9,751 research outputs found

    Tilings in randomly perturbed dense graphs

    Get PDF
    A perfect HH-tiling in a graph GG is a collection of vertex-disjoint copies of a graph HH in GG that together cover all the vertices in GG. In this paper we investigate perfect HH-tilings in a random graph model introduced by Bohman, Frieze and Martin in which one starts with a dense graph and then adds mm random edges to it. Specifically, for any fixed graph HH, we determine the number of random edges required to add to an arbitrary graph of linear minimum degree in order to ensure the resulting graph contains a perfect HH-tiling with high probability. Our proof utilises Szemer\'edi's Regularity lemma as well as a special case of a result of Koml\'os concerning almost perfect HH-tilings in dense graphs.Comment: 19 pages, to appear in CP

    Hyperbolic intersection graphs and (quasi)-polynomial time

    Full text link
    We study unit ball graphs (and, more generally, so-called noisy uniform ball graphs) in dd-dimensional hyperbolic space, which we denote by Hd\mathbb{H}^d. Using a new separator theorem, we show that unit ball graphs in Hd\mathbb{H}^d enjoy similar properties as their Euclidean counterparts, but in one dimension lower: many standard graph problems, such as Independent Set, Dominating Set, Steiner Tree, and Hamiltonian Cycle can be solved in 2O(n11/(d1))2^{O(n^{1-1/(d-1)})} time for any fixed d3d\geq 3, while the same problems need 2O(n11/d)2^{O(n^{1-1/d})} time in Rd\mathbb{R}^d. We also show that these algorithms in Hd\mathbb{H}^d are optimal up to constant factors in the exponent under ETH. This drop in dimension has the largest impact in H2\mathbb{H}^2, where we introduce a new technique to bound the treewidth of noisy uniform disk graphs. The bounds yield quasi-polynomial (nO(logn)n^{O(\log n)}) algorithms for all of the studied problems, while in the case of Hamiltonian Cycle and 33-Coloring we even get polynomial time algorithms. Furthermore, if the underlying noisy disks in H2\mathbb{H}^2 have constant maximum degree, then all studied problems can be solved in polynomial time. This contrasts with the fact that these problems require 2Ω(n)2^{\Omega(\sqrt{n})} time under ETH in constant maximum degree Euclidean unit disk graphs. Finally, we complement our quasi-polynomial algorithm for Independent Set in noisy uniform disk graphs with a matching nΩ(logn)n^{\Omega(\log n)} lower bound under ETH. This shows that the hyperbolic plane is a potential source of NP-intermediate problems.Comment: Short version appears in SODA 202

    Embedding graphs having Ore-degree at most five

    Get PDF
    Let HH and GG be graphs on nn vertices, where nn is sufficiently large. We prove that if HH has Ore-degree at most 5 and GG has minimum degree at least 2n/32n/3 then HG.H\subset G.Comment: accepted for publication at SIAM J. Disc. Mat

    The Public Value Scorecard: A Rejoinder and an Alternative to "Strategic Performance Measurement and Management in Non-Profit Organizations"

    Get PDF
    Robert Kaplan's Balanced Scorecard has played an important and welcome role in the nonprofit world as nonprofit organizations have struggled to measure their performance. Many nonprofit organizations have taken both general inspiration and specific operational guidance from the ideas advanced in this important work. Their pioneering efforts to apply these concepts to their own particular settings have added a layer of richness to the important concepts. Given the great contribution of this work to helping nonprofits meet the challenge of measuring their performance, it seems both ungracious and unhelpful to criticize it. Yet, as I review the concepts of the Balanced Scorecard, and look closely at the cases of organizations that have tried to use these concepts to measure their performance, I believe that some systematic confusions arise. Further, I think the source of these confusions lies in the fact the basic concepts of the Balanced Scorecard have not been sufficiently adapted from the private, for-profit world where they were born to the world of the nonprofit manager where they are now being applied. Finally, I think a different way of thinking about nonprofit strategy and linking that to performance measurement exists that is simpler that and more reliable for nonprofit organizations to rely upon. The purpose of this paper is to set out these contrarian ideas. This publication is Hauser Center Working Paper No. 18. The Hauser Center Working Paper Series was launched during the summer of 2000. The Series enables the Hauser Center to share with a broad audience important works-in-progress written by Hauser Center scholars and researchers

    Summary of the recent short-haul systems studies

    Get PDF
    The results of several NASA sponsored high density short haul air transportation systems studies are reported as well as analyzed. Included are the total STOL systems analysis approach, a companion STOL composites study conducted in conjunction with STOL systems studies, a STOL economic assessment study, an evaluation of STOL aircraft with and without externally blown flaps, an alternative STOL systems for the San Francisco Bay Area, and the quiet, clean experimental engine studies. Assumptions and results of these studies are summarized, their differences, analyzed, and the results compared with those in-house analyses performed by the Systems Studies Division of the NASA-Ames Research Center. Pertinent conclusions are developed and the more significant technology needs for the evaluation of a viable short haul transportation system are identified
    corecore