
University of Warsaw
Faculty of Philosophy and Sociology

Marek Czarnecki

Foundations of Mathematics
without Actual Infinity

Podstawy matematyki bez aktualnej
nieskończoności

Ph.D. Thesis

Thesis Advisor:
Prof. Marcin Mostowski
Thesis Assistant Advisor:
Ph.D. Konrad Zdanowski

Warsaw
May 24, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repozytorium UW

https://core.ac.uk/display/304738524?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Contemporary mathematics significantly uses notions which belong to ideal
mathematics (in Hilbert’s sense) – which is expressed in language which es-
sentially uses actual infinity. However, we do not have a meaningful notion
of truth for such languages. We can only reduce the notion of truth to finitis-
tic mathematics via axiomatic theories. Nevertheless, justification of truth
of axioms themselves exceeds the capabilities of the theory based on these
axioms.

On the other hand, we can easily decide the truth or falsity of a statement
in finite structures. The aim of this dissertation is to identify the fragment
of mathematics, which is of the finitistic character. The fragment of math-
ematics which can be described without actual infinity. This is the part of
mathematics which can be described in finite models and for which the truth
of its statements can be verified within finite models. We call this fragment of
mathematics with a term introduced by Knuth – the concrete mathematics.
This part of mathematics is of computational character and it is closer to
our empirical base, which makes it more difficult.

We consider concrete foundations of mathematics, in particular the con-
crete model theory and semantics without actual infinity. We base on the
notion of FM–representability, introduced by Mostowski, as an explication of
expressibility without actual infinity. By the Mostowski’s FM–representability
theorem, FM–representable notions are exactly those, which are recursive
with the halting problem as an oracle.

We show how to express basic concepts of model theory in the language
without actual infinity. We investigate feasibility of the classical model–
theoretic constructions in the concrete model theory. We present the Con-
crete Completeness Theorem and the Low Completeness Theorem; the Con-
crete Omitting Types Theorem; and Preservation Theorems. We identify
the constructions which are not admissible in the concrete model theory by
showing stages of these constructions which are not allowed in the concrete
framework. We show which arguments from the axiomatic model theory fail
in the concrete model theory.

Moreover, we investigate how to approximate truth for finite models.
In particular we study the properties of approximate FM–truth definitions
which are expressible in modal logic. We introduce modal logic SL, axioms
of which mimic the properties of a specific approximate FM–truth definition.
We show that SL is the modal logic of any approximate FM–truth defini-
tion. This is done by proving a theorem analogous to Solovay’s completeness
theorem for modal logic GL.

Streszczenie

Współczesna matematyka w znaczącej mierze posługuje się pojęciami, które
należą do matematyki idealnej (w sensie Hilberta) – wyrażona jest w języku
istotnie wykorzystującym aktualną nieskończoność. Dla tego typu języków
nie posiadamy sensownego kryterium prawdziwości. Jesteśmy w stanie jedy-
nie redukować je do matematyki skończonościowej poprzez teorie aksjoma-
tyczne. Niemniej uzasadnianie prawdziwości samych aksjomatów znajduje
się poza zasięgiem teorii na nich opartej.

Z drugiej strony w strukturach skończonych jesteśmy w stanie w prosty
sposób rozstrzygać prawdziwość i fałszywość twierdzeń. Celem niniejszej roz-
prawy jest identyfikacja fragmentu matematyki, który ma skończonościowy
charakter. Fragmentu matematyki, do którego opisu nie jest niezbędna ak-
tualna nieskończoność, a wystarczy jedynie nieskończoność potencjalna. Jest
to ta część matematyki, której pojęcia można wyrazić w modelach skończo-
nych oraz prawdziwość twierdzeń której można w nich zweryfikować. Tę część
matematyki, za Knuthem, nazywamy matematyką konkretną. Ma ona obli-
czeniowy, kombinatoryczny charakter i jest bliższa naszemu doświadczeniu
niż matematyka idealna, a co za tym idzie jest trudniejsza.

Rozważamy konkretne podstawy matematyki, w szczególności konkretną
teorię modeli oraz semantykę bez aktualnej nieskończoności. Opieramy się
na wprowadzonym przez Mostowskiego pojęciu FM–reprezentowalności, jako
eksplikacji wyrażalności bez aktualnej nieskończoności oraz twierdzeniu o
FM–reprezentowalności identyfikującym FM–reprezentowalne pojęcia z tymi,
które są obliczalne z problemem stopu jako wyrocznią.

Pokazujemy w jaki sposób można zinterpretować podstawowe pojęcia
teorii modeli w języku bez aktualnej nieskończoności. Następnie badamy
klasyczne konstrukcje teoriomodelowe pod kątem ich wykonalności w obsza-
rze matematyki konkretnej. Prezentujemy twierdzenie o konkretnej pełności
oraz twierdzenie o łatwej pełności, twierdzenie o omijaniu typów oraz twier-
dzenia o zachowaniu. Przedstawiamy konstrukcje, które są niewykonalne dla
modeli konkretnych, identyfikując etapy konstrukcji teoriomodelowych, które
nie są wykonalne w teorii modeli konkretnych. Identyfikujemy argumenty z
aksjomatycznej teorii mnogości, które nie są dopuszczalne w konkretnej teorii
modeli.

Ponadto, badamy możliwość przybliżania prawdy arytmetycznej w mo-
delach skończonych. W szczególności rozważamy te własności przybliżonych
predykatów prawdy dla modeli skończonych, które wyrażalne są w logice
modalnej. Wprowadzamy logikę modalną SL, której aksjomaty odzwiercie-
dlają własności przybliżonych predykatów prawdy. Pokazujemy, że logika
SL jest logiką przybliżonych predykatów prawdy – dowodzimy twierdzenia
analogicznego do twierdzenia o pełności dla logiki GL udowodnionego przez
Solovaya.

Acknowledgements

This dissertation could not have been completed without substantial support
I have received during my PhD studies.

First of all, I thank my thesis supervisor, Marcin Mostowski. He intro-
duced me to mathematical logic and thanks to him I got attracted to the
problems concerning potential and actual infinity. He also suggested to me
pursuing my research in foundations of mathematics without actual infinity.

I express my gratitude to thesis assistant supervisor, Konrad Zdanowski.
I could not count the number of suggestions he gave me to improve this
thesis. Moreover, one of the chapters of this dissertation is based on our
collaborative research.

I thank Leszek Aleksander Kołodziejczyk for his support during my first
steps in logic. Leszek and Konrad are still my role models of hardcore logi-
cians who know everything in their fields of interests. Here is the place to
express my gratitude to both of them.

I also thank Damian Niwiński, Paweł Urzyczyn and Mikołaj Bojańczyk
who showed me the beauty of computability theory. I also express my grati-
tude to Nina Giersimczuk, Jakub Szymanik and Rafał Urbaniak for showing
me how philosophy and logic can be combined in results that contribute to
both of these fields.

I thank the other people whom I have had the pleasure to collaborate
with and who obviously influenced my scientific development: Krzysztof
Kapulkin, Michał Tomasz Godziszewski and Dariusz Kalociński. Moreover,
Michał helped with improving the language of this dissertation and his in-
quisitiveness resulted in lots of clarifications.

Finally, I thank my parents for all their support and my wife Joanna,
who valiantly could stand the growing heaps of printouts piled up around
my desk.

Contents

1 Motivations 9
1.1 Potential and Actual Infinity 9
1.2 Hilbert’s Programme . 10
1.3 Concrete Mathematics . 11
1.4 Concrete and Axiomatic Model Theory 12
1.5 Recursive and Constructive Model Theories 13
1.6 Semantics without Actual Infinity 14

2 Preliminaries 15
2.1 Basic Notions . 15
2.2 Early Foundations . 17

2.2.1 Arithmetics and Arithmetisation 17
2.2.2 Model Theory – Mathematisation of Truth 19

2.3 Computability Theory . 20
2.3.1 Turing Machines . 20
2.3.2 Degrees of Unsolvability 23

2.4 Finite Models and Potentially Infinite Domains 33
2.4.1 Representing Concepts in a Language without Actual

Infinity . 33
2.4.2 FM–Truth Definitions 37

2.5 Modal Logic Basics . 38

3 Approximating Truth in Finite Models 40
3.1 A Truth Definition for Almost All Finite Models 41
3.2 Modal logics SL, SL∗, LTr and LTr

∗ 49
3.3 Completeness Theorems for SL and SL∗ 52
3.4 The Main Theorem . 54
3.5 Summary . 59

4 The Concrete Foundations of Mathematics 60
4.1 Basic Definitions . 61
4.2 Model Theory without Actual Infinity 76

4.2.1 Completeness Theorems 78

1

4.2.2 Omitting Types . 87
4.2.3 Σn Chains of Concrete Models and Applications . . . 98
4.2.4 Preservation Theorems 106
4.2.5 Craig’s Interpolation Lemma and Robinson’s Joint Con-

sistency Theorem . 120
4.3 A Note on the Usage of Resources in the Concrete Constructions128
4.4 Beyond Concrete Foundations, Open Problems and Further

Work . 129
4.4.1 Summary of the Concrete Model Theory 129
4.4.2 A Comparison with Experimental Logics 131
4.4.3 Paths of Further Investigations 132

2

[. . .] οὐκ ἀφαιρεῖται δ΄ ὁ λόγος οὐδὲ τοὺς μαθηματικοὺς τὴν θεωρίαν, ἀναι-
ρῶν οὕτως εἶναι ἄπειρον ὥστε ἐνεργείᾳ εἶναι ἐπὶ τὴν αὔξησιν ἀδιεξίτητον· οὐδὲ

γὰρ νῦν δέονται τοῦ ἀπείρου (οὐ γὰρ χρῶνται), ἀλλὰ μόνον εἶναι ὅσην ἂν βο-

ύλωνται πεπερασμένην· τῷ δὲ μεγίστῳ μεγέθει τὸν αὐτὸν ἔστι τετμῆσθαι λόγον

ὁπηλικονοῦν μέγεθος ἕτερον. ὥστε πρὸς μὲν τὸ δεῖξαι ἐκείνοις οὐδὲν διοίσει τὸ

[δ΄] εἶναι ἐν τοῖς οὖσιν μεγέθεσιν.

Aristotle “Physics”, Book 3, part 7, circa 350BC

Ατήματα.

[. . .]
β́v. Καὶ πεπερασμένην εὐθεῖαν κατὰ τὸ συνεχὲς ἐπ̓v εὐθείας ἐκβαλεῖν.

Euclid “Elements”, Book 1, circa 300BC

[. . .] protestire ich zuvörderst gegen den Gebrauch einer unendlichen
Grösse als einer Vollendeten, welcher in der Mathematik niemals erlaubt
ist. Das Unendliche ist nur eine Façon de parler, indem man eigentlich von
Grenzen spricht, denen gewisse Verhältnisse so nahe kommen als man will,
während andern ohne Einschränkung zu wachsen verstattet ist.

Carl Friedrich Gauss in a letter to Heinrich Christian
Schumacher, 12 July 18311

1For English translations see [Aria], [Hea56], [Fra76]. They are also present in this
dissertation on pages 6–7.

Preface

An Outline and Results

In Chapter 1 we discus the motivations for the research presented in this
dissertation.2

In Chapter 2 we present basic definitions and a historical outline of the
logical framework we work in. We recall some results from computability
theory and the structure of Turing degrees. We also present the basics of
Mostowski’s approach to the study of potentially infinite worlds – in par-
ticular we discuss FM–domains, FM–representability theorem and the FM–
version of the undefinability of truth theorem. The latter states that there
are no FM–truth definitions for sufficiently strong FM–domains with sl–
semantics e.g. for FM(N).

In Chapter 3 we study FM–truth–like predicates for FM(N). We con-
struct the predicate Trsl – an approximate FM–truth predicate – which re-
sembles some properties of the full FM–truth predicate. Further, we con-
sider properties of approximate FM–truth predicates which are expressible
in modal logic. We introduce the modal logic SL as an extension of the modal
logic K by axioms �(¬ϕ) ≡ (¬�ϕ). We also introduce the modal logic LTr as
the logic containing modal formulae whose every translation into the arith-
metical language is true in FM(N). Therefore LTr may be considered as the
modal logic of Trsl. Using fixpoint extensions SL∗ and LTr

∗ of logics SL and
LTr, we show that these logics are equivalent. It demonstrates that SL is the
modal logic of the approximate FM–truth predicate Trsl. It follows that Trsl

has all the properties of the FM–truth predicates which are expressible in
modal logic. Chapter 3 is entirely based on the joint work with Zdanowski
([CZ10]).

The main part of the dissertation is Chapter 4 where we study what
amount of the model theory can be performed without the use of actual
infinity. We introduce the notion of a concrete structure and of a concrete
model. A concrete structure may be seen as an FM–representation of a model
understood in the standard sense. We require both the structure and the
satisfaction relation of a concrete model to be FM–representable. Therefore,

2The research program was first formulated by Mostowski in [Mos11].

5

concrete structures are possible ontologies and concrete models are possible
semantics representable with the use of potential infinity only. We transfer
basic model–theoretic concepts such as submodels and elementary submod-
els, chains of models and various morphisms between models to the con-
crete models framework. We point out difficulties that arise in the context of
concrete models. We prove Kleene–style (see [Kle52]) and low completeness
theorems and the omitting types theorem in the concrete models context.

We are particularly concerned with model–theoretic constructions and
their feasibility. We show how concrete chains and concrete towers of con-
crete models can be constructed. We show that, although it is not the case for
concrete chains, concrete elementary chains can be summed to obtain a con-
crete model. We show that the construction of Σn chains of models by Chang
and Keisler fails in the concrete context. We prove the preservation results
for consistent recursive theories: T is preserved under unions of chains if and
only if T has a Π2 axiomatisation and T is preserved under homomorphisms
if and only if T has a positive axiomatisation. We show that, for concrete
models, Robinson’s construction fails to prove Craig’s Interpolation Lemma
and Robinson’s Joint Consistency Theorem. The problem stems from the
fact that glueing concrete models is not feasible.

Quotations

In this section we present important quotations which we refer to in the next
chapter.

Quotation 1 ([Aria])

Hence this infinite is potential, never actual: the number of parts
that can be taken always surpasses any assigned number. But this
number is not separable from the process of bisection, and its
infinity is not a permanent actuality but consists in a process of
coming to be, like time and the number of time. [...] Our account
does not rob the mathematicians of their science, by disproving
the actual existence of the infinite in the direction of increase [...].
In point of fact they do not need the infinite and do not use it.
They postulate only that the finite straight line may be produced
as far as they wish. It is possible to have divided in the same
ratio as the largest quantity another magnitude of any size you
like. Hence, for the purposes of proof, it will make no difference
to them to have such an infinite instead, while its existence will
be in the sphere of real magnitudes.

Aristotle “Physics”, Book 3, part 7. Translated by R. P.
Hardie and R. K. Gaye.

6

Quotation 2 ([Hea56])

Postulate 2.

[...]

To produce a finite straight line continuously in a straight line.

Euclid “Elements”, Book 1. Translated by Sir Thomas L.
Heath

Quotation 3 ([Fra76])

I protest [...] against the use of infinite magnitude as if it were
something finished; this use is not admissible in mathematics.
The infinite is only a façon de parler: one has in mind limits
approached by certain ratios as closely as desirable while other
ratios may increase indefinitely.

Carl F. Gauss in a letter to Heinrich C. Schumacher,
12 July 1831. Translated by Abraham A. Fraenkel.

Quotation 4 ([Hil02])

The form of logical inference in which this conception finds its
expression – namely, those that we employ when, for example, we
deal with all real numbers having a certain property or assert that
there exist real numbers having a certain property – are called
upon quite without restriction and are used again and again by
Weierstrass precisely when he is establishing the foundations of
analysis.

Thus, the infinite, in a disguised form, was able to worm its way
back into Weierstrass’ theory and escape the sharp edge of his
critique; therefore it is the problem of the infinite in the sense
just indicated that still needs to be conclusively solved. And just
as the infinite, in the sense of the infinitely small and the in-
finitely large, could, in the case of the limiting processes of the
infinitesimal calculus, be shown to be a mere way of speaking, so
we must recognize that the infinite in the sense of the infinite to-
tality (wherever we still come upon it in the modes of inference)
is something merely apparent. And just as operations with the
infinitely small were replaced by processes in the finite that have
quite the same results and lead to quite the same elegant formal
relations, so the models of inference employing the infinite must
be replaced generally by finite processes that have precisely the
same results, that is, that permit us to carry out proofs along the
same lines and to use the same methods of obtaining formulas
and theorems.

7

That, then, is the purpose of my theory. [...]

But in clarifying the notion of the infinite we must still take into
consideration a more general aspect of the question. If we pay
close attention, we find that the literature of mathematics is re-
plete with absurdities and inanities, which can usually be blamed
on the infinite.

David Hilbert “On the infinite” 1925. Translated by Ste-
fan Bauer-Mengelberg.

