97 research outputs found

    Trial and error predicates and the solution of a problem of Mostowski

    Get PDF
    JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Association for Symbolic Logic is collaborating with JSTOR to digitize, preserve and extend access to The Journal of Symbolic Logic

    Zeno machines and hypercomputation

    Get PDF
    This paper reviews the Church-Turing Thesis (or rather, theses) with reference to their origin and application and considers some models of "hypercomputation", concentrating on perhaps the most straight-forward option: Zeno machines (Turing machines with accelerating clock). The halting problem is briefly discussed in a general context and the suggestion that it is an inevitable companion of any reasonable computational model is emphasised. It is hinted that claims to have "broken the Turing barrier" could be toned down and that the important and well-founded role of Turing computability in the mathematical sciences stands unchallenged.Comment: 11 pages. First submitted in December 2004, substantially revised in July and in November 2005. To appear in Theoretical Computer Scienc

    Logical Omnipotence and Two notions of Implicit Belief

    Get PDF
    The most widespread models of rational reasoners (the model based on modal epistemic logic and the model based on probability theory) exhibit the problem of logical omniscience. The most common strategy for avoiding this problem is to interpret the models as describing the explicit beliefs of an ideal reasoner, but only the implicit beliefs of a real reasoner. I argue that this strategy faces serious normative issues. In this paper, I present the more fundamental problem of logical omnipotence, which highlights the normative content of the problem of logical omniscience. I introduce two developments of the notion of implicit belief (accessible and stable belief ) and use them in two versions of the most common strategy applied to the problem of logical omnipotence

    Some Thoughts on Hypercomputation

    Full text link
    Hypercomputation is a relatively new branch of computer science that emerged from the idea that the Church--Turing Thesis, which is supposed to describe what is computable and what is noncomputable, cannot possible be true. Because of its apparent validity, the Church--Turing Thesis has been used to investigate the possible limits of intelligence of any imaginable life form, and, consequently, the limits of information processing, since living beings are, among others, information processors. However, in the light of hypercomputation, which seems to be feasibly in our universe, one cannot impose arbitrary limits to what intelligence can achieve unless there are specific physical laws that prohibit the realization of something. In addition, hypercomputation allows us to ponder about aspects of communication between intelligent beings that have not been considered befor

    Cellular Automata are Generic

    Full text link
    Any algorithm (in the sense of Gurevich's abstract-state-machine axiomatization of classical algorithms) operating over any arbitrary unordered domain can be simulated by a dynamic cellular automaton, that is, by a pattern-directed cellular automaton with unconstrained topology and with the power to create new cells. The advantage is that the latter is closer to physical reality. The overhead of our simulation is quadratic.Comment: In Proceedings DCM 2014, arXiv:1504.0192

    OpenJML: Software verification for Java 7 using JML, OpenJDK, and Eclipse

    Full text link
    OpenJML is a tool for checking code and specifications of Java programs. We describe our experience building the tool on the foundation of JML, OpenJDK and Eclipse, as well as on many advances in specification-based software verification. The implementation demonstrates the value of integrating specification tools directly in the software development IDE and in automating as many tasks as possible. The tool, though still in progress, has now been used for several college-level courses on software specification and verification and for small-scale studies on existing Java programs.Comment: In Proceedings F-IDE 2014, arXiv:1404.578

