishes between natural and synthetic samples. GANs are increas-
ingly recognized as powerful tools in drug discovery [5,29–31]. They offer innovative
approaches to exploring chemical space, refining known compounds, and crafting new
molecules. These networks find utility across various drug design and discovery stages,
from creating molecules from scratch to reducing complexity and even designing peptides
and proteins from scratch. GANs have proven pivotal in developing new molecules with
specific attributes, aiding in developing practical drugs and expediting the drug discovery
timeline [32–37].

Recent research emphasizes the benefits of GANs in drug discovery, showcasing their
ability to uncover novel molecules and navigate challenges like mode collapse by encour-
aging exploration beyond existing data. Specialized GAN architectures like MedGAN
leverage graph convolutional networks to efficiently design fresh molecules, addressing
the growing need for new medications and enhancing the overall drug discovery pro-
cess [31,38,39]. GANs are also applied in de novo peptide and protein design, contributing
significantly to exploring new bioactive compounds [40]. Furthermore, a study demon-
strated quantum advantages in small drug discovery when each component of the GAN
was replaced with a variational quantum circuit (VQC). Consequently, the physicochemical
properties and performance improvements were seen, with a few learnable parameters in
the GAN’s generator compared to the classical approach [41–43].

2.2. Variational Autoencoders (VAEs)

VAEs are a probabilistic generative model that learns a latent representation of data
by encoding input samples into a lower-dimensional (encoder) and decoding them back
into the original space (decoder). The encoder and decoder are the only components of this
neural network structure, and they are trained in conjugation with each other, employing
the reparameterization technique. The function of the variational autoencoder (VAE) is
defined in Equation (1), wherein autoencoder settings, Q(z|X) and P(X|z), are estimated
by an encoder and a decoder, respectively.

E[logP(X|z)] − DKL [Q(z|X)∥P(z)] (1)

Equation (1): variational autoencoder basic function [44].
VAEs have created a chemical latent space within drug discovery, reflecting compound

libraries’ structural diversity [45–47]. These aid in exploring a broader chemical space and
facilitate the generation of novel compounds (Figure 1). For example, the development of
the natural product compound variational autoencoder (NP-VAE) has enabled the handling
of intricate datasets and large molecular structures, showcasing consistent performance
as a generative model across multiple metrics. Employing reconstruction loss and latent
loss, these models optimize reconstruction quality concurrently while exploring the latent
space effectively [46,48,49]. Additionally, variants of VAEs have been used to simulate
morphology and gene expression readouts induced by specific compounds accurately,
allowing for the prediction of cell states affected by compounds with known polypharma-
cology. This inference of cell state based on drug mechanisms could assist researchers in
the future by facilitating the development and identification of targeted therapeutics and
the classification of off-target effects [50].
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2.3. Transformer-Based Models

These AI models are adept at using natural language processing, or NLP, to compre-
hend the structure and context of language (Figure 2). They are trained with extensive
datasets to grasp connections between sequential data such as words and sentences. Three
recently discovered, innovative approaches to drug discovery are presented here. The
first, drugAI, integrates the encoder–decoder transformer architecture with reinforcement
learning via a Monte Carlo tree search to streamline the drug discovery process [51]. This
method ensures the generation of valid small molecules with drug-like characteristics
and robust binding affinities toward their targets. In the second approach, the authors
focused more on target-specific de novo drug design, treating it as a translational challenge
between the amino acid “language” and simplified molecular input line entry system
representation [52]. Employing the transformer neural network architecture, known for its
proficiency in sequence transduction tasks, this method captures long-range dependencies
within sequences. It generates structurally diverse compounds with realistic properties
within the plausible drug-like range. Finally, TransDTI is introduced by its authors as a
multiclass classification and regression workflow utilizing transformer-based language
models to categorize interactions between drug–target pairs as active, inactive, or interme-
diate. Trained on large-scale drug–target interaction datasets, these models exhibit superior
performance compared to baseline methods, effectively predicting novel drug–target in-
teractions from sequence data and outperforming existing approaches [53]. Another such
model, DTSyn, utilizes its capability to extract interactions between chemicals and cell lines,
depicting potential drug action mechanisms. Through the integration of attention mecha-
nisms and pre-trained gene embeddings, DTSyn demonstrates enhanced interpretability.
Consequently, this model is invaluable for prioritizing synergistic drug combinations based
on chemical and cell line gene expression profiles. Similar transformer-based models are
instrumental in accelerating drug discovery processes by automating tasks like retrosynthe-
sis, generating novel molecules with desired properties, and facilitating the exploration of
chemical space to develop new drugs [54–58] (Table 2).