Quotation 5 ([Eps79])

Another reason is because A is computable relative to 0′ if and
only if it is the constructive limit of constructive procedures. The
study of D(6 0′) is the study of what we can computably approxi-
mate. The tension between the finite and the infinite is the vibrat-
ing center of the subject. In a full approximation construction we
give a uniform computable procedure – a uniform finitistic process
– which we claim satisfies some property in the limit. These are
truly constructions, not constructions “relative to.” These con-
structions have the same flavor as arguments in other areas of
finite mathematics, such as number theory or graph theory.

Richard L. Epstein “Degrees of Unsolvability: Structure
and Theory” 1979.

8

Chapter 1

Motivations

1.1 Potential and Actual Infinity

The distinction between potential and actual infinity was introduced by Aris-
totle in [Aria] (see Quotation 1). Potential infinity may be identified with a
process with arbitrarily many steps, such that only finitely many new ob-
jects are considered at each of these steps. On the other hand, actual infinity
is a completed one, e.g. the collection of all objects appearing in an infi-
nite process. We may consider, for instance, natural numbers as a completed
– actually infinite – collection {0, 1, 2, . . . } or as a potentially infinite pro-
cess staring with {0}, and at each step adding the successor of the greatest
number we had after the previous step. At every stage we have a finite set
{0, 1, . . . , n}, but we can always add a larger number if we need. Aristotle
treats only potential infinity as existing. Moreover, he claims that mathe-
maticians do not need actual infinity. Euclid in his Elements, for instance,
considers a very different concept of a line than contemporary mathemati-
cians do – Euclid’s lines are potentially infinite – they can be arbitrarily
extended, yet they are always finite.

With the development of mathematical methods, especially in analy-
sis and geometry, actual infinity started to leak into mathematics. This,
however, resulted with objections of such great mathematicians as Gauss
([GSP60]) or Kronecker ([Kro87]). In 1831 in a letter to Schumacher Gauss
protests against the use of actually infinite concepts in mathematics (see
Quotation 3). It seems that Gauss shared Aristotle’s view on actual infinity.
While the infinite naturally appears in mathematics, it is admissible only as
a way of speaking about the limits of finitistic, potentially infinite processes
and should never be treated as something completed.

Nevertheless, infinitary methods in mathematics were more and more
common. This is due to their effectiveness in solving mathematical prob-
lems. Actual infinity simplifies mathematical reasonings, even in such areas
as combinatorics. However, there is no clear criterion of truth for actually

9

infinite models. On the other hand, we easily decide the truth, in finite mod-
els.

1.2 Hilbert’s Programme

Aristotle was one of the main proponents of the axiomatic method ([Arib]). In
the late 19th century we learned how to use this method to manipulate such
finite objects as formulae and sequences of formulae. It was Frege ([Fre79])
who showed how the axiomatic method can be reduced to combinatorics on
finite objects. This way we obtain an axiomatic presentation of the world
of actual infinities. Moreover, this presentation is reduced to manipulations
of finite combinatorial objects. The question whether a statement is true
has been reduced to the question whether it has a proof in a certain theory.
Unfortunately, Frege’s theory was inconsistent.

David Hilbert founded a research project concerning the foundations of
mathematics and the scientific methods. He desired to implement it towards
grounding mathematical knowledge. This research project is known as the
Hilbert’s programme. The paper in which his ideas are most explicitly pre-
sented is probably [Hil26] (see also [Hil02]). Hilbert clearly identifies the main
source of problems in the foundations of mathematics with the use of the
notion of infinity (see Quotation 4). In fact, he indicates that the problem
stems from the use of infinity as a given actual totality. He aims at eliminat-
ing actual infinity from the logical inference and replacing it with potentially
infinite limiting processes.

The aim of Hilbert’s programme was to give a reliable mathematical basis
to entire mathematics including parts employing notions involving actual
infinity. Hilbert’s idea was to develop a finitistic axiomatic theory, whose
axioms would be undoubtedly true and capable of proving the consistency
of the ideal mathematics as well as to decide every statement of it.

In his famous paper [Göd31] Kurt Gödel proves that no consistent ax-
iomatic theory containing sufficiently many truths about natural numbers,
can be complete. It follows that Hilbert’s style justification of mathematics of
actual infinity is not sufficient. For each current axiomatisation we can find
a relatively simple (Π1) independent sentence. This means that Hilbert’s
programme is not feasible. However, we still have no better idea than to
use axiomatisations as foundational tools, following Hilbert. Therefore, in
modern mathematics, axiomatic representations of theories involving actual
infinity are pretty standard.

Following Hilbert’s historical programme, the term finitistic mathematics
is used sometimes as equivalent to being interpretable in primitive recursive
arithmetic (see [Sim10], [Tai81])1. Therefore, we rather use the term concrete

1This approach is particularly preferred in reverse mathematics research area. It is de-
voted to describing logical relationships between classical mathematical theorems. Taking

10

mathematics. We intend to study concrete mathematics and particularly the
concrete foundations of mathematics.

1.3 Concrete Mathematics

An important philosophical question remains: what amount of mathematics
is independent of the problems caused by the use of actual infinity? This is
the part of mathematics in which the truth can be decided in finite models.
This is the topic of the concrete mathematics. We do not want to give any
sort of new foundations of mathematics neither to reform the mathematics.
We want to investigate the part of mathematics which requires no axiomatic
presentation.

The choice of the term concrete is not accidental. It refers to concrete
mathematics as introduced in [GKP94] by Knuth et al. for describing math-
ematics based on computations, algorithms and constructions. The concrete
mathematics is to be an antidote to the abstract mathematics which is per-
formed without any references to concrete problems and which focusses on
mere generalisations. On the other hand, concrete mathematicians do not
automatically rule out the abstract mathematics from their scope of inter-
ests. As discussed later in this introductory section, the computer scientific,
concrete, way of thinking about mathematics and its foundations turns out
to be exactly the one needed to capture the part of mathematics of potential
infinity only i.e. without actual infinity involved.

In [Myc81] Mycielski presents his approach to analysis without actual
infinity. He considers arbitrarily large initial segments of natural numbers. It
is well known that rational numbers can be represented by natural numbers
via a suitable pairing function. Thus, greater initial segments of ω contain
more and more rational numbers. Real numbers are represented by ratio-
nal numbers with sufficiently large denominators. Mycielski reconstructs in
this framework such basic notions of analysis as the notion of a limit, con-
tinuity, derivative and integral. This seems to be quite a surprising result,
since analysis seems to be a branch of mathematics inseparably associated
with uncountable sets like real and complex numbers. Mycielski shows that
basic notions of analysis can be approximated with the use of finite sets
only. Therefore, even analysis can be developed without referring to actu-
ally infinite sets. Let us observe that the same idea is used in computer
representations of real numbers.

In [Mos01] and [Mos03] Mostowski considers another approach to founda-
tions of mathematics without actual infinity. His approach essentially con-
forms with that by Mycielski [Myc81].2 Nevertheless Mostowski’s idea is

a weaker basic theory results in obtaining more subtle description.
2Mycielski in his later papers (see e.g. [Myc86]) investigates locally finite theories –

theories with the property that each finite subtheory has finite models. This approach

11

restricted to finite models only. The basic notions of Mostowski’s approach
are FM–domains, families of initial segments of arithmetical models, and
sl–semantics, satisfiability in sufficiently large models.

FM–domains may be understood as models of potentially infinite worlds.
Mostowski’s aim was to transfer the Tarski’s method of truth definitions
of separating classes of formulae to the realm of finite models. One of the
questions that naturally arose during the investigations was the problem
of representing basic syntactic and semantic concepts with respect to the
sl–semantics in FM–domains. An arithmetical formula ϕ FM–represents a
relation R if for every tuple a the relation R(a) holds if and only if ϕ(a) is true
in all sufficiently large finite models and ¬R(a) holds if and only if ¬ϕ(a) is
true in all sufficiently large finite models. The notion of FM–representability
can be explained in the following way. A relation R is FM–representable if
it can be “decided” within a potentially infinite process, but still in finite
models.

One of the most important results by Mostowski is the FM–representability
theorem. It states that the class of FM–representable relations is equal to
∆0

2 (for a complete survey see [MZ05b] and [Mos08]). Identifying the class
of FM–representable relations with ∆0

2 relations gives an additional insight
into notions meaningful without actual infinity. By the Limit Lemma (see
[Sho59]) the FM–representable notions are exactly those which are com-
putable in the limit i.e. those which are of degree 6 0′. Moreover, by the
investigations on the theory of algorithmic learning due to Gold ([Gol65])
and Putnam ([Put65]) those are exactly algorithmically learnable relations.
Therefore, researchers working in various fields of logic and interested in not
necessarily finite but computable processes discovered ∆0

2 as the limit for the
notions they investigated.

Yet another example comes from Epstein’s survey on degrees of unsolv-
ability [Eps79]. He justifies why we should be particularly interested in de-
grees of unsolvability 6 0′ (see Quotation 5). Epstein clearly points out that
concepts 6 0′ are those for which the infinite can be replaced by a finitistic
– potentially infinite – processes which are constructive in the strict sense.

1.4 Concrete and Axiomatic Model Theory

In the very beginning, model theory started with a concrete approach. Kurt
Gödel in [Göd30] proves the first version of completeness theorem for first
order logic, by a concrete construction. Having a consistent first order sen-
tence ϕ he constructs a modelM such thatM |= ϕ as the limit of a chain
of finite models

M1 ⊆M2 ⊆M3 ⊆ . . .

have less in common with Mostowski’s than the approach from [Myc81].

12

Contemporary model theory, which started with Tarski’s paper [Tar56],
went into another direction. Model–theoretic constructions are performed
within axiomatic set theory. In the classical monograph by Chang and Keisler
[CK73] model theory is developed inside a fixed axiomatic set theory –
Bernays–Morse set theory. In this way we can consider models and per-
form model–theoretic constructions within the Cantor’s paradise.3 However,
there is no such thing as a free lunch. In this way, in model theory, we prove
theorems of the form: if there exists an inaccessible cardinal, then there is a
model of Zermelo–Fraenkel set theory; and: if generalised continuum hypoth-
esis holds, then every model has a saturated elementary extension ([Hod93]).

On the other hand statements based on our computational experience
are meaningful independently of decidability in any axiomatic framework.
We still believe that open combinatorial problems like: the twin primes con-
jecture, “P=NP?”, “is integer factorisation in P?” and many others are mean-
ingful independently of any axiomatic framework. These problems belong to
concrete mathematics. We search for true mathematical theorems, not only
those that are provable in some axiomatic theories.

In [HB39] Hilbert and Bernays gave an arithmetised proof of the com-
pleteness theorem for first order logic. This led Kleene (see [Kle52]) to show
that the model obtained by the Gödel’s construction of a model of an ir-
refutable sentence is ∆0

2. Therefore, the obtained model is concrete.
We call the approach to model theory presented by Chang and Keisler

in [CK73] the axiomatic model theory. Another approach is suggested by
Gödel’s construction and Kleene’s result. We call it the concrete model the-
ory. It is developed in this dissertation.

In this dissertation we focus on the feasibility of model–theoretic con-
structions in concrete model theory. We consider classical model–theoretic
constructions searching for their concrete content. We show difficulties of the
concrete model theory and in particular, we explain which classical model–
theoretic constructions fail and why they fail.

1.5 Recursive and Constructive Model Theories

The constructive and computational approach to model theory was first mo-
tivated by intuitionism. Such researchers as Kleene ([Kle52]) and Markov
([Mar54]) considered Brouwer’s notion of a construction too vague to be
used in rigorous mathematical discourse. They preferred to use the notion
of recursivity instead of the notion of construction.

This approach leaked into various fields of mathematics, including model
theory. In the 1960’s, independently, two schools of mathematicians, working
on different sides of the Iron Curtain, studied the topic. In America and
Australia computable model theory was developed by such investigators as

3See [Hil02].

13

(among others) Nerode, Millar and Harizanov (see [Har98] for a survey).
In Soviet Russia constructible model theory was developed in parallel by
(among others) Nurtazin, Goncharov, Ershov and Peretyat’kin (see [Ers73]).

Some of the results obtained by both of the schools of mathematics are
relevant to our investigations. Especially, by relativisation, many results con-
cerning (purely) recursive model theory can be interpreted as the results of
concrete model theory. However, the structure of degrees of unsolvability
6 0′ is very rich. Therefore, in concrete model theory, there is a lot of con-
structions which are not just relativisations of those performed on recursive
models.

Moreover, the motivations of researchers from both schools were not the
same as of Mostowski who launched the project of recognizing concrete frag-
ment of mathematics. They did not intend to identify the safe, finitistic con-
tent of model theory. They rather studied relative computational complexity
of various constructions, not paying attention to the distinction between
concrete and ideal mathematics.

1.6 Semantics without Actual Infinity

During his investigations on mathematics without actual infinity Mostowski
observed that semantic paradoxes do not require actual infinity. In fact, a lot
of them can be reproduced in finite models. As a consequence a very natural
question arose: how can we represent truth in finite models? In [Mos01] and
[Mos03] Mostowski investigates this topic. His research led him to the finite
models version of the undefinability of truth theorem.

Therefore, there is no full (first order) notion of truth in finite models.
However, questions remains: which features of truth can be represented in
finite models? and is there a way to approximate the full notion of truth in
finite models?

In [CZ10] Zdanowski and the author consider predicates which have cer-
tain properties of the truth predicate – the approximate truth definitions for
finite models (approximate FM–truth definitions). We investigate properties
of these predicates, which can be expressed in modal logic. We consider modal
logic SL, which mimics the properties of approximate FM–truth definitions.
As the result we obtain a Solovay–style completeness theorem ([Sol76]) which
shows that SL is the modal logic of approximate FM–truth definitions.

14

Chapter 2

Preliminaries

In this chapter we introduce basic notions used in the dissertation and sketch
historical and methodological background. We briefly present early develop-
ments of the twentieth century’s mathematical logic. We present the basics
of the work of Gödel: the completeness theorem and arithmetisation of syn-
tax; the work of Turing and his descendants: Turing machines and degrees of
unsolvability; and Tarski’s research: the approach on the mathematisation of
the concept of truth. Further, we present more recent results by Mostowski,
concerning representing concepts in potentially infinite worlds. Finally, we
sketch the basics of modal logic, which are used in Chapter 3.

2.1 Basic Notions

In this dissertation we work with first order logic (in Chapter 4) and modal
logic (in Chapter 3). We consider arbitrary relational vocabularies with
finitely many predicates built from the following predicates:

P0
0,P

0
1, . . . ,P

1
0,P

1
1, . . . ,P

2
0,P

2
1, . . . ,

where the upper index indicates the arity of a predicate and the lower index
is the position of a predicate in sequence of predicates of given arity. We
write ar(P) for the arity of a predicate P .

We additionally augment the language with an infinite set of constants
Consts = {c0, c1, . . . }.

We therefore consider vocabularies of the form σ = (P1, . . . , Pk, ar, C),
where C ⊆ Consts, P1, . . . , Pk are predicates and ar : {P1, . . . , Pk} → ω is
the arity function. Since there are no function symbols, the only terms are
variables Var = {v0, v1, . . . } and constants Consts. Then, the set Termσ of
terms of a vocabulary σ = (P1, . . . , Pk, ar, C) is defined as Var ∪ C. The
set of atomic formulae in a vocabulary σ (atomic σ–formulae), in symbols
FormAtσ is defined as follows:

• If t, s ∈ Termσ, then t = s is as an atomic σ–formula,

15

• If P is a predicate in σ such that ar(P) = n and t1 . . . , tn ∈ Termσ,
then P (t1, . . . , tn) is an atomic σ–formula.

The set of first order formulae of a vocabulary σ (σ–formulae), in symbols
Formσ, is defined inductively as follows:

• If ϕ ∈ FormAtσ, then ϕ is a formula,

• If ϕ is a formula, then ¬ϕ is a formula,

• If ϕ,ψ are formulae, then (ϕ ∧ ψ) is a formula,

• If ϕ is formula and x is a variable, then (∃xϕ) is a formula.

Other connectives are considered as abbreviations: (ϕ ⇒ ψ) stands for
¬(ϕ ∧ ¬ψ), (ϕ ∨ ψ) stands for ¬(¬ϕ ∧ ¬ψ) and finally (∀xϕ) stands for
¬(∃x¬ϕ). We also skip unnecessary parentheses. The set Litσ of the liter-
als in a vocabulary σ is defined as the set of atomic σ–formulae and their
negations.

Since we restrict our considerations to first order logic we refer to first
order formulae as to formulae. The notion of a free variable is defined in-
ductively in a standard way. For terms FV(x) = {x} and FV(c) = ∅, where
x ∈ Var and c ∈ Consts. For formulae FV(t1 = t2) = FV(t1) ∪ FV(t2),
FV(P (t1, . . . , tar(P))) =

⋃
i=1,...,ar(P) FV(ti), FV(¬ϕ) = FV(ϕ), FV(ϕ∧ψ) =

FV(ϕ)∪FV(ψ) and finally FV(∃xϕ) = FV(ϕ)−{x}. We say that a term t is
closed if it has no free variables and that a formula ϕ is a sentence if it has no
free variables i.e. FV(t) = ∅ and FV(ϕ) = ∅. We denote the set of sentences
of a vocabulary σ by Sentσ and we refer to its elements as σ–sentences.

