538 research outputs found

    Genuine quantum correlations in quantum many-body systems: a review of recent progress

    Full text link
    Quantum information theory has considerably helped in the understanding of quantum many-body systems. The role of quantum correlations and in particular, bipartite entanglement, has become crucial to characterise, classify and simulate quantum many body systems. Furthermore, the scaling of entanglement has inspired modifications to numerical techniques for the simulation of many-body systems leading to the, now established, area of tensor networks. However, the notions and methods brought by quantum information do not end with bipartite entanglement. There are other forms of correlations embedded in the ground, excited and thermal states of quantum many-body systems that also need to be explored and might be utilised as potential resources for quantum technologies. The aim of this work is to review the most recent developments regarding correlations in quantum many-body systems focussing on multipartite entanglement, quantum nonlocality, quantum discord, mutual information but also other non classical measures of correlations based on quantum coherence. Moreover, we also discuss applications of quantum metrology in quantum many-body systems.Comment: Review. Close to published version. Comments are welcome! Please write an email to g.dechiara[(at)]qub.ac.u

    No second law of entanglement manipulation after all

    Full text link
    We prove that the theory of entanglement manipulation is asymptotically irreversible under all non-entangling operations, showing from first principles that reversible entanglement transformations require the generation of entanglement in the process. Entanglement is thus shown to be the first example of a quantum resource that does not become reversible under the maximal set of free operations, that is, under all resource non-generating maps. Our result stands in stark contrast with the reversibility of quantum and classical thermodynamics, and implies that no direct counterpart to the second law of thermodynamics can be established for entanglement -- in other words, there exists no unique measure of entanglement governing all axiomatically possible state-to-state transformations. This completes the solution of a long-standing open problem [Problem 20 in arXiv:quant-ph/0504166]. We strengthen the result further to show that reversible entanglement manipulation requires the creation of exponentially large amounts of entanglement according to monotones such as the negativity. Our findings can also be extended to the setting of point-to-point quantum communication, where we show that there exist channels whose parallel simulation entanglement cost exceeds their quantum capacity, even under the most general quantum processes that preserve entanglement-breaking channels. The main technical tool we introduce is the tempered logarithmic negativity, a single-letter lower bound on the entanglement cost that can be efficiently computed via a semi-definite program.Comment: 16+30 pages, 3 figures. v2: minor clarification

    Complementary Quantum Correlations among Multipartite Systems

    Full text link
    We study the monogamy and polygamy relations related to quantum correlations for multipartite quantum systems. General monogamy relations are presented for the α\alphath (0≤α≤γ,γ≥2)(0\leq\alpha \leq\gamma, \gamma\geq2) power of quantum correlation, and general polygamy relations are given for the β\betath (β≥δ,0≤δ≤1)(\beta\geq \delta, 0\leq\delta\leq1) power of quantum correlation. These monogamy and polygamy inequalities are complementary to the existing ones with different parameter regions of α\alpha and β\beta. Applying these results to specific quantum correlations, the corresponding new classes of monogamy and polygamy relations are obtained, which include the existing ones as special cases. Detailed examples are given
    • …
    corecore