Table 2. Summary of generative AI models, their examples, salient features, metrics of scoring,
and applications.

Generative
AI Type Examples Salient Features Metrics

Applications in
Healthcare and
Drug Discovery

Generative
Adversarial
Networks (GANs)

DCGAN (Deep
Convolutional GAN),
StyleGAN

Adversarial training
between generator and
discriminator networks,
capable of generating
high-quality images

Inception Score,
Frechet Inception
Distance (FID)

Image generation,
drug discovery
(molecular
generation)

Variational
Autoencoders
(VAEs)

β-VAE, Adversarial
Autoencoder

Latent variable models
enable probabilistic
generative modeling,
allowing for sampling
and reconstruction

Reconstruction loss,
KL divergence

Image generation,
molecular design,
anomaly detection
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Table 2. Cont.

Generative
AI Type Examples Salient Features Metrics

Applications in
Healthcare and
Drug Discovery

Transformer-
based Models

GPT (Generative
Pre-trained
Transformer), BERT
(Bidirectional Encoder
Representations from
Transformers)

Attention mechanism for
capturing contextual
dependencies, capable of
generating text and
sequences

Perplexity, BLEU
score, ROUGE score

Text generation,
molecule generation,
medical report
generation
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3. Restricted Boltzmann Machines (RBMs)

RBMs are a type of generative model based on energy-based models. They have
visible and hidden layers with symmetric connections (Figure 3). RBMs are trained using
contrastive divergence or other learning algorithms. RBMs have emerged as promising
tools in drug discovery, specifically in forecasting drug–disease associations and drug–
target interactions. In predicting drug repositioning tasks within drug–disease association
networks, RBMs have displayed enhanced prediction performance compared to alternative
methods. Moreover, augmenting the RBM model with momentum during weight updates
has further bolstered prediction performance, positioning it as a potent tool for future drug
repositioning endeavors [60–62].

In the domain of drug–target interactions, RBMs have been deployed to amalgamate
multiple interaction types and forecast unknown drug–target relationships or modes of ac-
tion. By formulating the prediction problem into a two-layer graphical model using RBMs,
researchers have adeptly captured latent features within drug–target interaction networks,
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resulting in high precision–recall curve values. This methodology, surpassing other pre-
diction techniques by incorporating various interaction types, holds practical significance
in predicting drug–target interactions and advancing drug repositioning efforts [63–65].
RBMs are demonstrating their worth as invaluable assets in drug discovery by offering
innovative solutions for forecasting drug–disease associations and drug–target interactions
and facilitating computational drug repositioning. However, research leveraging machine
learning approaches still needs to be conducted to analyze intricate datasets, predict new
relationships within biological systems, and shape the landscape of drug discovery.
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4. Generative Graph Neural Networks (GNNs)

GNNs are a class of neural networks designed to operate on graph-structured data.
Generative GNNs can generate new graph structures or nodes and edges within a graph.
GNNs are revolutionizing drug discovery by facilitating the creation of novel molecules
with specific properties and streamlining the drug design process. These networks em-
ploy graph neural network modules to construct sequential molecular graph generators
like MG2N2 [66,67]. Such generators incrementally add nodes and connections to graphs,
simplifying training procedures and improving interpretability. By maximizing informa-
tion input at each generative step, these models effectively generalize molecular patterns
learned during training without succumbing to overfitting, demonstrating competitive per-
formance in generating molecular structures [39]. Applications of GNNs in drug discovery
are rapidly expanding, particularly in conditional de novo drug design. GNNs excel at pro-
cessing graph-structured data and have been pivotal in efficiently predicting drug–target
interactions and designing new candidate molecules [68,69]. The fusion of GNNs with deep
learning techniques is revolutionizing graph generation for molecular structures, offering
promising applications in drug discovery by optimizing resource utilization and improving
the efficiency of generating new bioactive molecules. One example is MM-GANN-DDI,
which accurately presents a multimodal graph-agnostic neural network to forecast drug–
drug interaction events [70–73]. GNNs drive innovation in drug discovery by enabling
the systematic generation of novel molecules, predicting drug–target interactions, and ad-
vancing computational methods for de novo drug design. Their effectiveness in processing
graph data and generating diverse chemical structures tailored for therapeutic purposes
underscores their significant contribution to advancing drug discovery endeavors.
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5. Language Models (LMs)