A theory is an arbitrary set of sentences. A sentence ϕ is a consequence
of a theory T , in symbols T ` ϕ, if there is a finite sequence of sentences
ϕ0, ϕ1, . . . , ϕn such that ϕ = ϕn and for every i = 0, . . . , n it is either the
case that ϕi is a logical axiom, ϕi ∈ T or there are j, k < i such that
ϕk = (ϕj ⇒ ϕi). In the definition above we use arbitrary fixed complete
axiomatisation of first order logic i.e. a set of axioms which enables to prove
every logical tautology (see e.g. [AZ11]). The set of all consequences of a
theory T is denoted by Cn(T). Note that we do not require theories to be
closed under consequence.

We use the symbol ⊥ to abbreviate a contradictory sentence e.g. ∃xx 6=
x. A theory T is consistent if ⊥6∈ Cn(T). A theory T is complete in a vo-
cabulary σ if for every σ–sentence ϕ it is either the case that ϕ ∈ T or
¬ϕ ∈ T . A theory T has the witness property for σ in some set of constants
C if for every σ–formula ϕ(x) such that FV(ϕ) = {x}, there is c ∈ C such
that (∃xϕ(x) ⇒ ϕ(c)) ∈ T .1 Theories which are consistent, complete in σ
and which have witness property for σ in some set of constants C play an

1Formulae of the form: ∃xϕ(x) ⇒ ϕ(c) are called Henkin’s axioms.

16

important role in our work. If a theory T has this properties we say that T
is CCW(σ,C).

For n ∈ ω, we use a shorthand ∃=n for quantifiers “there exist exactly
n elements” and ∃>n for the quantifiers “there exist more than n elements”.
Similarly, we use also ∃<n, ∃6n and ∃>n in obvious meanings.

The quantifier rank of a formula ϕ, rk(ϕ), is defined in a usual way,
i.e. rk(ϕ) = 0 if ϕ is an atomic formula, rk(¬ϕ) = rk(ϕ), rk(ϕ ∧ ψ) =
max{rk(ϕ), rk(ψ)}, and rk(∃xϕ) = 1 + rk(ϕ).

2.2 Early Foundations

2.2.1 Arithmetics and Arithmetisation

Since we work with relational vocabularies, we consider a relational version
of the standard model of arithmetic: N = (ω,R+, R×,6). Here R+ is the
ternary relation of addition, R× is the ternary relation of multiplication and
6 is – the usual – binary ordering relation. In Chapter 3 we consider the
following expansion of the standard model of arithmetic: (N , n)n∈ω instead
of N . This allows to have terms naming every natural number without in-
troducing any function symbols to the vocabulary. By n we denote the n–th
numeral.

An arithmetical formula ϕ is bounded or ∆0 if all quantifiers occurring in
ϕ are of the form (Qx 6 t), where Q ∈ {∃, ∀} and t is a term in which x does
not occur. By Σn we denote the set of formulae which begin with a block
of existential quantifiers and have n − 1 alternations of blocks quantifiers
followed by a bounded formula. Similarly, ϕ is Πn if it begins with a block
of universal quantifiers and has n − 1 alternations of blocks of quantifiers
followed by a bounded formula. Let us observe that Σ0 as well as Π0 formulae
are exactly bounded formulae.2

An arithmetical relation R is Σ0
n (Π0

n) if it is defined (in N) by a Σn (Πn)
formula. A relation is ∆0

n if it is both Σ0
n and Π0

n. By Tarski’s undefinability
of truth theorem, which is discussed later, it is known that these classes
of formulae form a strict hierarchy of definable arithmetical relations – so
called arithmetical hierarchy. The arithmetical hierarchy is presented in the
following diagram.

2We use the notation Σn and Πn not only for arithmetical formulae, but also for for-
mulae of arbitrary vocabulary. In such contexts the base case are quantifier free formulae.
The inductive case remains the same.

17

∆0
1

Σ0
1

Π0
1

∆0
2

Σ0
2

Π0
2

∆0
3

Σ0
3

Π0
3

. . .

(

(

(

(

(

((

(

(

(

Given a little bit of arithmetic we can encode syntax via standard Gödel
numbering. First, we need to set codes of basic (primitive) elements of the
language. We want to use only finitely many primitive symbols. Therefore,
all infinite sets such as variables, constants and predicates are encoded by
(binary) sequences of primitive symbols. To encode variables we introduce
two primitive symbols 0v and 1v. For i ∈ ω, the variable vi is written as a se-
quence of 0vs and 1vs corresponding to the binary presentation of i. Similarly,
for constants, we introduce two additional symbols 0c and 1c. For predicates
we need to express both the arity and the position in the enumeration of
all predicates with given arity. Therefore, we introduce 0ar, 1ar, 0P and 1P .
Therefore, variable v3 is written as 1v1v, constant c4 is written as 1c0c0c and
predicate P1

2 is written as 1ar1P 0P .
The length of the variable vi for i > 0 is equal to dlog2(i+ 1)e. Similarly,

the length of the constant ci for i > 0 is equal to dlog2(i+ 1)e. For i, j > 0,
the length of the predicate Pij is equal to dlog2(i+ 1)e+ dlog2(j + 1)e. For a
formula ϕ by |ϕ| we denote the length of ϕ.

The other primitive symbols that we need to encode the syntax of first
order logic are: the existential quantifier ∃, propositional connectives ¬ and ∧,
the identity symbol =, parentheses: (and) and a comma. We put: p0vq = 1,
p1vq = 2, p0cq = 3, p1cq = 4, p0arq = 5, p1arq = 6, p0P q = 7, p1P q = 8,
p∃q = 9, p¬q = 10, p∧q = 11, p=q = 12, p(q = 13, p)q = 14 and finally
p, q = 15.

Let p0, p1, . . . be an increasing enumeration of prime numbers. We can
extend the function p−q to the function over arbitrary strings A<ω over an
alphabet A containing all primitive symbols in the standard way:

p−q : A<ω → ω,

by putting for α = a0 . . . an ∈ A<ω:

pαq = pa0 . . . anq = p1+a0
0 · · · · · p1+an

n .

The function p−q enables to encode and decode effectively every string of
primitive symbols. Therefore, with p−q we can encode every formula and
every sequence of formulae as a natural number. This encoding is proper

18

i.e. injective (by the fundamental theorem of arithmetic), recursive and with
recursive decoding. Moreover, we also use p−q to encode finite sequences of
natural numbers and – in general – any finite object.

In Chapter 4 we mention axiomatic theories such as Peano Arithmetic
PA and Zermelo–Fraenkel set theory ZF . We take arbitrary axiomatisations
of these theories. In the case of PA we need to translate the axioms into the
relational vocabulary.

2.2.2 Model Theory – Mathematisation of Truth

In [Tar33] Tarski considers the notion of truth for formalised languages. His
considerations are the milestone for the whole branch of mathematics called
model theory, which emerged in his and his student’s later papers ([Tar56],
[TV58]). The ideas introduced by Tarski seem to be very simple. Yet, in
the times of his investigations on the notion of truth, semantics – in general
– were considered metaphysical and therefore not admissible in scientific
discourse.

Tarski introduced the notion of a model and gave the rigorous definition
of the satisfaction relation. It is his investigations that allow to deal with
semantics in a strict mathematical manner.

We present the notion of truth definition in the context of arithmetics.
We say that τ is a truth definition for arithmetical vocabulary if for every
arithmetical sentence ψ it holds that:

N |= ψ ≡ τ(pψq).

Tarski proved in [Tar33] the famous undefinability of truth theorem which
states that there is no arithmetical truth definition for arithmetical sentences.

Theorem 2.2.1 (Tarski’s Undefinability of Truth Theorem ([Tar33]))
There is no first order arithmetical formula τ such that for every first order
arithmetical sentence ψ:

N |= ψ ≡ τ(pψq).

The undefinability of truth theorem can be stated in various forms for
any sufficiently expressible language. Tarski invented the method of truth
definitions which enables separate languages with respect to their expressive
power. It follows from his consideration that the arithmetical hierarchy is
strict and that for any vocabulary there is a truth definition for n–th order
logic sentences in the (n+ 1)–th order logic.

Some semantical remarks and considerations were present in mathematics
even before Tarski. The aim of the Hilbert’s programme, for instance, was to
find a finitistic axiomatic theory which is complete and capable of deciding
the truth of every mathematical sentence. Such theories, often called systems,
were the first attempts on grasping mathematical truth – by provability

19

within an appropriate system. A notion similar to the notion of a model was
also used before Tarski. Those were – so called – domains of individuals.
However, there was no notion of valuation in a domain of individuals nor the
notion of satisfaction, but still the notion of truth of a sentence in a given
domain of individuals was used as an intuitive notion.

In his doctoral dissertation from 1929 Gödel considers and proves the
completeness theorem for first order logic. It was first stated by Russell and
Whitehead in Principia Mathematica ([WR27]). However, since the theorem
is semantical in its nature, Russell and Whitehead were not very concerned
with it, since it exceeded the provability within the system they introduced
(see [Göd02a]).

Gödel’s completeness theorem was presented in The Königsberg Congress
in 1930. However – again – since the theorem has a semantical nature, his
presentation did not raise great interest. A sentence is called refutable if
` ¬ψ i.e. if the negation of ψ is provable from the axioms of first order logic.
A sentence ψ is satisfiable if there is a domain of individuals in which ψ is
true. The completeness theorem is stated as follows.

Theorem 2.2.2 (Gödel’s Completeness Theorem ([Göd30])) Let ψ be
a first order sentence. Then one of the following holds:

• ψ is refutable,

• ψ is satisfiable.

The original proof of Gödel’s completeness theorem (see [Göd30]) is es-
pecially interesting for us, because the key argument used in it requires no
actual infinity. In the case of ψ not being refutable Gödel constructs a count-
able domain of individuals in which ψ is true. The construction goes by a
sequence of finite models forming a chain (in the modern terminology) such
that its union satisfies the irrefutable sentence ψ. Gödel’s proof of the com-
pleteness theorem is one of the motivations of this dissertation. It shows
that no actual infinity is involved in the notion of completeness. However,
the tools provided by Tarski enabled one to study model theory within set
theory using the whole variety of infinitary methods. The modern model the-
ory is developed in a suitable axiomatic set theory, which is explicitly stated
in textbooks on the subject e.g. [CK73].

2.3 Computability Theory

2.3.1 Turing Machines

In 1936 Turing published his famous paper [Tur36] on the notion of com-
putability. It was historically the first so comprehensive and philosophically

20

grounded elaboration of the subject. Turing introduces his automatic ma-
chines which are commonly known today as Turing machines. Turing ma-
chines have a certain place in majority of the modern academic courses in
computability theory. These machines may look quite strange on a first sight
and it is mostly hard to understand the underlying algorithm that is encoded
in a transition function, but Turing put a lot of effort in justifying the final
appearance of his model of computation. This clearly is an abstraction from
observations of how we perform computations based on a given procedure
and also from investigations which procedures are admissible.

Intuitively, a person performing a computation – a computer – needs
only a sheet of paper, a pencil and a rubber. The computer starts with a
problem written down on a sheet of paper and uses a pencil and a rubber
to write down new symbols on it or erase symbols from it to get the answer
to the problem. Symbols that appear during the computation have to be
distinguishable from one another thus they have to be no smaller than of
certain size – therefore we may assume that the sheet is squared and each
square can contain exactly one symbol out of a finite number of symbols or
remain blank. The computer during the computation is in one of the finite
number of mental states that reflect the sub–task of the computation she
currently preforms. Turing pointed out also that the person performing the
computation has only finite range of sight – thus we may assume without
loss of generality that at one time she only reads a symbol from exactly one
square and can change it according to its current mental state. From this
intuition Turing abstracted the notion of automatic machine i.e. the notion
of a Turing machine.

A Turing machine consists of (potentially) infinite tape which is divided
into cells and a head that moves through the tape reading and writing on
cells. The tape is an abstraction of the sheet of paper and the head is an
abstraction of a pencil. The mental states of the computer become the states
of the machine in Turing’s abstraction.

The formal definition of the Turing machine is as follows. A Turing ma-
chine is a tuple M = (Q,Γ, BLANK,Σ, δ, q0, F), where Q is a finite, non–
empty set of states, Γ is a finite, non–empty set of tape symbols, BLANK ∈
Γ is a special blank symbol, Σ ⊆ Γ−{BLANK} is the alphabet of the input
data, δ : (Q − F) × Γ → Q × Γ × {L, 0, R} encodes an algorithm that the
machine performs, q0 ∈ Q is the initial state at which the computation starts
and F ⊆ Q is the set of final states at which the computation stops.

Note that every Turing machine is a finite object – it consists of finite
sets – and therefore it can be effectively encoded by a single natural number
e.g. its Gödel number. This encoding can be made such that from a given
code one can algorithmically extract the the full description of the Turing
machine.

By Φi we denote the i–th Turing machine with respect to the size of its
encoding. For i, n ∈ ω we write Φi(n)↓ if the i–th Turing machine eventu-

21

ally halts given n as an input and Φi(n)↑ otherwise. Turing machines can
give outputs of computations for instance as numbers encoded by binary se-
quences that remain on the tape after the machine stops. This enables Turing
machines to compute functions or to decide sets i.e. compute their charac-
teristic functions. For i, n, k ∈ ω we write Φi(n)↓ = k when the output of the
i–th Turing machine is k given input n. A set A is said to be partially decided
(partially computed) by a Turing machine Φi if A = {n ∈ ω : Φi(n)↓ = 1}. A
set A is decided (computed) by a Turing machine Φi if it is partially decided
by Φi and ω − A = {n ∈ ω : Φi(n)↓ = 0}. A set is partially decidable (par-
tially recursive, recursively enumerable) if there is a Turing machine which
partially decides it. A set is decidable (recursive, computable) if there is a
Turing machine which decides it.

Since Turing machines can be encoded as natural numbers, we can give as
an input for a Turing machine U a pair of a code of another Turing machine
M and an input to it n and make U simulate the computation of M on
the input n. Such U is called a universal Turing machine. The existence of
universal Turing machines lead to the famous undecidability of the halting
problem – there is no algorithm (Turing machine) which takes on the input
pairs (pMq, n), whereM is a Turing machineM and decides whetherM halts
on the input n. Therefore the set K = {(i, j) : Φi(j)↓} – the halting problem
– is undecidable. Similarly undecidable is the set S = {i : Φi(i)↓}. Both sets
K and S are computationally equivalent (see the following section for precise
statement of this equivalence). Therefore we refer to both of them as to the
halting problem. The statement of the undecidability of hating problem is
the following.

Theorem 2.3.1 (Undecidability of Halting Problem (see [Sho59]))
The halting problem is undecidable.

Apart from Turing machines there are several different models of compu-
tations that played an important role in the theory of computability. One of
the most significant are lambda calculus, RAM machines, while–programs,
partially recursive functions and Σ1 formulae. These were all shown to be
equivalent to Turing machines i.e. functions (partially) computable in each
of these models are exactly the same as functions (partially) computable
by Turing machines. Most of the modern programming languages resemble
while–programs. This is because while–programs are easier to understand
and analyse by humans than other computation models. We therefore, for
the sake of clarity, write while–program–like algorithms in this dissertation,
rather than use any other model of computations.

We finish this section with two important in computability theory theo-
rems, which characterise recursive sets.

Theorem 2.3.2 (Post’s Theorem (see [Sho59])) Let A ⊆ ω. The fol-
lowing are equivalent:

22

• A is recursive,

• A and ω −A are recursively enumerable.

Theorem 2.3.3 ((See [Sho59])) Let A ⊆ ω. The following are equivalent:

• A is recursive,

• there is an increasing enumeration a0, a1, . . . of elements of A and an
algorithm computing i 7→ ai.

An increasing enumeration of a recursive set A as in the previous theorem
we call an effective presentation of A.

2.3.2 Degrees of Unsolvability

In this section we show how to extend the model of computation based on
Turing machines with some additional capabilities. We introduce relativised
computations i.e. we allow Turing machines to use as a black–box, an oracle,
some set for which the machine can ask for the membership in this set.
The computation with such an oracle is called a computation relative to the
oracle. Such computations were first mentioned by Turing in [Tur39] and
further developed by Turing, Post and Kleene ([Pos44], [KP54]).

Oracle Turing machines have an additional oracle tape and oracle head
used only for querying the oracle. Oracle Turing machines have also addi-
tional states to control the head of the oracle and additional states ASK,
Y ES, NO such that if an oracle Turing machine is in state ASK the next
state becomes Y ES if the number encoded by symbols on the oracle tape is
in the oracle and NO otherwise. In both cases the oracle tape is cleared af-
ter the answer is given. In while–program–like algorithms we present in this
dissertation relativised computations are introduced by adding an additional
expression of the form i ∈ O, where i ∈ ω to the syntax. The meaning of
i ∈ O is obviously “i belongs to the oracle”.

