6 research outputs found

    Artificial Neural Network as a FPGA Trigger for a Detection of Neutrino-Induced Air Showers

    Get PDF
    Neutrinos play a fundamental role in the understanding of the origin of ultrahigh-energy cosmic rays (UHECR). They interact through charged and neutral currents in the atmosphere generating extensive air showers. However, the very low rate of events potentially generated by neutrinos is a significant challenge for detection techniques and requires both sophisticated algorithms and high-resolution hardware. We developed the FPGA trigger which is generated by a neural network. The algorithm can recognize various waveform types. It has been developed and tested on ADC traces of the Pierre Auger surface detectors. We developed the algorithm of artificial neural network on a MATLAB platform. Trained network that we implemented into the largest Cyclone V E FPGA was used for the prototype of the front-end board for the AugerPrime. We tested several variants, and the Levenberg–Marquardt algorithm (trainlm) was the most efficient. The network was trained: (a) to recognize ‘old’ very inclined showers (real Auger data were used as patterns for both positive and negative markers: for reconstructed inclined showers and for triggered by time over threshold (ToT), respectively, (b) to recognize ‘neutrino-induced showers’. Here, we used simulated data for positive markers and vertical real showers for negative ones.This work is supported by the National Science Centre (Poland) under NCN Grant No. 2013/08/ M/ST9/00322. The authors would like to thank the Pierre Auger Collaboration for an opportunity of using the CORSIKA and offline simulation packages

    Redukcja zakłóceń interferencyjnych w detektorach radiowych Obserwatorium Pierre Auger

    Get PDF
    W ciągu ostatnich lat dokonany został ogromny postęp w elektronice, który umożliwił rozwój technik detekcji pęków atmosferycznych, inicjowanych przez cząstki promieniowania kosmicznego. Postęp ten spowodował również, że możliwa stała się skuteczna detekcja emisji radiowej z pęków atmosferycznych. Działające w czasie rzeczywistym stacje radiowe umożliwiają zbadanie rozwoju pęków od dotychczas nieosiągalnej strony i są alternatywą dla detektorów fluorescencyjnych w detekcji hybrydowej. Pomiary dokonywane przez stacje radiowe są w znacznym stopniu skażone zakłóceniami interferencyjnymi, co skutkuje zniekształceniem zarejestrowanego sygnału i w konsekwencji zafałszowaniem danych, które można w ten sposób uzyskać. Z tego powodu, w detektorach radiowych używane są filtry cyfrowe, działające w czasie rzeczywistym. Skuteczne filtrowanie sygnałów radiowych emitowanych przez pęki atmosferyczne, może być jednak osiągnięte na wiele sposobów. Dzięki coraz wydajniejszym układom elektronicznym możliwa jest implementacja coraz bardziej skomplikowanych algorytmów filtrujących, które pozwalają na skuteczniejszą redukcję zakłóceń interferencyjnych. W eksperymencie AERA (Auger Engineering Radio Array), dodatkowymi uwarunkowaniami są również zużycie energii oraz zasobów układów FPGA. Wybór najlepszego filtra polega zatem na odpowiednim zoptymalizowaniu wymienionych czynników. Niniejsza praca skupia się na omówieniu nowej metody redukcji zakłóceń interferencyjnych, bazującej na liniowej predykcji sygnału. Szczegółowo omówione zostały techniczne aspekty jej implementacji w strukturę FPGA, a także uzasadniony został wybór używanych przez nią parametrów. Sprawdzone i przedyskutowane zostały różne warianty kodu, zarówno pod względem szybkości obliczeń, jak i poboru mocy oraz zużycia zasobów. Optymalizacja parametrów uwzględniała zagadnienie minimalizacji wpływu pomiarów na rejestrowane dane. Wybrany wariant został sprawdzony symulacyjnie i laboratoryjnie oraz porównany z aktualnie używanymi filtrami. Szybka adaptacja do zmieniających się warunków środowiskowych, niewielkie zniekształcenia sygnału oraz wysoka skuteczność filtrowania przy akceptowalnym poziomie zużycia energii powodują, że filtr ten ma szansę być zaimplementowany w nowych układach FPGA, planowanych do użytku w związku z wymianą sprzętu elektronicznego, nadchodzącą wraz z modernizacją AERA++
    corecore