LMs are a class of generative models that learn the probability distribution of sequences
of words or tokens in a language. LMs play a crucial role in drug discovery, providing
innovative solutions to expedite the molecule discovery cycle, enhance de novo drug design,
predict properties, and optimize chemical reactions [74]. Particularly, transformer-based
architectures have showcased remarkable capabilities in comprehending and generating
human-like text, extending their application into scientific domains such as protein folding,
target identification, and small molecule design [75]. Within molecular discovery, Chemical
LMs significantly contribute to accelerating the identification of new compounds for drug
development, predicting properties, and optimizing chemical reactions [76]. These models
operate on small molecules, proteins, or polymers, demonstrating promising results in early-
stage drug discovery by effectively utilizing machine learning techniques to comprehend
and generate scientific text [77].

Furthermore, AI-powered LMs have revolutionized natural language processing (NLP)
in drug discovery and development [78]. For instance, an automatic biomedical named
entity recognition (BioNER) method finds the hidden relationship among chemicals, genes,
targets, and diseases from text-based documents [79]. Henceforth, it can safely be said that
LM models hold the potential to transform treatment development by assisting in target
identification, clinical design, regulatory decision-making, pharmacovigilance, and even
aiding in the development of new treatments for diseases like COVID-19 through drug
repurposing initiatives.

LM models can streamline patient recruitment processes in clinical trials by automating
tasks through advanced information retrieval and prioritization mechanisms. These models
learn medical terms and their synonyms to extract valuable information from clinical
documents, aiding in patient stratification based on disease subtypes. They also synthesize
eligibility criteria into standardized contextual queries, improving clinical trial-matching
processes. By leveraging cross-model learning infrastructure, these LMs encode enrolment
criteria and patient electronic health records (EHRs) for enhanced matching inference,
outperforming rule-based strategies. Furthermore, they seamlessly integrate with emerging
technologies like genomics and imaging data to advance precision medicine. Additionally,
AI-powered LMs facilitate higher patient enrolment rates and improved site identification,
considering factors such as prior site experience, connections with health non-profits,
patient retention data, and cost-effectiveness to support balanced clinical decision-making,
which is the key to the success of the designed drugs [80–83].

6. Multimodal Models

Multimodal (MM) generative AI models can simultaneously process various types of
data and are essential in drug discovery and therapeutic design, utilizing a combination
of deep learning techniques (Figure 4). Deep generative models using multimodal data
exhibit advantages over unimodal counterparts due to the complementary insights offered
by multimodal data [84–86]. Successful drug discovery hinges on leveraging diverse
data modalities that offer complementary perspectives, aiding in the triangulation of
evidence for discovery. While current studies primarily focus on molecular structural data,
they underutilize other data modalities, such as drug–target interactions, drug–disease
knowledge, and relevant gene expression post-drug treatment. Addressing this challenge
involves exploring solutions like “modality alignment”, connecting all modalities through
an intermediary modality, typically molecular structures, and “modality fusion”, where all
modalities are directly mapped to a common latent space [87–90]. This hybrid data model
captures diverse information during drug design, including chemical properties, drug–
target interactions, drug–disease knowledge, and disease-relevant gene expression [91].

Additionally, a multimodal generative model considers various components of the
drug discovery pipeline to enhance the likelihood of success in clinical trials. By integrat-
ing structured and unstructured knowledge, frameworks like KEDD achieve a deeper
understanding of biomolecules, outperforming state-of-the-art models in various predic-
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tions related to drug–target interactions, drug properties, drug–drug interactions, and
protein–protein interactions [92]. Qualitative analysis reveals the promising potential of
such frameworks in real-world applications, accelerating drug discovery by incorporating
biomolecular expertise from multimodal knowledge.