Recall that every Turing machine, therefore every algorithm, can by en-
coded as a natural number. This encoding is effective in sense that given a
Turing machine M one can recursively calculate its code pMq and given a
natural number i one can recursively decode it to obtain full description of
a Turing machine M such that i = pMq. Oracle Turing machines are not
very different structurally from the ordinary Turing machines – they are only
enriched with additional instructions for asking the oracle, thus they can be
encoded similarly to the ordinary Turing machines. For i ∈ ω and f ∈ 2ω, by
Φf
i we denote the oracle Turing machine with code i and oracle f .3 Similarly

to the regular Turing machines we write Φf
i (j)↓, if the i–th oracle Turing

3Here we identify sets with their characteristic functions, which are more convenient
for presentation of the content of this section.

23

machine with oracle f halts on input j and Φf
i (j)↑ otherwise. We also write

Φf
i (j)↓ = k to indicate that the i–th oracle Turing machine with oracle f

halts on input j and outputs k and if k ∈ {0, 1} we can understand the
machine to compute a characteristic function i.e. to decide the membership
relation of some set.

The set of natural numbers {j ∈ ω : Φf
i (j)↓ = 1} is said to be partially

computed in f (partially decided in f) by the i–th Turing machine with
oracle f . If it holds that for every j ∈ ω, Φf

i (j)↓ and outputs 0 or 1 then
the i–th oracle Turing machine with oracle f is said to compute (or decide)
the set {j ∈ ω : Φf

i (j)↓ = 1} in f . A set is partially decidable in f (partially
computable in f , recursively enumerable in f), if there is an oracle Turing
machine which partially computes it, with f as an oracle.

Let f, g ∈ 2ω be sets of natural numbers. We say that f is recursive in
g (computable in g, decidable in g), in symbols f 6T g, if there is an oracle
Turing machine which, with g as an oracle, computes f .

Let K ⊆ P(ω) be a family of sets. We say that g is K–hard if for every
f ∈ K it holds that f 6T g. We say that g is K–complete if g ∈ K and g is
K–hard.

Note that 6T is a pre–order on subsets of ω. We say that f and g are
Turing equivalent, in symbols f ≡T g, if both f 6T g and g 6T f hold.
Turing equivalence is an equivalence relation on subsets of ω. Equivalence
classes of relation ≡T are called Turing degrees or degrees of unsolvability
and for f ∈ 2ω the degree of f is denoted by deg(f). The pre-order 6T
on subsets of ω induces an order 6 on Turing degrees, which is defined by
deg(f) 6 deg(g) if and only if f 6T g. The set of all Turing degrees is
denoted by D. Usually Turing degrees are denoted by lowercase boldface
letters a, b,

We focus on the properties of D. First let us note that there is a least
element with respect to 6, denoted by 0, in D – it is the degree of all recursive
sets. For every two sets f, g ∈ 2ω we define f ⊕ g as their recursive sum i.e.
for every i ∈ ω, (f ⊕g)(2i) = 1 if and only if f(i) = 1 and (f ⊕g)(2i+1) = 1
if and only if g(i) = 1. The operation ⊕ induces a (recursive) join operation
on Turing degrees which is denoted by ∪ and is defined in the following
way: deg(f) ∪ deg(g) = deg(f ⊕ g). Taking recursive sum of two oracles
as an oracle may be seen as enabling Turing machines to use both oracles
during their computations. The degree deg(f ⊕ g) is the least upper–bound
of deg(f) and deg(g) in (D,6), hence (D,6) is an upper semi–lattice. There
is one more very important operation on sets of natural numbers which
transfers to Turing degrees – this operation is connected with halting problem
i.e. f∗ = {i ∈ ω : Φf

i (i)↓}. f∗ is called the halting problem for f . By f ′

we denote deg(f∗) and call it the (Turing) jump of deg(f). The argument
analogous to the one used to show that the halting problem for ordinary
Turing machines is not recursive can be generalised to work for oracle Turing

24

machines too – showing that for every f ∈ 2ω the set f∗ is computably harder
then f i.e. deg(f) < deg(f∗) = deg(f)′. Another important property of jump
operator is its monotonicity i.e. for each f, g ∈ 2ω if deg(f) 6 deg(g), then
deg(f)′ 6 deg(g)′.

The structure (D,6,∪,′) of Turing degrees is known to be extremely
complicated. It is known (see [Sim77]) that it is bi–interpretable with the
second order theory of the standard model of arithmeticN . We are interested
in a small part D(6 0′) of D – only those Turing degrees which are 6
0′. Among these degrees, there is a particularly interesting class of Turing
degrees – the low degrees i.e. those a for which it holds that a′ 6 0′. A set
is said to be low if it belongs to a low degree.

When we consider a specific set or relation that is computed by a Turing
machine with a specific oracle we need to encode the oracle, as obviously
different oracles lead to different performance of a Turing machine. Since we
are especially interested in6 0′ concepts we need only to be able to effectively
encode Turing machines with recursively enumerable oracles. This can be
done easily by representing Turing machines with recursively enumerable
oracles as pairs of codes of Turing machines (pMq, pOq), whereM computes
the algorithm (with additional oracle instructions) and O is a Turing machine
partially computing the oracle.

We say that T ⊆ 2<ω is a binary tree if for all σ, τ ∈ 2<ω if τ ⊆ σ
and σ ∈ T , then τ ∈ T , where τ ⊆ σ means that there is τ ′ ∈ 2<ω such
that ττ ′ = σ i.e. τ is an initial segment of the sequence σ. Thus we identify
binary trees with sets of their branches encoded by binary sequences where
empty sequence stands for the root of the tree and for every finite sequence
σ, σ0 is its left and σ1 its right child. Since we only consider binary trees
we refer to them as trees. We say that a tree T has a certain computational
property if relation σ ∈ T has this property e.g. T is recursive if relation
σ ∈ T is recursive and T is low if σ ∈ T is low. Here we need, of course, to
code nodes of the tree in some suitable way and we use Gödel numbering
for this purpose i.e. pσq = p

1+σ(0)
0 p

1+σ(1)
1 . . . p

1+σ(lh(σ)−1)
lh(σ)−1 . For f ∈ 2ω and

i ∈ ω by f�i we denote a finite sequence σ of length i such that for all n < i,
f(n) = σ(n) holds.

With every tree T we associate a class of subsets of ω which are coded
by its infinite branches i.e. [T] = {f ∈ 2ω : ∀x ∈ ω f�x ∈ T}.

Definition 2.3.4 (Π0
1–class) A class C ⊆ 2ω is called a Π0

1 class if there is
a recursive set A such that C = {f ∈ 2ω : ∀i ∈ ωA(f�i)}.

We are ready to state the Low Basis Theorem.

Theorem 2.3.5 (Low Basis Theorem ([JS72])) Every non-empty Π0
1 class

contains a low member.

25

The original proof of the theorem can be found in [JS72]. However, it
uses a topological argument and gives a rather vague insight on how the low
member really looks like. We present our own very different – algorithmic –
proof of the Low Basis Theorem by showing the explicit 0′ oracle algorithm
for computing a low member of a Π0

1 class. We base our algorithm on the
original proof from [JS72] but we construct the low member rather induc-
tively than by taking an element of the intersection of an infinite sequence
of recursive trees. The original statement of the Low Basis Theorem is too
weak to our purposes but, nevertheless, the proof itself can be strengthened
easily to a form that we can use in our further investigations.

It is also more convenient to work with trees rather than classes. In what
follows we work with trees understood both as sets of their finite branches
σ ∈ 2<ω and as sets of codes of those branches. To avoid ambiguity we write
T (i) = 1 for the branch with Gödel number equal to i is in T and σ ∈ T for
the standard meaning – the branch σ is in T .

We introduce one more abbreviation for i, j ∈ ω and g ∈ 2ω: Φσ⊕g
i (j)↓

– it means that the i–th oracle Turing machine halts on input j after at
most lh(σ) steps using a partial oracle σ⊕ g. This means that for k > lh(σ),
whenever the machine asks: “2k ∈ σ⊕ g?”4, it loops. Note that for f, g ∈ 2ω,
Φf⊕g
i (j)↓ if and only if there is n ∈ ω such that Φf�n⊕g

i (j)↓ and dually
Φf⊕g
i (j)↑ if and only if for each n ∈ ω it holds that Φf�n⊕g

i (j)↑.
Our aim is to prove the Low Basis Theorem in the following form: Let

T be an infinite low tree. Then there is a low f ∈ 2ω such that f ∈ [T] and
f ⊕ T is low.

Let T be an infinite low tree. We present the general construction and
proceed with a series of lemmata concerning its properties. Then, we prove
the Low Basis Theorem.

First let us define a sequence of trees recursive in T :

Un = {σ ∈ 2<ω : Φσ⊕T
n (n)↑}.

Now let us inductively define a descending sequence of trees as follows.

T0 = T ,

Tn+1 =

{
Tn if Tn ∩ Un is finite
Tn ∩ Un else .

Lemma 2.3.6 For every n ∈ ω the tree Tn is infinite and recursive in T ,
thus low.

Proof: The proof goes by induction. For n = 0 we have T0 = T , thus T0

is obviously infinite and recursive in T . Suppose for the inductive hypoth-
esis that for n ∈ ω, Tn is recursive in T and infinite. If Tn ∩ Un is finite,

4Which is equivalent to “k ∈ σ?′′.

26

then Tn+1 = Tn and the thesis holds by the induction hypothesis. Otherwise
Tn ∩ Un is infinite and Tn+1 = Tn ∩ Un which is infinite by the assumption
and since both Tn and Un are recursive in T , also Tn+1 is recursive in T . �

For each i ∈ ω we consider the following algorithm Mi with oracle g. It
halts if and only if g(i) = 1.

Algorithm 1 Procedure Mi

if g(i) = 1 then
return true

else
while true do
end while

end if

Each of the algorithms Mi ignores its input and halts if and only if i is
in the oracle. It is obvious that the mapping i 7→ pMiq is recursive.

Let us define the set f that is further shown to be low and such that
f ∈ [T] and deg(f ⊕ T)′ 6 0′. For every i ∈ ω we put f(i) = 1 if and
only if TpM2iq+1 ∩UpM2iq+1 if finite. Algorithm 2 computes f using an oracle
of degree 0′. Note that in our algorithms we use a certain convention from
the objective programming paradigm: we use objects, such as for instance
recursive in T trees, in our programs. This, however, is not a problem since
every low tree has the degree 6 0′. Therefore, it can be represented as a finite
object – as a pair of natural numbers, as we explained earlier in this section.
We also use the procedure IsFinite which takes a low tree as an input and
returns 1 if the given tree is finite and 0 otherwise. This procedure can be
performed with an oracle of degree 0′ for every low tree, since finiteness of a
low tree T can be defined as follows:

∃n ∀σ (lh(σ) = n⇒ σ 6∈ T).

This is existential quantification over a recursive in T , thus low, set. Observe
also that the intersection of two recursive in T trees is also a recursive in T
tree.

27

Algorithm 2 Low Basis Algorithm computing low infinite branch of T
Input: i ∈ ω
Output: f(i)
Array〈recursive in T tree〉 T
Array〈recursive in T tree〉 U
T [0]← T
a← pM2iq+ 1
for j ← 0 to a do
U [j]← {σ ∈ 2<ω : Φσ⊕T

j (j) ↑}
if IsFinite(T [j] ∩ U [j]) then
if j = a then
return 1

end if
T [j + 1]← T [j]

else
if j = a then
return 0

end if
T [j + 1]← T [j] ∩ U [j]

end if
j ← j + 1

end for

We are going to show a series of lemmata in our way to prove the Low
Basis Theorem.

Lemma 2.3.7

∀i ∈ ω ∀g ∈ 2ω Φg
pMiq

(pMiq)↓ ≡ g(i) = 1.

Proof: Fix i ∈ ω and g ∈ 2ω. The following are equivalent:

• Φg
pMiq

(pMiq)↓,

• the algorithm Mi halts,

• g(i) = 1.

�

Lemma 2.3.8

∀i ∈ ω ((Ti ∩ Ui is finite⇒ ∀g ∈ [Ti+1] Φg⊕T
i (i)↓)∧

(Ti ∩ Ui is infinite⇒ ∀g ∈ [Ti+1] Φg⊕T
i (i)↑)).

28

Proof: Fix i ∈ ω.
Suppose that Ti ∩Ui is finite – then Ti+1 = Ti. Fix g ∈ [Ti]. It is not the

case that g ∈ [Ui] as otherwise Ti ∩ Ui would be infinite. Therefore, by the
definition of Ui it holds that there is n ∈ ω such that g�n 6∈ Ui which means
that Φg�n⊕T

i (i)↓ and therefore also Φg⊕T
i (i)↓.

Suppose now that Ti ∩Ui is infinite. Then Ti+1 = Ti ∩Ui. Let g ∈ [Ti+1].
Then for every n ∈ ω it holds that g�n ∈ Ti∩Ui. Therefore, by the definition
of Ui it holds that ∀n ∈ ωΦg�n⊕T

i (i)↑, hence Φg⊕T
i (i)↑. �

Lemma 2.3.9 For every i ∈ ω the following are equivalent:

1. TpMiq+1 ∩ UpMiq+1 is finite,

2. ∀g ∈ [TpMiq+1] Φg⊕T
pMiq

(pMiq)↓,

3. ∀g ∈ [TpMiq+1] (g ⊕ T)(i) = 1.

Proof: Fix i ∈ ω. The equivalence (1 ⇔ 2) follows from 2.3.8 and the
equivalence (2 ⇔ 3) follows directly from 2.3.7. �

Lemma 2.3.10

∀i ∈ ω ∀g ∈ [TpM2iq+1] g�(i+ 1) = f�(i+ 1).

Proof: The proof goes by induction on i.
For the base step suppose that i = 0 and fix g ∈ [TpM0q+1]. If TpM0q+1 ∩

UpM0q+1 is finite then by Lemma 2.3.9 it holds that (g⊕T)(0) = 1 i.e. g(0) =
1. By the definition of f it also holds that f(0) = 1. If TpM0q+1 ∩ UpM0q+1

is infinite, then by Lemma 2.3.9 it holds that (g ⊕ T)(0) = 0 i.e. g(0) = 0.
Then, by the definition f(0) = 0. This ends the base step.

Now suppose for the induction hypothesis that for i ∈ ω it holds that ∀g ∈
[TpM2iq+1] g�(i + 1) = f�(i + 1). Fix g ∈ [TpM2(i+1)q+1]. Then g ∈ [TpM2iq+1]
and therefore by the induction hypothesis g�(i+1) = f�(i+1). It remains to
show that f(i+ 1) = g(i+ 1). The argument is analogous to the one in the
base step of induction. If TpM2(i+1)q+1∩UpM2(i+1)q+1 is finite, then by Lemma
2.3.9 it holds that (g⊕T)(2(i+1)) = 1 i.e. g(i+1) = 1 and by the definition
of f it also holds that that f(i+ 1) = 1. If TpM2(i+1)q+1 ∩UpM2(i+1)q+1 is infi-
nite, then by Lemma 2.3.9 it holds that (g⊕T)(2(i+1)) = 0, i.e. g(i+1) = 0
and by the definition f(i+ 1) = 0. This ends the proof. �

Lemma 2.3.11 For every k ∈ ω it holds that f ∈ [Tk].

29

Proof: It is sufficient to show that:

∀k, n ∈ ω f�(n+ 1) ∈ Tk.

Fix k, n ∈ ω. First, let us recall that by Lemma 2.3.6 each Tj is infinite, which
is equivalent to the fact that [Tj] is not empty. Therefore [TpM2nq+1] is not
empty and by Lemma 2.3.10 for every g ∈ [TpM2nq+1] it holds that f�(n+1) =
g�(n + 1). Now let l = max{pM2nq + 1, k} – then certainly [Tl] ⊆ [Tk] and
[Tl] ⊆ [TpM2nq+1]. Hence, for every g ∈ [Tl] we have f�(n + 1) = g�(n + 1).
Let g ∈ [Tl], then g�(n + 1) ∈ Tl and therefore f�(n + 1) ∈ Tl ⊆ Tk. This
ends the proof. �

Lemma 2.3.12 For every i ∈ ω the following are equivalent:

1. Ti ∩ Ui is finite,

2. ∀g ∈ [Ti+1] Φg⊕T
i (i)↓,

3. Φf⊕T
i (i)↓.

Proof: Fix i ∈ ω. The equivalence (1 ⇔ 2) follows directly from lemma
2.3.8. The equivalence (2 ⇔ 3) follows from lemmata 2.3.8 and 2.3.11. �

By Lemma 2.3.12, we can decide Φf⊕T
i (i)↓ by deciding whether Ti ∩ Ui

is finite. Therefore, Algorithm 3 with an oracle of degree 0′ computes the
halting problem for f ⊕ T . It instantly follows that both f ⊕ T and f are
low.

30

Algorithm 3 Algorithm computing the halting problem for f ⊕ T
Input: i ∈ ω
Output: truth value of Φf⊕T

i (i)↓
Array〈recursive in T tree〉 T
Array〈recursive in T tree〉 U
T [0]← T
for j ← 0 to i do
U [j]← {σ : Φσ⊕T

j (j) ↑}
if IsFinite(T [j] ∩ U [j]) then
if j = i then
return true

end if
T [j + 1]← T [j]

else
if j = i then
return false

end if
T [j + 1]← T [j] ∩ U [j]

end if
j ← j + 1

end for

We therefore have the following theorem.

