No second law of entanglement manipulation after all

Abstract

We prove that the theory of entanglement manipulation is asymptotically irreversible under all non-entangling operations, showing from first principles that reversible entanglement transformations require the generation of entanglement in the process. Entanglement is thus shown to be the first example of a quantum resource that does not become reversible under the maximal set of free operations, that is, under all resource non-generating maps. Our result stands in stark contrast with the reversibility of quantum and classical thermodynamics, and implies that no direct counterpart to the second law of thermodynamics can be established for entanglement -- in other words, there exists no unique measure of entanglement governing all axiomatically possible state-to-state transformations. This completes the solution of a long-standing open problem [Problem 20 in arXiv:quant-ph/0504166]. We strengthen the result further to show that reversible entanglement manipulation requires the creation of exponentially large amounts of entanglement according to monotones such as the negativity. Our findings can also be extended to the setting of point-to-point quantum communication, where we show that there exist channels whose parallel simulation entanglement cost exceeds their quantum capacity, even under the most general quantum processes that preserve entanglement-breaking channels. The main technical tool we introduce is the tempered logarithmic negativity, a single-letter lower bound on the entanglement cost that can be efficiently computed via a semi-definite program.Comment: 16+30 pages, 3 figures. v2: minor clarification

    Similar works

    Full text

    thumbnail-image

    Available Versions