MM models are also used to overcome the impractical size of chemical space; gen-
erative adversarial networks are proposed to generate diverse three-dimensional ligand
shapes complementary to the pocket. These shapes can be decoded into a sequence of
SMILES, enabling structure-based de novo drug design [93]. Evaluation shows enrichment
compared to random sampling from the initial chemical space of ZINC drug-like com-
pounds, validating the method’s effectiveness in virtual screening. Moreover, integrated
with several imaging techniques, multimodal imaging provides vast anatomical, functional,
and molecular information, accelerating drug discovery and development. These imaging
technologies aid in understanding disease mechanisms, identifying new pharmacological
targets, and assessing potential drug candidates and treatment responses. Implementing
radiomics MM via targeted and untargeted methods further enhances the utility of imaging
technologies in drug discovery and development, emphasizing their strengths, innovations,
and future potential. Targeted approaches involve imaging specific drug molecules or
targets, while untargeted approaches analyze a wide range of molecules to discover drug
metabolites, effects on endogenous molecules, and disease-related changes. These imaging
techniques also unveil anatomical, structural, metabolomic, lipidomic, and proteomic alter-
ations in response to drug treatments at tissue and organ levels, advancing drug design
and delivery [94–96].

However, the significant limitations of multimodal models are modality alignment
and fusion. One of the primary challenges is the heterogeneous nature of data sources,
including molecular structures, biological assays, textual literature, patient records, and
medical imaging. Each modality provides valuable insights into different aspects of drug
discovery and healthcare, but integrating these diverse data types into a coherent frame-
work poses significant hurdles. Semantic misalignment between molecular structures,
biological assays, and clinical data further complicates the integration process, as these
modalities often represent information at different levels of abstraction. To overcome these
challenges, multimodal models leverage techniques such as representation learning and
feature extraction to transform each modality into a common embedding space, allowing
for meaningful correlations to be captured. For example, molecular structures can be
encoded into graph representations, while patient records can be represented as structured
data or textual embeddings. Fusion techniques, including attention mechanisms and graph
neural networks, enable information aggregation across modalities while preserving their
characteristics. By effectively aligning and fusing multimodal data, these models can accel-
erate drug discovery processes, identify novel therapeutic targets, predict drug response,
and personalize treatment strategies for better patient outcomes in healthcare settings.
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7. Drug Discovery and Digital Twins

Digital twins (DT) are virtual replicas or digital representations of physical objects,
processes, systems, or entities. They are created using data collected from sensors, IoT de-
vices, and other sources, and they mimic the behavior and characteristics of their real-world
counterparts in a virtual environment. DTs are increasingly utilized in drug discovery
to simulate drug behavior, predict efficacy, and streamline drug development processes.
These digital counterparts empower researchers with a deeper understanding of how
drugs interact with the body, enabling them to anticipate potential side effects and tai-
lor dosages more effectively. Leveraging generative AI, digital twins can model systems
ranging from individual cells to entire human bodies, thereby enhancing comprehension
of diseases, facilitating biomarker discovery, and expediting drug development [19,21,22].
DT’s various applications in the pharmaceutical industry include modeling cells to expedite
drug discovery, forecasting patient responses to obviate placebo control arms in clinical
trials, and facilitating personalized medicine by simulating organs, genomes, and patients.
Furthermore, digital twins can augment drug delivery by fine-tuning drug release rates,
dosages, and nanoparticle delivery efficiency [18,20,97]. With their ability to offer personal-
ized treatment options, optimize drug delivery mechanisms, and accurately predict drug
toxicity, digital twins have significant promise in revolutionizing drug discovery processes
and improving clinical trial efficiency, effectiveness, and safety while reducing costs and
time-to-market (Table 3).

Table 3. Generative AI and digital twin use cases in drug discovery.

Implementation Stages Generative AI
Use Cases

Digital Twin
Use Cases Benefits

Target Identification

Analyze large datasets of
scientific literature to identify

potential drug targets
(transformer-based models)

Build digital twins of diseases to
understand their

underlying mechanisms

Prioritize promising targets
with higher success rates in

drug development

Lead Generation
Generate novel drug-like
molecules with desired

properties (GANs, VAEs)

Develop digital twins of
proteins as potential

drug targets

Explore vast chemical spaces to
discover potential drug
candidates efficiently

Drug Optimization
Refine existing drug structures

for improved potency or
reduced side effects (GANs)

Integrate drug–target
interactions and patient data

into digital twins

Optimize drug properties for
better efficacy and

safety profiles

Preclinical Testing
Generate synthetic patient data

with specific disease
profiles (VAEs)

Build digital twins of organs or
tissues to simulate drug effects

Reduce reliance on animal
studies and accelerate

preclinical testing

Clinical Trial Design
Generate virtual patient

populations for trial simulations
(Transformer-based models)

Integrate digital twins with
clinical trial data for real-time

patient monitoring

Optimize trial design by
predicting patient responses

and potential side effects

When the SARS-CoV-2 pandemic emerged in 2019, researchers quickly adapted epi-
demiological computer models for decision support in public health responses. However,
existing tools could not predict individual COVID-19 patient outcomes. Patient-specific
digital twins, akin to software replicas of engineered products, could integrate physiology,
immunology, and real-time clinical data for predictive simulations. These digital twins,
powered by AI, offer a promising tool against future pandemics, blending mechanistic
knowledge with observational data [22,98].