Theorem 2.3.13 (Low Basis Theorem) Let T be an infinite low tree.
Then there is a low f ∈ [T] such that f ⊕ T is low.

Proof: Let T be an infinite low tree. We perform the above construc-
tion of descending sequence of trees for T . Lemma 2.3.11 shows that f ∈ [T].
Since the procedure IsFinite can be performed with an oracle of degree 0′,
Algorithm 3 shows that f ⊕ T is low, thus f is also low. �

Note that the construction of a low branch of a low tree presented here
is uniform and can be made effective. We show how to effectively get the low
branch of a low infinite tree, but first we need to make some observations.

In this dissertation we construct mostly algorithms with K – the halting
problem – as an oracle. This is because there is a natural way of presentation
for such algorithms (see Theorem 2.4.4). Let f ∈ 2ω and suppose we have
an algorithm M which decides f in K. Then Φf

i (i) = ΦK
g(i)(i),

5 for some
recursive function g which depends only on M . The function g takes a code
of an oracle Turing machine as an input and outputs the code of the oracle
machine where every query to the oracle j ∈ O is replaced by M(j) = 1.

5This is the equality in the strong sense: both computations halt on the same inputs
and, if they halt, the outputs are equal.

31

Observe that the halting problem naturally corresponds to quantification.
Let R be a binary relation. Then R∗ = {i ∈ ω : ΦR

i (i)↓} is the halting
problem for R. It is easy to see that R∗ can be defined by a Σ1–formula in
a vocabulary extended by a predicate interpreted as R. On the other hand,
a relation defined by a formula ∃k R(k, n) is recursive in R∗. Consider the
following algorithm.

Algorithm 4 Algorithm partially deciding ∃k R(k, n) using R as an oracle
Input: n
k = 0
while true do
if R(k, n) then
return true

end if
k = k + 1

end while

Algorithm 4 halts if and only if ∃k R(k, n). Therefore to decide ∃k R(k, n)
we can use R∗ as an oracle. It suffices to compute the code m of Algorithm 4
and check if ΦR

m(n)↓. This is easily computable in R∗. For the universal
quantification the reasoning is analogous.

Note also that from a code of an algorithm which computes f∗ in K we
can recursively compute a code of an algorithm computing f in K.

In the light of the above remarks we have the following theorem.

Theorem 2.3.14 (Constructivity of the Low Basis Theorem)
There is a recursive procedure s 7→ (a, b, c, d), such that if:

• ΦK
s computes the halting problem T ∗ for a low infinite tree T ,

then:

• ΦK
a computes f , where f is the low infinite branch of T obtained by

means of the Low Basis Theorem (2.3.13),

• ΦK
b computes f∗,

• ΦK
c computes f ⊕ T ,

• ΦK
d computes (f ⊕ T)∗.

Proof: Let T be a low infinite tree. Let s be such that ΦK
s computes the

halting problem T ∗ for T .
Observe that from the code of an algorithm which computes (f ⊕ T)∗

in K we can recursively compute codes of algorithms which compute f , f∗

and f ⊕T in K. Therefore, it is sufficient to construct from s, an algorithm

32

which computes (f ⊕ T)∗ in K. Similarly the code t of the algorithm such
that ΦK

t computes T can be recursively produced from s.
Our recursive procedure outputs the code of Algorithm 3, where we use

ΦK
t to compute the code of j 7→ {σ : Φσ⊕T

j (j)↑} and ΦK
s to compute proce-

dure IsFinite. �

By Theorem 2.3.14 the Low Basis Theorem is constructive in a sense that
it translates algorithms which, in K, compute halting problems for infinite
low trees to algorithms computing, in K, their low branches and halting
problems for these branches. This is shown to be essential in various model–
theoretic constructions we perform in Chapter 4. Its power is that it allows us
to iterate potentially infinitely many times certain reasonings on low objects
(trees, theories, models etc.) and still get low objects as an output. This
helps us build various chains and towers of models.

It is also worth noting that there is no recursive, nor even recursive in
K, procedure computing the code of an algorithm which decides in K the
halting problem for a low set A, from the code of an algorithm which decides
A in K ([Mon14]). Therefore, we need an explicitly given algorithm which
decides, in K, the halting problem for a low infinite tree T , to effectively
produce the low branch of T – by means of Theorem 2.3.14.

We end this section with a relativised version of Post’s theorem.

Theorem 2.3.15 (Relativised Post’s Theorem (see [Sho59]))
Let A,B ⊆ ω. The following are equivalent:

• A is recursive in B,

• A and ω −A are recursively enumerable in B.

In the following section we show why relations computable in K are
essential in this dissertation. It is also explained why we consider algorithms
relative to K instead of relative to any other oracle.

2.4 Finite Models and Potentially Infinite Domains

In this section we present basic definitions and theorems introduced by
Mostowski (mostly in [Mos01] and [Mos03]) in his account of potentially
infinite domains.

2.4.1 Representing Concepts in a Language without Actual
Infinity

Consider an arithmetical model A = (ω, {Ri}i∈I , {aj}j∈J). We consider the
following finite approximations of A – initial segments of A:

33

An = ({0, . . . , n}, {Rni }i∈I , {anj }j∈J , n).

Each model An is a finite model in a vocabulary of A extended by a
constant MAX which is interpreted as the greatest element n of the model
An. For each i ∈ I, the relation Rni is a restriction of Ri to the set {0, . . . , n}.
For each j ∈ J , anj = aj , if aj 6 n or anj = n otherwise.

The family of all initial segments of A is called an FM–domain of A and
is denoted by FM(A). Therefore:

FM(A) = {An : n ∈ ω}.

FM(A) may be considered as a model of a potentially infinite world –
the family of finite approximations of the model A. For each n ∈ ω we can
take m > n and a model Am, if An is too small for our purposes. However,
every element of FM(A) is always a finite model.

We follow Mostowski’s approach and define the sl–semantics for FM–
domains.

Definition 2.4.1 (sl–semantics)
Let ϕ be a formula and let a1, . . . , ar ∈ ω.

FM(A) |=sl ϕ[a1, . . . , ar] if and only if ∃k ∀n > kAn |= ϕ[an1 , . . . , a
n
r],

where for i = 1, . . . , r, ani = min{ai, n}.

sl–semantics express the asymptotic behaviour of formulae in
FM–domains. A valuation a sl–satisfies a formula ϕ if a satisfies ϕ in all
sufficiently large initial segments of A.

We are particularly interested in properties of the standard FM–domain
FM(N), which is an FM–domain of the standard model of arithmetic N =
(ω,R+, R×,6).6

One of the main directions of Mostowski’s investigations was to identify
the notions that are meaningful without actual infinity – those which can be
represented in FM–domains.

Definition 2.4.2 (FM–representability)
Let R ⊆ ωr. R is FM–represented by a formula ϕ(x1, . . . , xr) if for every
a1, . . . , ar ∈ ω:

1. (a1, . . . , ar) ∈ R if and only if FM(N) |=sl ϕ[a1, . . . , ar],

2. (a1, . . . , ar) 6∈ R if and only if FM(N) |=sl ¬ϕ[a1, . . . , ar].

R is FM–representable if there exists a formula ϕ FM–representing R.
6For investigations on FM–domains in weaker arithmetic languages see: multiplication

[KZ05], divisibility [MW04], coprimality [MZ05a].

34

Therefore, a relation R is FM–representable if there is a formula ϕ such
that for every instance a the the truth with respect to sl–semantics of ϕ
under valuation a fixes and coincides with R(a). This means that R is FM–
representable if every instance of is resolvable within some finite model. This
justifies why FM–representability may serve as an explication of expressibil-
ity without actual infinity.

The following theorem is due to Mostowski and is essential for our further
considerations.

Theorem 2.4.3 (FM–representability Theorem ([Mos01])) Let R ⊆
ωr, then the following are equivalent:

• R is FM–representable,

• R is ∆0
2,

• R is recursive with a recursively enumerable oracle,

• R 6 0′.

Therefore, FM–representable notions – those which are meaningful with-
out actual infinity – are exactly those which are 6 0′, or by Shoenfield’s
(see [Sho59]) Limit Lemma recursive in the limit. Recall Epstein’s quote
from [Eps79] presented in Chapter 1 in which he describes sets 6 0′ as those
which are truly constructive and as recognisable as limits of uniform finitistic
processes. This serves as another justification for taking FM–representability
as an explication of meaningfulness without actual infinity.

For a formula ϕ(x1, . . . , xr) by ϕFM(N) we denote the set

{(a1, . . . , ar) ∈ ωr : FM(N) |=sl ϕ[a1, . . . , ar]}.

Note that functions which are recursive in the halting problem can be defined
by formulae such that in each finite model Nn the uniqueness holds and with
respect to sl–semantics the existence holds. Whenever we consider a formula
which FM–represents a function we mean a formula with those properties.

From the proof of the FM–representability theorem the following theorem
can be easily deduced.

Theorem 2.4.4 Let R be an FM–representable relation.

1. There is an algorithm which, given on an input the Gödel number of
a formula ϕ which FM–represents R, outputs the Gödel number of an
algorithm which decides R using the halting problem as an oracle.

2. There is an algorithm which, given on an input the Gödel number of
an algorithm which decides R using the halting problem as an oracle,
outputs a formula ϕ, which FM–represents R.

35

Proof: Let R be an FM–representable relation with arity equal k.
For the proof of point 1 suppose that ϕ FM–represents R. The algorithm

deciding R with K as an oracle is the following.

Algorithm 5 Algorithm deciding R
Input: n1, . . . , nk
Output: truth value of R(n1, . . . , nk)
i = 0
while true do
if ∀k > iNk |= ϕ(n1, . . . , nk) then
return true

end if
if ∀k > iNk |= ¬ϕ(n1, . . . , nk) then
return false

end if
i = i+ 1

end while

In Algorithm 5 we use a procedure which computes in K the truth value
of ∀k > iNk |= ϕ(n1, . . . , nk). Since ϕ FM–represents R the algorithm always
halts and decides R with K as an oracle.

Note that Algorithm 5 depends on ϕ. The recursive procedure we search
for takes ϕ as an input and outputs the code of Algorithm 5 for ϕ.

For the proof of point 2 we need to show how to define a formula ϕ which
FM–represents R given the code of an algorithm M which decides R with
K as an oracle. Let ψ be a Σ1–formula FM–representing K. It is sufficient
to take the formula expressing “there exists an accepting oracle computation
of M on input n1, . . . , nk, using ψ queries instead of oracle queries”. Such
formula can be effectively computed from the code of M . Moreover it can be
expressed in a Σ2 form and it FM–represents R (see [Mos01]).

Note that similarly we could effectively produce a Π2 formula expressing
“every oracle computation of M on input n1, . . . , nk, using ψ queries instead
of oracle queries, is accepting”. It is easy to show to that such a formula also
FM–represents R. �

By Theorem 2.4.4 there is an effective way of passing from formulae FM–
representing relations to algorithms which decide these relations in K and
the other way round. Thus, we further freely pass from such formulae to
suitable algorithms and back. Further, in most contexts, we use the term
concrete: concrete sets, concrete relations, concrete functions; whenever we
consider FM–representable or recursive in K sets, relations and functions.

36

2.4.2 FM–Truth Definitions

One of the motivations of Mostowski’s investigations on FM–domains and
sl–semantics was to transfer Tarski’s method of truth definitions for sep-
arating languages with respect to their expressive power to the domain of
finite models. Tarski’s original method of truth definitions works only for
infinite models. Mostowski introduced the following notion of an FM–truth
definition.

Definition 2.4.5 (FM–truth Definition) A formula ϕ(x) is an FM–truth
definition if for every sentence ψ it holds that:

FM(N) |=sl ψ ≡ ϕ(pψq).

By the FM–representability theorem it is easy to prove the following
FM–version of the diagonal lemma.

Theorem 2.4.6 (FM–version of the Diagonal Lemma ([Mos01]))
For every formula ϕ(x) there is a sentence ψ such that:

FM(N) |=sl ψ ≡ ϕ(pψq).

As a consequence we get the FM–version of the undefinability of truth
theorem.

Theorem 2.4.7 (FM–version of the Undefinability of Truth Theo-
rem ([Mos01]))
There is no first order FM–truth definition for first order sentences.

The method of FM–truth definitions is a useful tool for separating lan-
guages with respect to their expressive power in finite models. Therefore, it
enables one to separate logics which occur in descriptive complexity theory
(see e.g. [Koł04]).

There is also a positive result about FM–truth definitions similar to
Tarski’s result on the existence of truth definition in higher order logics.

Theorem 2.4.8 (Finite Models Expressibility Hierarchy ([Mos01]))
There is an (i+ 2)–th order FM–truth definition for i–th order sentences.

Note that in order to define FM–truth we need to go two levels up, not
just one as in the case of truth definitions in infinite models. This is due to
the lack of paring function in finite models. We use additional level to cover
arbitrary arities of predicates. It remains an open problem whether there is
a (i+ 1)–th order FM–truth definition for i–th order logic.

37

2.5 Modal Logic Basics

In this section we present the basics of modal logic which we use in Chapter
3.

Formulae of modal logics are generated by the following grammar:

ϕ 7−→ ⊥ | p | c |ϕ ∧ ϕ | ¬ϕ |�ϕ,

where p is an element of the set PROP of propositional variables and c
is an element of the set CONSTS of propositional constants. We assume
PROP ∩ CONSTS = ∅. We introduce the following abbreviations: ϕ ∨ ψ =
¬(¬ϕ ∧ ¬ψ), ϕ⇒ ψ = ¬(ϕ ∧ ¬ψ) and ♦ϕ = ¬�¬ϕ.

Similarly to the quantifier rank in first order logic we define the modal
depth of a modal formula as follows: md(p) = 0 for every propositional
variable p, md(c) = 0 for every propositional constant, md(¬ϕ) = md(ϕ),
md(ϕ ∧ ψ) = max{md(ϕ),md(ψ)} and md(�ϕ) = 1 + md(ϕ).

A Kripke frame is a pair (W,R), where W 6= ∅ is a set of the – so
called – possible worlds and R ⊆W 2 is an accessibility relation. For a fixed
Kripke frame F = (W,R) a valuation in F is a function V : (W × (PROP ∪
CONSTS))→ {0, 1}. We call a triple (W,R, V) a Kripke model when (W,R)
is a Kripke frame and V is a valuation on it. If it is clear from the context that
we refer to a Kripke model we will call it a model for short. The semantics
for modal logics is defined inductively on the construction of a formula. For
a Kripke model M = (W,R, V) and a formula ϕ let JϕKM be a set of worlds
at which ϕ is true in M . Then,

• J⊥KM = ∅,

• JpKM = {w ∈W : V (w, p) = 1},

• JcKM = {w ∈W : V (w, c) = 1},

• Jϕ ∧ ψKM = JϕKM ∩ JψKM ,

• J¬ϕKM = W − JϕKM ,

• J�ϕKM = {w ∈W : ∀v ∈W (wRv ⇒ v ∈ JϕKM)}.

We say that a formula ϕ is true at a world w ∈W of a modelM = (W,R, V)
when w ∈ JϕKM . We denote this fact also by M,w |= ϕ or, if we consider a
Kripke frame F = (W,R) with a valuation V , we denote it by F,w |= ϕ[V].
We write F |= ϕ[V] if for each w ∈W , F,w |= ϕ[V] holds.

We present below the most basic modal logic K, which is a base of all
modal logics considered here, in a sense that every modal logic is an extension
of K by some additional axioms.

38

Definition 2.5.1 (K) The modal logic K is an extension of classical propo-
sitional logic by axioms:

�(ϕ⇒ ψ)⇒ (�ϕ⇒ �ψ),

where ϕ and ψ are arbitrary modal formulae and by the necessitation rule,
i.e., if we proved ϕ we can write in a proof also �ϕ, for any formula ϕ.

Any modal logic which contains K and is closed on modus ponens, ne-
cessitation and substitution is called normal. In this work we consider only
normal logics with one natural proviso. We allow substitution only for propo-
sitional variables of the basic language, not for propositional constants.

Definition 2.5.2 (Extension of a Modal Logic)
Let L1,L2 and L be modal logics. We say that L2 extends L1 in the lan-
guage of L and write L1 6L L2 if for every L–formula ϕ if L1 ` ϕ, then
L2 ` ϕ.

39

Chapter 3

Approximating Truth in Finite
Models

We already mentioned the Mostowski’s FM–version of undefinability of truth
theorem which states that there is no FM–truth definition for the standard
FM–domain FM(N). In this chapter we investigate how one can approximate
FM–truth definitions i.e. define arithmetical predicates that have certain (as
many as possible) properties of an FM–truth definition, but do not fall under
the assumptions of FM–version of undefinability of truth theorem.

Since there is no FM–truth definition i.e. there is no formula ψ(x) such
that for every arithmetical sentence ϕ it holds that

FM(N) |=sl ψ(pϕq) ≡ ϕ,

we need to weaken the requirements on such ψ.
It is known that the property of a sentence ϕ of being true in almost

all finite models (FM(N) |=sl ϕ), is Σ0
2–complete in the arithmetical hier-

archy (see [MZ05b]). The upper bound can be clearly seen just from the
arithmetical definition of the property:

∃k∀n > kNn |= ϕ.