    Podstawy matematyki bez aktualnej nieskończoności

    Get PDF
    Contemporary mathematics significantly uses notions which belong to ideal mathematics (in Hilbert’s sense) – which is expressed in language which essentially uses actual infinity. However, we do not have a meaningful notion of truth for such languages. We can only reduce the notion of truth to finitistic mathematics via axiomatic theories. Nevertheless, justification of truth of axioms themselves exceeds the capabilities of the theory based on these axioms. On the other hand, we can easily decide the truth or falsity of a statement in finite structures. The aim of this dissertation is to identify the fragment of mathematics, which is of the finitistic character. The fragment of mathematics which can be described without actual infinity. This is the part of mathematics which can be described in finite models and for which the truth of its statements can be verified within finite models.We call this fragment of mathematics with a term introduced by Knuth – the concrete mathematics. This part of mathematics is of computational character and it is closer to our empirical base, which makes it more difficult. We consider concrete foundations of mathematics, in particular the concrete model theory and semantics without actual infinity. We base on the notion of FM–representability, introduced by Mostowski, as an explication of expressibility without actual infinity. By the Mostowski’s FM–representability theorem, FM–representable notions are exactly those, which are recursive with the halting problem as an oracle. We show how to express basic concepts of model theory in the language without actual infinity. We investigate feasibility of the classical model– theoretic constructions in the concrete model theory. We present the Concrete Completeness Theorem and the Low Completeness Theorem; the Concrete Omitting Types Theorem; and Preservation Theorems. We identify the constructions which are not admissible in the concrete model theory by showing stages of these constructions which are not allowed in the concrete framework. We show which arguments from the axiomatic model theory fail in the concrete model theory. Moreover, we investigate how to approximate truth for finite models. In particular we study the properties of approximate FM–truth definitions which are expressible in modal logic. We introduce modal logic SL, axioms of which mimic the properties of a specific approximate FM–truth definition. We show that SL is the modal logic of any approximate FM–truth definition. This is done by proving a theorem analogous to Solovay’s completeness theorem for modal logic GL.Współczesna matematyka w znaczącej mierze posługuje się pojęciami, które należą do matematyki idealnej (w sensie Hilberta) -- wyrażona jest w języku istotnie wykorzystującym aktualną nieskończoność. Dla tego typu języków nie posiadamy sensownego kryterium prawdziwości. Jesteśmy w stanie jedynie redukować je do matematyki skończonościowej poprzez teorie aksjomatyczne. Niemniej uzasadnianie prawdziwości samych aksjomatów znajduje się poza zasięgiem teorii na nich opartej. Z drugiej strony w strukturach skończonych jesteśmy w stanie w prosty sposób rozstrzygać prawdziwość i fałszywość twierdzeń. Celem niniejszej rozprawy jest identyfikacja fragmentu matematyki, który ma skończonościowy charakter. Fragmentu matematyki, do którego opisu nie jest niezbędna aktualna nieskończoność, a wystarczy jedynie nieskończoność potencjalna. Jest to ta część matematyki, której pojęcia można wyrazić w modelach skończonych oraz prawdziwość twierdzeń której można w nich zweryfikować. Tę część matematyki, za Knuthem, nazywamy matematyką konkretną. Ma ona obliczeniowy, kombinatoryczny charakter i jest bliższa naszemu doświadczeniu niż matematyka idealna, a co za tym idzie jest trudniejsza. Rozważamy konkretne podstawy matematyki, w szczególności konkretną teorię modeli oraz semantykę bez aktualnej nieskończoności. Opieramy się na wprowadzonym przez Mostowskiego pojęciu FM--reprezentowalności, jako eksplikacji wyrażalności bez aktualnej nieskończoności oraz twierdzeniu o FM--reprezentowalności identyfikującym FM--reprezentowalne pojęcia z tymi, które są obliczalne z problemem stopu jako wyrocznią. Pokazujemy w jaki sposób można zinterpretować podstawowe pojęcia teorii modeli w języku bez aktualnej nieskończoności. Następnie badamy klasyczne konstrukcje teoriomodelowe pod kątem ich wykonalności w obszarze matematyki konkretnej. Prezentujemy twierdzenie o konkretnej pełności oraz twierdzenie o łatwej pełności, twierdzenie o omijaniu typów oraz twierdzenia o zachowaniu. Przedstawiamy konstrukcje, które są niewykonalne dla modeli konkretnych, identyfikując etapy konstrukcji teoriomodelowych, które nie są wykonalne w teorii modeli konkretnych. Identyfikujemy argumenty z aksjomatycznej teorii mnogości, które nie są dopuszczalne w konkretnej teorii modeli. Ponadto, badamy możliwość przybliżania prawdy arytmetycznej w modelach skończonych. W szczególności rozważamy te własności przybliżonych predykatów prawdy dla modeli skończonych, które wyrażalne są w logice modalnej. Wprowadzamy logikę modalną SL, której aksjomaty odzwierciedlają własności przybliżonych predykatów prawdy. Pokazujemy, że logika SL jest logiką przybliżonych predykatów prawdy -- dowodzimy twierdzenia analogicznego do twierdzenia o pełności dla logiki GL udowodnionego przez Solovaya
    corecore