DTs have been proposed to be used as avatars where individual simulations that match
clinical criteria within a predefined margin of accuracy can be compared to real subjects.
Avatars are particularly useful when an adequate population model is not feasible. Research
focuses on generating avatars using pharmacometric models and exploring their properties
to assess their impact on drug development stages. These avatars offer nuanced insights
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into a model’s ability to simulate data similar to observations at both population and
individual levels [99–101]. Additionally, they can serve as diagnostic tools, alternatives to
simulations with insurance, and measures of model fit. In another instance, DTs are utilized
in single-cell RNA sequencing (scRNA-seq) to analyze time-series data in inflammatory
diseases, revealing complex multi-directional gene expression networks. This complexity
complicates the prioritization of upstream regulators (URs) crucial for understanding
disease mechanisms and identifying potential drug targets. To address this, a quantitative
approach prioritizing URs based on their predicted effects on downstream target cells
has been developed, proving effective in various inflammatory diseases [23,102]. DTs are
employed in high-throughput drug discovery (HDT) to enhance efficiency and reduce costs.
HDT technology virtually represents organs, organ systems, and whole patients, informing
target selection, drug delivery, and clinical trial design. DTs enable granular modeling of
biological processes, facilitating target discovery and allowing for exploration of multiple
targets for specific disease states.

Additionally, DTs replicate in vivo conditions in drug delivery to optimize solid-
dosage drug parameters, decreasing costs and increasing manufacturing speed. Moreover,
DTs partially virtualize control arms in clinical trials, reducing the number of physical
patients needed and accelerating trial timelines, thus saving costs and expediting drug
development [103–105].

DTs are also increasingly recognized for their potential to revolutionize various as-
pects of healthcare, particularly in clinical settings and drug development. These virtual
replicas enable the generation of entire and realistic clinical patient trajectories, addressing
the pressing need to expedite drug development processes. With only one out of ten
compounds entering clinical trials achieving regulatory approval, the efficiency of phase
1 clinical trials becomes paramount. These trials aim to ascertain the efficacy and safety
of compounds based on patient data, yet around 80% of them face delays due to patient
enrolment issues. DTs offer a solution by augmenting clinical trials with patient replicas,
significantly accelerating timelines and enhancing quality. Leveraging DT-generated data
can minimize patient recruitment processes, particularly in rare conditions or oncology tri-
als where DTs simulate comparator arms, enabling earlier efficacy assessments. Ultimately,
DTs increase statistical power through simulated data, expediting clinical decision-making
processes [20]. Expanding beyond their traditional application in manufacturing, DTs hold
promise as integrative systems that incorporate information from diverse scientific and
clinical sources to represent complex biological networks.

A notable example is the development of a digital twin of the liver, integrating knowl-
edge gleaned from studying various liver functions, diseases, and drug effects. Based on a
mathematical framework of ordinary differential equations, this twin effectively reproduces
normal liver function, disease progression, and treatment impacts. Moreover, coupling
the twin with experimental measurements provides valuable insights into drug-induced
liver injury. This approach, applicable to other organs and biological systems, offers a
generalizable strategy to enhance drug development efficiency and safety across diverse
therapeutic areas [106].

8. Challenges and Considerations of Generative AI and Digital Twins in Drug Development

Generative AI and digital twins offer promising avenues for revolutionizing drug
development, yet their adoption is not without significant limitations and ethical consider-
ations. One primary challenge lies in data privacy concerns, as these technologies heavily
rely on vast amounts of sensitive patient data, raising ethical questions regarding consent,
ownership, and protection. Additionally, the computational resources required for training
and running generative AI models can be immense, posing financial and infrastructural
barriers, particularly for smaller research institutions or resource-limited settings. Fur-
thermore, the validation and regulatory approval process for drugs generated through
these technologies can be arduous and time-consuming as regulatory bodies grapple with
assessing the safety and efficacy of novel compounds produced by AI algorithms. Var-



BioMedInformatics 2024, 4 1451

ious instances have shown successful identification of potential drug candidates using
generative AI, juxtaposed with challenges in replicating and validating these findings in
clinical trials. Ethically, using generative AI and digital twins raises concerns about patient
data privacy, algorithmic bias, and the equitable distribution of benefits. Without robust
safeguards and transparent consent mechanisms, there’s a risk of unauthorized access, data
breaches, and the exploitation of patient data for commercial gain.