On the other hand, if for a given formula ϕ(x) we consider a set Xϕ defined
as

Xϕ = {n ∈ ω : FM(N) |=sl ϕ(n)},

then for first order arithmetical formulae ϕ we get exactly the sets in Σ0
2 (see

[MZ05b]). It follows that there is an arithmetical formula ψ such that for
each arithmetical sentence ϕ we have the following equivalence:

FM(N) |=sl ϕ if and only if FM(N) |=sl ψ(pϕq).

We construct the predicate Trsl which has the above–mentioned property
and, moreover, commutes with propositional connectives under sl–semantics.

40

We extract the basic properties of Trsl defining what we call an approximate
FM–truth definition. We cannot expect it to commute with quantifiers as
this would give a usual FM–truth definition which is impossible.

Next we study those properties of approximate FM–truth definitions
which are expressible in modal logic. We define LTr as the set of modal
formulae ϕ such that for any translation1 tr of modal formulae to arithmeti-
cal sentences, the arithmetical sentence ϕtr is true in almost all finite models
from FM(N). In the main theorem of this chapter we characterise LTr as an
extension of the basic modal logic K by axioms:

�(¬ϕ) ≡ ¬�ϕ,

for each formula ϕ. We call this extension SL.
Thus, the modal properties of an approximate FM–truth definition may

be contrasted with that of provability predicate which corresponds to the,
so called, Gödel–Löb modal logic GL – an extension of K by a scheme
�(�ϕ ⇒ ϕ) ⇒ �ϕ corresponding to the Löb’s theorem. (see e.g. [Boo93]).
Indeed, LTr and GL are incomparable. This fact may be somehow expected
since our approximate FM–truth predicate captures certain semantics while
GL is a logic which captures the properties of provability – a very different
concept.

The proof of the main result of this chapter shows also that, unlike in the
case of GL, we cannot consistently extend SL by any axiom scheme without
contradicting some of the properties of approximate FM–truth definitions.
This means that the modal logic SL is the strongest modal logic of approxi-
mate FM–truth definitions and that approximate FM–truth definitions have
all the properties of FM–truth definitions expressible in the modal logic.

The method of proving that SL and LTr are equivalent is by extending
both of them by a fixpoint construction obtaining logics SL∗ and LTr

∗. Then,
we prove that LTr

∗ is conservative over SL in the vocabulary of SL using SL∗

as an auxiliary logic.
The result presented in this chapter can be seen as a contribution to the

study of what fragments of finite models semantics can be expressed within
finite models and what are modal logic properties of these fragments of finite
models semantics.

3.1 A Truth Definition for Almost All Finite Mod-
els

In this chapter we work with an extended relational arithmetical vocabulary.
This means that we consider the expansion (N , n)n∈ω of the standard model
of arithmetic. Recall that by n we denote the constant naming n in (N , n)n∈ω.

1Conditions imposed on translations are specified later.

41

Moreover considering FM–domains we have an additional constant MAX
which names the largest element of every finite model of the FM–domain.
We refer to the vocabulary of FM((N , n)n∈ω) as the extended arithmetical
vocabulary with MAX. Further we denote (N , n)n∈ω by N , remembering
that we have constants naming every natural number.

We proceed to the construction of the approximate FM–truth predicate
Trsl.

It is folklore that there is no ∆0 truth definition for ∆0 formulae. Since
both relations Name and Subst are ∆0 and ∆0 is closed under negation it
falls under the assumptions of Tarski’s undefinability of truth theorem. It
is also known that there exists a Σ1 truth definition for ∆0 sentences. In
fact there is also a Σ1 satisfaction definition – Sat∆0(x, v) for ∆0 formulae.
It holds that N |= Sat∆0(pψq, paq) if and only if ψ is a ∆0 formula, a is
a valuation on free variables of ψ and it holds that N |= ψ[a]. Further, if
a formula ψ is known from the context, we refer to the valuations on free
variables of ψ as to valuations.

The formula Sat∆0(x, v) is defined as follows. Let ψ be a given ∆0 formula
and let a be a valuation on free variables of ψ. We consider a quantifier free
formula ∼ψ obtained from ψ by replacing bounded quantifiers Qx 6 tϕ(x)
by finite conjunctions (in the case of universal quantifiers) and disjunctions
(in the case of existential quantifiers) of ϕ(0), . . . , ϕ(Val(t, a)). The formula
Sat∆0(pψq, paq) expresses the existence of such a labelling of the syntactic
tree of ∼ψ with 0s and 1s which labels leaves of that tree with 1s if and only
if atomic formulae on leaves are satisfied and with 0s otherwise. Further the
labelling is propagating up to the root of the syntactic tree preserving the
truth value, so that finally the formula is true if and only if the label of the
root is 1.

Therefore Sat∆0 is a Σ1 formula i.e. it is of the form ∃y Sat0
∆0

(x, v, y),
where Sat0

∆0
∈ ∆0. Despite the fact that we cannot get rid of this leading

existential quantifier in Sat∆0(x, v) we know how to estimate a value of a
witness for it (see [HP93]). For the sake of syntax encoding we suppose that
for each n > 0 it holds that |n| = dlog2(n + 1)e, similarly as for variables
we have |vn| = dlog2(n + 1)e (for n = 0 the lengths are equal 1). Since the
estimation of the witness for Sat∆0 from [HP93] is for the standard arith-
metical vocabulary and we work with an extended relational arithmetical
vocabulary we present the estimation that fits our purposes.

Our aim is to compute the upper bound for the code of a labelled syn-
tactic tree for ∼ψ of a ∆0 formula ψ on a given valuation a. Such a tree can
be expressed as a sequence of pairs (ϕ, V), where ϕ is a subformula of ∼ψ and
V encodes the truth value i.e. it is either 0 or 1. The number of pairs in the
computation of truth value of a formula ψ under a valuation a is equal to
the number of subformulae of ∼ψ. Therefore, we need to estimate the number
of subformulae of a ∼ψ.

Fix a valuation a. First by the induction on the complexity of a formula

42

ϕ we estimate the number of subformulae of ∼ϕ. By SubForm(ϕ, a) we denote
the number of subformulae of ϕ under the valuation a. If ϕ is atomic, then
SubForm(

∼
ϕ, a) = 1. For conjunction, if ϕ = ϕ1 ∧ ϕ2, then it holds that

SubForm(ϕ̃, a) = SubForm(
∼
ϕ1, a) + SubForm(

∼
ϕ2, a) + 1.

For the case of negation, if ϕ = ¬ψ, then it holds that

SubForm(
∼
ϕ, a) = SubForm(

∼
ψ, a) + 1.

Finally, for the case of quantification, if Q ∈ {∀, ∃} and ϕ = (Qx 6 t ψ(x)),
then it holds that

SubForm(
∼
ϕ, a) = SubForm(

∼
ψ, a) · (Val(t, a) + 1) + 1.

It is easy to show by the induction on the complexity of formulae that:

SubForm(
∼
ϕ, a) 6 (Val(t, a) + 1)|ϕ|.

It is also easy to see that for a term t it holds that

Val(t, a) 6 (max{a}+ 2)|t|.

Therefore the length of the sequence witnessing that a ∆0 formula ϕ is
either satisfied by a or not can be estimated by

((max{a}+ 2)|ϕ| + 1)|ϕ| 6 (max{a}+ 2)2·|ϕ|2 .

Each element of this sequence is a pair consisting of a subformula of ϕ,
0 or 1 and two commas. Therefore the entire sequence has no greater length
than

(|ϕ|+ 3) · (max{a}+ 2)2·|ϕ|2 6 (max{a}+ 2)3·|ϕ|2 .

Recall that the Gödel number of a sequence s = s0, . . . , sk−1 is equal p1+s0
0 ·

... · p1+sk−1

k−1 . Let c be the greatest code of a primitive symbol in the Gödel
numbering. Then since for each i ∈ ω it holds that pi+1 6 2pi it follows that

psq 6
k−1∏
i=0

p1+c
i =

(k−1∏
i=0

pi

)1+c

6

(
2
∑k−1

i=0 1+i

)1+c

6 2(1+c)·k2 .

The length k of the sequence was estimated by (max{a}+2)3·|ϕ|2 therefore
the Gödel number of the sequence computing truth or falsity of a ∆0 formula
ϕ under valuation a is estimated by

2(1+c)·
(

(max{a}+2)3·|ϕ|
2
)2

43

and for Gödel numberings with only reasonably many primitive symbols2

this can be estimated by

2(max{a}+2)9·|ϕ|
2

.

Let h(pϕq, y) be a function defined as

h(pϕq, y) = max{2(y+2)9·|ϕ|
2

}∪{paq : a is a valuation on ϕ with values 6 y}3.

Let ϕ(x) be a ∆0 formula and a be a valuation. Then the following are
equivalent:

• N |= Sat∆0(pϕq, paq),

• N |= ∃y Sat0
∆0

(pϕq, paq, y),

• N |= ∃y 6 h(pϕq,max{a}) Sat0
∆0

(pϕq, paq, y).

Our aim is to use the formula Sat0
∆0

to capture certain properties of the
satisfaction relation in finite models. For a formula in the vocabulary with
MAX we define its restriction in the following way. Let ψ be a formula in the
extended arithmetical vocabulary with MAX and let a be a valuation on ψ.
By ψ6ya we denote the formula obtained by:

• replacing every occurrence of MAX in ψ by Val(y, a),

• bounding every quantifier in ψ by Val(y, a),

• adding to ψ a conjunct
∧
vi∈FV(ψ) vi 6 Val(y, a).

Therefore we have the following. Let ψ be a formula in the extended
arithmetical vocabulary with MAX, let k ∈ ω and let a a valuation on ψ
with values 6 k. Then ψ6ka is a ∆0 formula in a vocabulary without MAX
such that for n > k it holds that

Nk |= ψ[a] if and only if Nn |= ψ6ka [a].

Now let us introduce a ∆0 truth definition α(x, v, k, z) with two addi-
tional parameters k and z. Here x = pψq for some formula in a vocabulary
with MAX, v is a code of a valuation, k is a bound for quantifiers in ψ and
values of v as in ψ6kv and, finally, z is a bound for existential quantifier in
Sat∆0(x, v). Thus we define:

α(x, v, k, z) = ∃y 6 z Sat0
∆0

(x6kv , v, y).

2In fact even for Gödel numberings with 220 primitive symbols.
3We want to ensure that both the code of the tree witnessing the truth of ϕ under a

valuation with the maximal value not exceeding y, and the Gödel numbers of all valuations
on ϕ with values not greater than y, are less than h(pϕq, y).

44

Let

f(x, k) = max{h(pψ6la q, l) : pψq 6 x, l 6 k and
a is a valuation on ψ with values 6 l}.

The function f defined this way is monotone in both arguments and the
following are equivalent:

1. Nk |= ϕ[a],

2. Nf(pϕq,k) |= α(pϕq, paq, k,MAX),

3. ∀n > f(pϕq, k) Nn |= α(pϕq, paq, k,MAX).

Part 3 in the equivalence above is essential for our purpose as we investigate
asymptotic properties of formulae.

Now, we take F (x) = f(x, x) and define the relation

k = F−1(x) ≡df x ∈ [F (k), F (k + 1)).

The notation is slightly abused since it may happen that x is not a value of
F . Nevertheless, it is justified by a close correspondence between the relation
k = F−1(x) and the inverse image of F .

Observe that
∀k ∈ ω ∃x k = F−1(x)

and
∀x > F (0)∃=1k x ∈ [F (k), F (k + 1)).

The formula α(x, v, k, z) is written in a ∆0 form. Similarly, the relation
z = F−1(x) is ∆0–definable. It follows that there is a one arithmetical for-
mula which defines in a given finite model Nm the restriction of the relation
z = F−1(x) to the universe of Nm. Finally, the formula Satsl(x, v) approxi-
mating FM–satisfaction is defined as:

Satsl(x, v) ≡df ∃k (k = F−1(MAX) ∧ α(x, v, k,MAX)).

By our discussion the above formula is ∆0. Intuitively, the formula Satsl(x, v)
states that a formula with Gödel number x is satisfied by a valuation with
code v in a finite model Nk such that k = F−1(MAX). This is shown by the
following picture.

45

N0 |= ψ[a] N0

N1 |= ϕ[b]

...

NF (0) |= Satsl(pψq, paq)

...

NF (1)−1 |= Satsl(pψq, paq)

NF (1) |= Satsl(pϕq, pbq)

...

NF (2)−1 |= Satsl(pϕq, pbq)

...

0 = F
−1 (F (0))

0 =
F
−1 (F

(1)−
1)

1 = F−
1(F (1))

1 = F
−1 (F (2)− 1)

Definition 3.1.1 We say that an arithmetical formula τ(x) is an approxi-
mate FM–satisfaction definition if for all quantifier free formulae
ψ(x1, . . . , xk) and for every valuation a = a1, . . . , ak it holds that

1. FM(N) |=sl (ψ(a1/x1, . . . , ak/xk) ≡ τ(pψq, pa1, . . . , akq))

and for all formulae ϕ, ψ it holds that

2. FM(N) |=sl ϕ[a] if and only if FM(N) |=sl τ(pϕq, paq),

3. FM(N) |=sl τ(p¬ϕq, paq) ≡ ¬τ(pϕq, paq),

4. FM(N) |=sl τ(pϕ ∧ ψq, paq) ≡ (τ(pϕq, paq) ∧ τ(pψq, paq)).

We do not expect an approximate FM–satisfaction definition to commute
with quantifiers, because this would give us a regular FM–satisfaction def-
inition which does not exist. However, we could write an FM–satisfaction
definition ψ(x, v) satisfying one of the implications, either

FM(N) |=sl ψ(p∀xϕq, paq)⇒ ∀n ψ(pϕ(n)q, paq)

or
FM(N) |=sl ∀n ψ(pϕ(n)q, paq)⇒ ψ(p∀xϕq).

The following theorem justifies why we say that Satsl(x, v) approximates
FM–satisfaction.

46

Theorem 3.1.2 Satsl is an approximate FM–satisfaction definition.

Proof: We prove consecutive points of Definition 3.1.1.

1. Let a = a1, . . . , ak ∈ ω. First, let us observe that for every closed
quantifier–free formula ψ(a1, . . . , ak) we can eliminate MAX with re-
spect to sl–semantics. The closed atomic formulae of the form MAX =
MAX, MAX 6 MAX, R+(MAX, 0,MAX), R+(0,MAX,MAX),
R×(0,MAX, 0),R×(MAX, 0, 0),R×(1,MAX,MAX),R×(MAX, 1,MAX)
and n 6 MAX for arbitrary n ∈ ω are sl–true. The rest of the closed
atomic formulae with MAX are sl–false. Therefore, in every closed
quantifier free formula we can eliminate every occurrence of MAX.
Thus we can assume that ψ(a1, . . . , ak) is a closed quantifier free for-
mula without occurrences of MAX. Therefore it follows that either:

• for each m > max{a1, . . . , ak} it holds that Nm |= ψ(a1, . . . , ak)

• for each m > max{a1, . . . , ak} it holds that Nm 6|= ψ(a1, . . . , ak).

Let M = max{pψ(x1, . . . , xk)q, a1, . . . , 1k}. In the first case, for each
m > F (M) it holds that:

• Nm |= Satsl(pψ(x1, . . . , xk)q, paq),

• Nm |= ψ(a1, . . . , ak) ≡ Satsl(pψ(x1, . . . , xk)q, paq).

In the other case, for m > F (M) it holds that:

• Nm |= ¬Satsl(pψ(x1, . . . , xk)q, paq),

• Nm |= ψ(a1, . . . , ak) ≡ Satsl(pψ(x1, . . . , xk)q, paq).

Thus FM(N) |=sl ψ(a1, . . . , ak) ≡ Satsl(pψ(x1, . . . , xk)q, paq).

2. Fix a formula ϕ. Let k > pϕq and let n ∈ [F (k), F (k + 1)). Then for
every valuation a in Nk the following are equivalent:

• Nk |= ϕ[a],

• Nn |= Satsl(pϕq, paq).

Therefore for every valuation a in N the following are equivalent:

• FM(N) |=sl ϕ[a],

• FM(N) |=sl Satsl(pϕq, paq).

3. Fix a formula ϕ. Let k > p¬ϕq > pϕq and let n ∈ [F (k), F (k + 1)).
Then for every valuation a in Nk the following are equivalent:

• Nn |= Satsl(p¬ϕq, paq),
• Nk |= ¬ϕ[a],

47

• Nk 6|= ϕ[a],
• Nn 6|= Satsl(pϕq, paq),
• Nn |= ¬Satsl(pϕq, paq).

Therefore for m > F (k) it holds that Nm |= Satsl(p¬ϕq, paq) ≡
¬Satsl(pϕq, paq). Thus FM(N) |=sl Satsl(p¬ϕq, paq) ≡ ¬Satsl(pϕq, paq).

4. Fix formulae ϕ,ψ. Let k > pϕ ∧ ψq > max{pϕq, pψq} and let n ∈
[F (k), F (k + 1)). Then for every valuation a in Nk the following are
equivalent:

• Nn |= Satsl(pϕ ∧ ψq, paq),
• Nk |= (ϕ ∧ ψ)[a],
• Nk |= ϕ[a] and Nk |= ψ[a],
• Nn |= Satsl(pϕq, paq) and Nn |= Satsl(pψq, paq),
• Nn |= Satsl(pϕq, paq) ∧ Satsl(pψq, paq).

Therefore for m > F (k) it holds that Nm |= Satsl(pϕ ∧ ψq, paq) ≡
(Satsl(pϕq, paq)∧Satsl(pψq, paq). Thus FM(N) |=sl Satsl(pϕ∧ψq, paq) ≡
(Satsl(pϕq, paq) ∧ Satsl(pψq, paq).

�

Therefore Satsl is an approximate FM–satisfaction definition. As a corol-
lary of Theorem 3.1.2 we get that Satsl under sl–semantics defines a Σ2–
complete relation.

We naturally define the notion of a approximate FM–truth definition as
follows.

Definition 3.1.3 (Approximate FM–truth Definition)
Let ψ(x, v) be an an approximate FM–satisfaction definition. We call the
predicate ϕ(x) =df ψ(x, pεq) ∧ Sent(x) an approximate FM–truth definition.

Definition 3.1.4 (Trsl)

Trsl(x) =df Satsl(x, pεq) ∧ Sent(x).

Of course since Satsl is an approximate FM–satisfaction definition, Trsl is
an approximate FM–truth definition. Note that by Theorem 3.1.2 for every
arithmetical sentences ψ,ϕ the predicate Trsl has the following properties:

• FM(N) |=sl ψ if and only if FM(N) |=sl Trsl(pψq),

• FM(N) |=sl Trsl(p¬ψq) ≡ ¬Trsl(pψq),

• FM(N) |=sl Trsl(pψ ∧ ϕq) ≡ (Trsl(pψq) ∧ Trsl(pϕq)).

In the following sections we use only the above three properties of the
approximate FM–truth definitions.

48

3.2 Modal logics SL, SL∗, LTr and LTr
∗

In this section we present the modal logic SL for which we prove a Solovay
style completeness theorem for our approximate FM–truth definition Trsl.
The definition of SL mimics the properties of Trsl introduced in Section 3.1.
Our intention is to interpret � as Trsl and to add appropriate axioms to the
system i.e. translate the properties of Trsl to the modal language.

Definition 3.2.1 (SL) The modal logic SL is an extension of the modal
logic K with the following axioms, for each formula ϕ,

�(¬ϕ) ≡ ¬�ϕ. (3.1)

Let us observe, that adding the above axioms to K is enough to make �
commute with all propositional connectives. The commutativity with con-
junction, �(ϕ∧ψ) ≡ �ϕ∧�ψ, is already provable in K. The commutativity
with ⇒ and ∨ follows directly from the commutativity with ¬ and ∧.

It follows that for every formula ϕ, SL ` �ϕ ≡ ♦ϕ. For a fixed ϕ the
following are equivalent in SL: �ϕ, �¬¬ϕ and, by (3.1), ¬�¬ϕ which is, by
the definition, equal to ♦ϕ.

Now, we define a fixpoint extension SL∗ of SL.

Definition 3.2.2 (Guarded Propositional Variable)
A propositional variable p is guarded in a modal formula ϕ(p) if each oc-
currence of p is within the scope of a modal operator.

Firstly, we extend the language of SL. For each p and a formula ϕ(p) such
that p is the only propositional variable occurring in ϕ and p is guarded in
ϕ we add a new propositional constantindexq〈ϕ,p〉 q〈ϕ,p〉. We call the modal
language with those new constants an extended modal language. To contrast
the modal language (without propositional constants) with the extended
modal language we sometimes refer to modal language as to basic modal
language. Note that we do not iterate this language extension – the new
propositional constants are added only for basic modal formulae with only
one propositional variable in which they are guarded.

We are ready to define the modal logic SL∗.

Definition 3.2.3 (SL∗) The logic SL∗ is an extension of SL by the following
axioms

q〈ϕ,p〉 ≡ ϕ(q〈ϕ,p〉/p),

where q〈ϕ,p〉 is a new propositional constant and ϕ(q〈ϕ,p〉/p) is a result of
replacing in ϕ(p) each occurrence of p by q〈ϕ,p〉.

The similar fixpoint extensions were introduced by Smoryński, see [Smo85].
The other two logics we define are the modal logic LTr of the truth predicate
for |=sl and its fixpoint extension LTr

∗.

49

Definition 3.2.4 (Translation) Let PROP be a set of propositional vari-
ables and let tr be a function from PROP into the set of sentences of the
extended arithmetical vocabulary with MAX.

We denote the value of tr at a given variable p as ptr and we extend it
inductively on the set of all formulae of modal logic in the following way:

• (¬ϕ)tr = ¬(ϕ)tr,

• (ϕ ∧ ψ)tr = ϕtr ∧ ψtr,

• (�ϕ)tr = Trsl(pϕtrq),

Any such function is called a translation.

Definition 3.2.5 (LTr) The logic LTr consists of all modal formulae
ϕ(p1, . . . , pn) such that for any translation tr it holds that FM(N) |=sl ϕ

tr.

By the properties of FM(N) under sl–semantics the following fact holds.

Fact 3.2.6 The modal logic LTr is a consistent normal modal logic.

We may consider LTr the modal logic of the propositional truth predicate
for |=sl.

We naturally extend translations to the extended modal language in the
following way.

Definition 3.2.7 (Extended Translation) Let tr be a translation. We say
that tr∗ is an extended translation if it is an extension of tr to the extended
modal language, commuting with ∧,¬,� and such that for every propositional
constant q〈ϕ,p〉 if (q〈ϕ,p〉)

tr∗ = ψ, then

FM(N) |=sl ψ ≡ (ϕ(q〈ϕ,p〉/p))
tr∗ .

Finally we give an analogous semantic definition of the last modal logic
we concern – LTr

∗.

Definition 3.2.8 (LTr
∗) The logic LTr

∗ consists of all modal formulae in an
extended modal language ϕ(p1, . . . , pn) such that for any extended translation
tr∗ it holds that FM(N) |=sl ϕ

tr∗.

By the FM–version of the Diagonal Lemma (2.4.6) for every arithmetical
formula ϕ(x) there exists an arithmetical sentence ψ such that

FM(N) |=sl ψ ≡ ϕ(pψq).

Therefore, the following holds:

50

Fact 3.2.9 Any translation tr can be extended to an extended translation
tr∗.

Corollary 3.2.10 The modal logic LTr
∗ is a consistent normal modal logic

in an extended modal language. Moreover, LTr
∗ 6SL LTr.

Our aim is to show that SL and LTr are equivalent modal logics. The
argument proceeds by showing the following dependencies:

SL 6SL LTr 6SL LTr
∗ 6SL SL.

The first two dependencies are proved in Parts 1 and 2 of Theorem 3.2.11. In
the main section of this chapter we show the final dependency: LTr

∗ 6SL SL.
This is achieved by showing that for every extended modal logic L such
that SL∗ 6SL∗ L it holds that L 6SL SL. Therefore, since by Part 3 of
Theorem 3.2.11 it holds that SL∗ 6SL∗ LTr

∗ we get LTr
∗ 6SL SL. Thus,

LTr is independent from a particular choice of an approximate FM–truth
definition for which we translate the � operator.

The following theorem is essential for understanding the basic relations
between the introduced modal logics.

Theorem 3.2.11

1. SL 6SL LTr,

2. LTr 6SL LTr
∗,

3. SL∗ 6SL∗ LTr
∗.

Proof: For the proof of 1 it suffices to observe that the axioms of SL mimics
some of the properties of Trsl(x) in |=sl.

The proof of 2 is the following. Fix a basic modal formula ψ. Suppose that
for every translation tr it holds that FM(N) |=sl ψ

tr. Let tr∗ be an extended
translation and tr be its restriction to basic modal formulae. Then ψtr∗ = ψtr.
It follows that FM(N) |=sl ψ

tr∗ . Therefore, since tr∗ was arbitrary, ψ ∈ LTr
∗.

For the proof of 3 suppose that SL∗ ` ψ. Observe that under any trans-
lation tr∗ every fixpoint axiom of SL∗ is translated to an sl–true sentence.
Since LTr

∗ is closed under consequence it follows that ψ ∈ LTr
∗.

�

Corollary 3.2.12 The logics SL and SL∗ are consistent.

Before proceeding to the proof of the main theorem we need a better
understanding of modal logics SL and SL∗.

51

3.3 Completeness Theorems for SL and SL∗

We begin this section with the following remark on SL’s models. Let us
consider the formula �⊥ – it is true exactly in those worlds of a given Kripke
frame from which there are no accessible worlds – let us call them final. On
the other hand ♦⊥ is obviously equivalent to ⊥. Since SL ` �⊥ ≡ ♦⊥ there
are no final points in SL’s models.

We call a Kripke frame a line if it is of the form ({0, . . . , n}, Sn∪{(n, n)})
or (ω, S), where S is the successor relation and Sn is its restriction to the
set {0, . . . , n}. Thus, a frame is a line if it is a finite initial segment of the
successor relation with a loop added at the top or if it is the standard model
for arithmetic of the successor relation. We denote the n-th finite line with
universe {0, . . . , n} by Ln. The infinite line is denoted by Lω.

Definition 3.3.1 A valuation V in a Kripke frame F is admissible for a
logic L if each axiom of L is true in F under V . A modal logic L is sound
and complete with respect to the family of Kripke frames F if the set of
admissible valuations for L is not empty and the following are equivalent:

1. L ` ϕ,

2. for any F ∈ F and for any valuation V in F admissible for L it holds
that F |= ϕ[V].

If F is a singleton {F} we say that L is sound and complete with respect to
F .

We defined provability only for logics, not for theories. Now, we need to
fix the notion of a (syntactical) consistency for a given set of formulae.

Definition 3.3.2 A set of formulae F is consistent in a logic L is there are
no ϕ1, . . . , ϕn ∈ F such that L ` ¬(ϕ1 ∧ · · · ∧ ϕn).

Definition 3.3.3 Let F be a set of modal formulae. By �−1F we denote
the following set

�−1F = {ϕ : �ϕ ∈ F}.

The main tool for proving a completeness theorem is the following lemma.

Lemma 3.3.4 Let L be a consistent normal modal logic containing SL and
let F be a maximal consistent in L set of formulae. Then, �−1F is a maximal
consistent in L set of formulae.

Proof: Let L and F satisfy the assumptions of the lemma. One can easily see
that �−1F is closed under conjunctions. Therefore, if �−1F was inconsistent
in L, then there would be a formula ϕ ∈ �−1F such that L ` ¬ϕ. Then,
L ` �¬ϕ and L ` ¬�ϕ. But �ϕ ∈ F thus F would be inconsistent in L.

52

Now, for the sake of contradiction suppose that �−1F is not maximal
with respect to consistency. Thus, there is a formula ψ 6∈ �−1F such that
�−1F ∪ {ψ} is still consistent. Since ψ 6∈ �−1F , we have that �ψ 6∈ F . By
the maximality of F , the set F∪{�ψ} is inconsistent in L. Thus, there exists
a formula ϕ ∈ F such that L ` ¬ϕ ∨ ¬�ψ. It follows that ¬�ψ ∈ F . Since
�¬ψ is equivalent in SL to ¬�ψ, we have that �¬ψ ∈ F and ¬ψ ∈ �−1F .
This is a contradiction since �−1F ∪ {ψ} was assumed to be consistent. �

Theorem 3.3.5

1. Modal logics SL and SL∗ are sound and complete with respect to the
infinite line Lω.

2. Modal logic SL is sound and complete with respect to the family of all
finite lines.

Proof: Since the soundness part may be easily verified we concentrate on
completeness only. Moreover, in the case of SL it is enough to prove the
theorem only for Lω. Indeed, for a basic modal formula ϕ, if Lω, 0 6|= ϕ[V]
and n is the modal depth of ϕ, then Ln, 0 6|= ϕ[Vn], where Vn is a restriction
of V to the worlds 0, . . . , n.

To prove the completeness we show the following implication: for each
formula ϕ, if SL∗ 6` ϕ, then there exists a valuation V admissible for SL∗

such that Lω, 0 6|= ϕ[V]. The same argument works also for SL. The only
difference is that in the case of SL we may stop the construction after n
steps, where n is the modal depth of ϕ.

Let us assume that SL∗ 6` ϕ. Let F0 be a set of formulae which contains
¬ϕ and is a maximal consistent in SL∗. We construct a sequence of sets
(Fi)i∈ω, such that

Fi+1 = �−1Fi.

By Lemma 3.3.4, each set Fi is maximal consistent in SL∗. Now, we construct
a valuation V : ω × (PROP ∪ CONSTS) −→ {0, 1} in Lω as follows

V (i, p) = 1 if and only if p ∈ Fi,

V (i, q〈ψ,p〉) = 1 if and only if q〈ψ,p〉 ∈ Fi,

A straightforward proof by induction on the complexity of a formula shows
that for all formulae ψ and for all i ∈ ω,

Lω, i |= ψ[V] if and only if ψ ∈ Fi.

Moreover, since each Fi is maximal consistent in SL∗, the following equiva-
lence holds, for each q〈ψ,p〉,

q〈ψ,p〉 ∈ Fi if and only if ψ(q〈ψ,p〉) ∈ Fi.

53

Therefore V is admissible for SL∗. Thus we constructed a model for SL∗

which falsifies ϕ. �

Let us observe that in the proof above, in the case of SL∗ we could not
restrict ourselves just to a finite number of sets Fi. To the contrary, it can
be shown that all sets Fi are different. This is caused by the fixpoint axioms
of SL∗. This is why SL∗ has no finite models while in the case of SL it would
be enough to consider sets F0, . . . ,Fn, where n is the modal depth of ϕ.

Let us make one more observation before proceeding to the main section
of this chapter. For the approximate FM–truth predicate Trsl we have the
following property: for each sentence ψ

FM(N) |=sl ψ if and only if FM(N) |=sl Trsl(pψq).

We show that SL is closed under an analogous rule: for each modal formula
ψ, SL ` �ψ if and only if SL ` ψ. Fix a modal formula ψ. The implication
from right to left follows from the necessitation rule. For the other implica-
tion assume that SL ` �ψ and for the sake of contradiction that SL 6` ψ.
Then by the Completeness Theorem (3.3.5) there is a valuation V in Lω
such that Lω, 0 |= ¬ψ[V]. We construct another valuation V ′ on Lω such
that for each propositional variable p and i ∈ ω, V ′(i + 1, p) = V (i, p) and
V ′(0, p) = 0. Now we have Lω, 1 |= ¬ψ[V ′] and therefore Lω, 0 |= ¬�ψ[V ′]
which contradicts SL ` �ψ.

3.4 The Main Theorem

In this section we prove the main result of the chapter which characterises
the modal logic of the approximate FM–truth predicate.

Definition 3.4.1 For a formula ψ, we define (¬)0ψ as ¬ψ and (¬)1ψ as ψ.
For a finite set of propositional variables P and a function ε : {0, . . . , k} ×
P −→ {0, 1} we define Φε as a formula∧

06i6k

∧
p∈P
�i(¬)ε(i,p)p.

Any function ε of the above form is called a valuation on variables P and
k + 1 consecutive worlds.

Let P and ε be as above. If the formula Φε is true at a given world a of a
model L of SL then it determines completely the values of propositions in
P at a and any worlds which can be accessed from a in k steps. Indeed, if
L, a |= Φε[V] then, for any p ∈ P and any 0 6 i 6 k,

L, a+ i |= p[V] if and only if ε(i, p) = 1.

54

It follows that Φε determines at a the truth values of formulae with modal
depth not greater than k with propositional variables from P . The last ob-
servation gives us, by the completeness, the following lemma.

Lemma 3.4.2 Let k ∈ ω, let P be a finite set of propositional variables and
let ε : {0, . . . , k}×P −→ {0, 1}. For any formula ϕ of modal depth not greater
than k with all variables from P , Φε decides ϕ, that is

SL ` Φε ⇒ ϕ or SL ` Φε ⇒ ¬ϕ.

Now, we show that any valuation on propositional variables is consistent
with SL∗.

Lemma 3.4.3 For every n > 0 and ε : {0, . . . , n − 1} → {0, 1} there is a
formula ψ such that

SL∗ `
∨

06r<n

�r
(∧

06i<n

�i(¬)ε(i)ψ

)
.

Moreover, SL∗ ` (ψ ≡ �nψ).

Proof: For n = 1, we put ψ = ⊥, if ε(0) = 0, and ψ = > otherwise. For n > 1
and a fixed propositional variable p let us consider the following formula

ϕn =df

∧
16i<n

¬�ip.

Since ϕn is guarded in p there is a propositional constant q〈ϕn,p〉 such that

SL∗ ` q〈ϕn,p〉 ≡

(∧
16i<n

¬�iq〈ϕn,p〉

)
.