The potential for algorithmic bias to perpetuate disparities in healthcare outcomes
must be carefully addressed through rigorous validation and ongoing monitoring. More-
over, ensuring equitable access to the benefits of these technologies requires navigat-
ing complex ethical and regulatory landscapes while safeguarding against exploitation
and discrimination.

Additionally, suppose a healthcare provider integrates a digital twin system into
their decision-making process for personalized medicine. However, if the underlying
algorithms exhibit biases due to skewed training data or flawed assumptions, there is a risk
of perpetuating disparities in healthcare outcomes. For example, if the digital twin system
recommends treatments based on historical data that disproportionately favor certain
demographic groups, it could exacerbate healthcare disparities rather than mitigate them.
Ethical considerations dictate that AI-driven processes in drug development should be
transparent and subject to independent review to ensure accountability and mitigate risks of
bias or errors. Regulatory frameworks must evolve to accommodate the unique challenges
of generative AI and digital twins in drug development, balancing innovation with patient
safety and privacy. Democratizing access to these technologies within healthcare systems
necessitates addressing infrastructure, expertise, and funding disparities while promoting
transparency and collaboration across stakeholders.

Despite their potential, the limitations and potential drawbacks of generative AI
and digital twins in drug discovery cannot be overlooked. Inadequate cybersecurity
measures expose sensitive patient data to unauthorized access or cyberattacks. This raises
ethical concerns about data security and patient privacy, emphasizing the importance
of robust cybersecurity protocols and risk mitigation strategies in AI-driven healthcare
systems. Strategies to mitigate these challenges include prioritizing data privacy and
security, investing in computational infrastructure, fostering interdisciplinary collaboration,
and promoting ethical best practices throughout the drug development pipeline. Ultimately,
navigating these technologies’ ethical and regulatory complexities is essential to harnessing
their full potential for advancing healthcare and improving patient outcomes.

9. Conclusions

The advancement of generative AI has significantly transformed the landscape of drug
discovery, small molecule design, and clinical trials. With various model types tailored to
different tasks, such as molecular generation, property optimization, and target identifi-
cation, generative AI offers unprecedented efficiency and precision in drug development
processes. Furthermore, integrating digital twins has revolutionized drug testing and
development by providing virtual representations of patients, allowing for more accurate
predictions of drug responses and potential side effects. Looking ahead, future research in
this domain could explore enhanced synergies between generative AI and digital twins,
potentially paving the way for personalized medicine on a scale previously unimaginable.
Additionally, there is scope for deeper exploration into ethical considerations, regulatory
frameworks, and the democratization of these technologies to ensure equitable access and
responsible implementation in healthcare systems worldwide.

Beyond the remarkable strides already achieved, the future landscape of this domain
holds even greater promise and complexity, necessitating a deeper exploration of emerging
trends and interdisciplinary collaborations. One emerging trend poised to revolutionize
generative AI in drug discovery is the integration of quantum computing. Quantum com-
puters offer unparalleled computational power, capable of tackling complex optimization
problems and simulating molecular interactions with unprecedented accuracy. In the realm
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of generative AI, quantum algorithms hold the potential to expedite molecular design
processes, enabling the generation of novel drug candidates with enhanced precision and
efficiency. Collaborations between experts in quantum computing, machine learning, and
pharmaceutical sciences could unlock synergies that propel drug discovery into uncharted
territories, accelerating the development of next-generation therapeutics.

Moreover, the integration of digital twins with real-world evidence (RWE) presents
a compelling avenue for advancing personalized medicine. By leveraging vast patient
data repositories, including electronic health records, genomic information, and wearables
data, digital twins can be enriched with real-world insights that capture the complexi-
ties of individual patient profiles. Interdisciplinary partnerships between data scientists,
clinicians, and healthcare providers can drive the seamless integration of digital twins
with RWE, enabling clinicians to make data-driven decisions tailored to each patient’s
unique characteristics and treatment responses. As we continue to harness the power of
generative AI and digital twins, the possibilities for innovation in pharmaceutical research
and development are boundless, promising a future of improved patient outcomes and
transformative medical discoveries.
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