We need the following two properties of q〈ϕn,p〉: for each valuation V admis-
sible for SL∗, and for each world a:

1. there exists i 6 n− 1 such that Lω, a+ i |= q〈ϕn,p〉[V],

2. if Lω, a |= q〈ϕn,p〉[V], then for each 1 6 i 6 n−1, Lω, a+ i 6|= q〈ϕn,p〉[V].

It follows that q〈ϕn,p〉 is true exactly in every n-th world of Lω. For the first
property it suffices to observe that if for all 1 6 i 6 n − 1 it holds that
Lω, a + i 6|= q〈ϕn,p〉[V] then, by the fixpoint axiom for q〈ϕn,p〉, it has to be
true at the world a. The second property also follows easily from the fixpoint
axiom for q〈ϕn,p〉.

Now, for a fixed ε : {0, . . . , n− 1} → {0, 1} we define ψ as follows:

ψ =
∨

06j6n−1
ε(j)=1

�n−jq〈ϕn,p〉,

55

where the empty disjunction is identified with ⊥. It is easy to see that the
lemma holds for ψ = ⊥. So, we assume that there is j ∈ {0, . . . , n− 1} such
that ε(j) = 1. We show that ψ has desired properties. By the completeness
of SL∗ with respect to Lω it is enough to show that for each admissible
valuation V there exists r 6 n− 1 such that

Lω, r |=
∧

06i6n−1

�i(¬)ε(i)ψ[V].

Thus, let V be a valuation admissible for SL∗ and let r 6 n − 1 be the
smallest world such that

Lω, r |= q〈ϕn,p〉[V].

By Properties 1 and 2 of q〈ϕn,p〉, for each a,

Lω, a |= q〈ϕn,p〉[V]

if and only if
a = r + ln, for some l ∈ ω.

It follows that for each 0 6 i 6 n− 1

Lω, r |= �iψ[V] ⇐⇒ Lω, r |= �i

 ∨
06j6n−1
ε(j)=1

�n−jq〈ϕn,p〉

⇐⇒ Lω, r |=

∨
06j6n−1
ε(j)=1

�i�n−jq〈ϕn,p〉

⇐⇒
∨

06j6n−1
ε(j)=1

(i = j)

⇐⇒ ε(i) = 1.

Similarly, for each 0 6 i 6 n− 1,

Lω, r |= �i¬ψ[V] ⇐⇒ ε(i) = 0.

Therefore,
Lω, r |=

∧
06i<n

�i(¬)ε(i)ψ[V]

and since the valuation V is arbitrary and r 6 n− 1, by the completeness of
SL∗ with respect to Lω we get

SL∗ `
∨

06r<n

�r
(∧

06i<n

�i(¬)ε(i)ψ

)
.

56

This completes the proof of the first part of the lemma. To prove the “More-
over” part one needs to observe that the only propositional constant used
in ψ is q〈ϕn,p〉 and there are no propositional variables in ψ. But we have
SL∗ ` (q〈ϕn,p〉 ≡ �nq〈ϕn,p〉) and this property easily transfers to all formulae
which use only propositional constant q〈ϕn,p〉 and no propositional variables.
�

Lemma 3.4.4 Let k ∈ ω, let P be a finite set of variables and let
ε : {0, . . . , k} × P −→ {0, 1}. If L is a consistent, normal modal logic such
that SL∗ 6SL∗ L then Φε is consistent with L.

Proof: Let P = {p1, . . . , pm} and let n1, . . . , nm be pairwise coprime natural
numbers greater than k. We extend ε to a function from

⋃
16t6m{0, . . . , nt}×

{pt} by putting ε(i, pt) = 0 for any i > k. Now, for 1 6 t 6 m, let ψt be an
SL∗ formula from Lemma 3.4.3 such that

SL∗ `
∨

06r<nt

�r
(∧

06i<nt

�i(¬)ε(i,pt)ψt

)

and
SL∗ ` ψt ≡ �ntψt.

Now, let V be an arbitrary valuation admissible for SL∗ and, for 1 6 t 6 m,
let at < nt be such that

Lω, at |=
∧

06i<nt

�i(¬)ε(i,pt)ψt[V].

We show how to replace all at’s by a single world b. By the second property
of ψt’s mentioned in the proof of Lemma 3.4.3, for each l ∈ ω it holds that

Lω, at + lnt |=
∧

06i<nt

�i(¬)ε(i,pt)ψt[V].

Since nt’s are pairwise coprime, by the Chinese Remainder Theorem, there
exists b such that, for each 1 6 t 6 m, the remainder of b modulo nt is at.
Therefore it holds that

Lω, b |=
∧

16t6m

∧
06i<nt

�i(¬)ε(i,pt)ψt[V].

Moreover, we can choose b < N =
∏

16t6m nt.
Since the valuation V was arbitrary, the following formula is provable in

SL∗: ∨
06j<N

�j(
∧

16t6m

∧
06i6nt

�i(¬)ε(i,pt)ψt).

57

It follows that a weaker formula below is also provable in SL∗∨
06j<N

�j(
∧

16t6m

∧
06i6k

�i(¬)ε(i,pt)ψt).

The last formula is equivalent to∨
06j<N

�jΦε(ψ1/p1, . . . , ψm/pm). (3.2)

Now, if ¬Φε is provable in L then, by necessitation and substitution of ψi’s
for pi’s, L proves also ∧

06j<N

�j¬Φε(ψ1/p1, . . . , ψm/pm). (3.3)

But, (3.2) is equivalent to the negation of (3.3). Since (3.2) is provable in
SL∗ and L is consistent, it follows that Φε has to be consistent with L. �

Lemma 3.4.4 shows that if L is a consistent normal modal logic such that
SL∗ 6SL∗ L, then L has to be consistent with any valuation described by a
function ε : {1, . . . , k} × P −→ {0, 1}. We use this fact to show that LTr

∗ is
conservative over SL in the language of SL i.e. to show that LTr

∗ 6SL SL.

Lemma 3.4.5 For each consistent normal modal logic L such that
SL∗ 6SL∗ L it holds that L 6SL SL.

Proof: Let L be a consistent modal logic such that SL∗ 6SL∗ L and let
ϕ(p1, . . . , pn) be a formula in the language of SL such that SL 6` ϕ. We show
that L 6` ϕ. Let us assume that all variables of ϕ are among p1, . . . , pn. Let
P = {p1, . . . , pn} and let V : ω × P −→ {0, 1} be a valuation witnessing
that SL∗ 6` ϕ. We may assume that Lω, 0 6|= ϕ[V]. In order to determine the
value of ϕ we need only to consider V restricted to the set {0, . . . , k} × P ,
for k being the modal depth of ϕ. Let ε be V restricted to this set. Since Φε

is consistent with ¬ϕ, by Lemma 3.4.2 it implies ¬ϕ. By Lemma 3.4.4, Φε

is consistent with L. Thus, the formula ¬ϕ has to be consistent with L, too. �

Theorem 3.2.11 and Lemma 3.4.5 allow us to establish that

SL 6SL LTr 6SL LTr
∗ 6SL SL,

where the last 6SL follows from Lemma 3.4.5 and Theorem 3.2.11(3). Thus,
we obtain the following theorem.

Theorem 3.4.6 The logic SL is the modal logic of the approximate FM–
truth predicate.

Corollary 3.4.7 The modal logic LTr does not depend on the choice of an
underlying approximate FM–truth predicate.

58

3.5 Summary

In this chapter we have investigated how we can approximate FM–truth
definitions. Our construction of the approximate FM–satisfaction definition
Satsl and the approximate FM–truth definition Trsl shows that there are
arithmetical predicates which posses certain properties of the FM–truth def-
initions.

We show that Trsl have all of the properties expressible in the modal
logic which are consistent with the properties of FM–truth definitions. This
was achieved by proving the equivalence between the modal logic LTr of Trsl

and the modal logic SL. As a corollary we have obtained that SL is the
modal logic of an arbitrary approximate FM–truth definition. It follows that
there is no stronger approximate FM–truth definition with respect to the
properties expressible in the modal logic.

59

Chapter 4

The Concrete Foundations of
Mathematics

In this chapter we focus on model theory. By model theory we do not mean
here the axiomatic model theory that is performed in some fixed set theory
i.e. what currently is understood as model theory. Our aim is to develop
concrete model theory – a theory about real structures and their properties.
We introduce the notion of a concrete model for which we require both
the structure and the satisfaction relation to be representable by finitistic
means, only with the use of potential infinity. We focus on model–theoretic
constructions known from the axiomatic model theory to identify which of
them remain valid in the concrete framework and which include some steps
essentially requiring the use of actual infinity. We show both positive and
negative examples of such constructions. For the latter we identify those
steps which are not acceptable in this new framework i.e. those that applied
to concrete models may result in obtaining non–concrete models. Most of
the model–theoretic constructions considered in this chapter comes from the
book by Chang and Keisler’s [CK73], but they are performed in the concrete
models context. The essential steps of those model–theoretic constructions
making them concrete are highlighted by a vertical line on the margin.

Willing to get rid of actual infinity we need to avoid referring to set theory
in its full extent. As a starting point we employ Mostowski’s FM–domains as
models of potentially infinite worlds and the notion of FM–representability as
an explication of representability without actual infinity. We intend to sketch
a border between the concrete and the non–concrete part of model theory
i.e. between the safe, finitistic one and the other, somehow transcendent,
proper understanding of which requires a satisfactory theory of the actually
infinite.

60

4.1 Basic Definitions

In this section we introduce concrete models, their basic properties and rela-
tions between them. We also prove some elementary lemmata and theorems
concerning feasibility and impossibility of performing certain arguments in
the concrete models context. Our first aim is to define concrete models for
which we require both the model and its satisfaction relation to be FM–
representable. We begin with the notion of a concrete vocabulary.

Definition 4.1.1 (Concrete Vocabulary) Let P1, . . . , Pm be predicates,
let ar : {P1, . . . , Pm} → ω be the finite arity function and let C be a set of con-
stants FM–represented by ϕC . We say that a sequence
σ = (P1, . . . , Pm, ar, ϕC) is a concrete vocabulary.

Note that we restrict our attention to vocabularies with only finitely
many predicates allowing infinite, but concrete sets of constants. For a con-
crete vocabulary σ = (P1, . . . , Pm, ar, ϕC) we intuitively denote by C the set
FM–represented by ϕC and we refer to its elements as to constants from σ.
We write c ∈ σ for c ∈ C. Similarly we say that P1, . . . , Pm are predicates
from σ and write Pi ∈ σ for i = 1, . . . ,m. The computational complexity of
a concrete vocabulary σ is defined as the computational complexity of the
set of constants from σ. Every concrete vocabulary is associated with a vo-
cabulary in the standard sense and therefore σ–terms (Termσ), σ–formulae
(Formσ) and σ–sentences (Sentσ) are defined naturally and are recursive in
σ.

We proceed with a definition of a concrete structure.

Definition 4.1.2 (Concrete Structure) Let σ = (P1, . . . , Pm, ar, ϕC) be
a concrete vocabulary. A sequence of formulae F = (ϕU , ϕP1 , . . . , ϕPm , ϕC,U)
is a concrete σ–structure if:

• ϕU FM–represents a non-empty set U (the universe),

• ϕPi FM–represents a relation on U with arity ar(Pi), for i = 1, . . . ,m
(the relations),

• ϕC,U FM–represents a function from C to U (the interpretation of
constants).

Whenever a concrete vocabulary σ is clear from the context (or not im-
portant) we call concrete σ–structures simply concrete structures. Similarly
we call σ–formulae and sentences simply formulae and sentences.

Concrete structures are arithmetical definitions of FM–representable mod-
els, understood in the standard sense. If ϕFM(N)

C,U (pcq, n) holds, we say n is
the interpretation of c in F .

61

The computational complexity of a concrete structure
F = (ϕU , ϕP1 , . . . , ϕPm , ϕC,U) is defined as the complexity of the model it
FM–represents. We write deg(F) for the Turing degree of
ϕ

FM(N)
U ⊕ ϕFM(N)

P1
⊕ · · · ⊕ ϕFM(N)

Pm
⊕ ϕFM(N)

C,U .
Let V = {v0, . . . , vk} and let F be a concrete structure with the universe

U . Every finite function a : V → U is a valuation in F . We naturally identify
valuations with finite sequences of elements of U . Therefore, we write ai for
a(vi) and lh(a) for |V |. Since valuations are finite objects, we encode them
with Gödel numbers.

We want to define what it means for a binary relation to be satisfac-
tion relation in a concrete structure. The following definition captures basic
syntactic requirements for satisfaction relations.

Definition 4.1.3 (Pre–satisfaction Relation) Let σ be a concrete vocab-
ulary and let F be a concrete σ–structure. An arithmetical binary relation R
is a pre–satisfaction in F if R is FM–representable and for every n,m ∈ ω,
if R(n,m) then:

• n = pθq, for some σ–formula θ,

• m = paq, for some valuation a on F ,

• max{i ∈ ω : vi ∈ FV(θ)} < lh(a).

We naturally transfer the notion of valuation to terms.

Definition 4.1.4 (Valuation on Terms) Let σ be a concrete vocabulary
and let F = (ϕU , ϕP1 , . . . , ϕPm , ϕC,U) be a concrete σ–structure. We define
a valuation on terms in F in the following way. For constants c ∈ σ, every
valuation a in F and n ∈ ω, ValF (pcq, paq) = n if ϕFM(N)

C,U (pcq, n). For every
variable vi and valuation a such that lh(a) > i, ValF (pviq, paq) = ai.

For every concrete structure F the function ValF (ptq, paq) is recursive
in F .

We are ready to define a satisfaction relation for concrete structures.

Definition 4.1.5 (Satisfaction Relation) Let σ = (P1, . . . , Pm, ar, ϕC)
be a concrete vocabulary and F = (ϕU , ϕP1 , . . . , ϕPm , ϕC,U) be a concrete
σ–structure. A binary relation R|= is a satisfaction relation in F if R|= is
a pre–satisfaction relation in F and it satisfies the following Tarski’s con-
ditions. For every σ–formulae ψ,ψ1, ψ2, every σ–terms t1, . . . , tk and every
valuation a in F of length greater than the maximal index of a free variable
in those formulae and terms, the following holds:

• R|=(pt1 = t2q, paq) if and only if ValF (pt1q, paq) = ValF (pt2q, paq),

62

• For j = 1, . . . ,m, R|=(pPj(t1, t2, . . . , tar(Pj))q, paq) if and only if

ϕ
FM(N)
Pj

(ValF (pt1q, paq), . . . ,ValF (ptar(Pj)q, paq)),

• R|=(p¬ψq, paq) if and only if it is not the case that R|=(pψq, paq),

• R|=(pψ1∧ψ2q, paq) if and only if both R|=(pψ1q, paq) and R|=(pψ2q, paq),

• R|=(p∃vk ψq, paq) if and only if there is n ∈ ϕ
FM(N)
U such that

R|=(pψq, pa[vk := n]q), where

a[vk := n]i =

ai if i < lh(a) and i 6= k
n if i = k

µϕ
FM(N)
U if i > lh(a) and i < k

We are ready to define concrete models.

Definition 4.1.6 (Concrete Model) Let σ be a concrete vocabulary. A
pair (F , ϕ|=) is a concrete σ–model if:

• F is a concrete σ–structure,

• ϕ|= FM–represents the satisfaction relation in F .

For a concrete model A = (F , ϕ|=), the Turing degree deg(A) of A is
defined as the Turing degree of F ⊕ ϕFM(N)

|= . Note that since the structure
F can be computed from the satisfaction relation in F , the computational
complexity of a concrete model can be equivalently defined as the computa-
tional complexity of its satisfaction relation. We therefore consider notions
recursive in concrete models and halting problems for concrete models in an
obvious meaning.

Now let us transfer the basic notions of model theory to concrete models
framework. We want to use standard symbols known from the axiomatic
model theory for their concrete analogues. Therefore, we use symbols A,B
etc. for concrete models and F ,G etc. for concrete structures.

We use the standard notation |A| for the universe of a concrete model
A = (F , ϕ|=) i.e. the universe of F (also abbreviated as |F|). A concrete
model is said to be finite if the set |A| is finite and it is said to be infinite
otherwise. Similarly we write PAj (or PFj) to denote the relation ϕFM(N)

Pj
and

cA (or cF) to denote the interpretation of c in A (or in F). For a concrete
model A = (F , ϕ|=), a formula ψ and a valuation a on A we write A |= ψ[a]

if ϕFM(N)
|= (pψq, paq) and we say that a satisfies ψ in A. We also write A =

(ϕU , ϕP1 , . . . , ϕPm , ϕC,U , ϕ|=) to abbreviate that (ϕU , ϕP1 , . . . , ϕPm , ϕC,U) is
a concrete structure F and A = (F , ϕ|=) is a concrete model.

We say that a sentence ψ is true in a concrete model A, in symbols
A |= ψ, if A |= ψ[a] for some sequence a, which is equivalent to A |= ψ[ε].

63

We use standard abbreviations A |= T to say that for every sentence ψ ∈ T ,
A |= ψ i.e. when A is a concrete model of theory T . By Th(A) we denote the
theory of A i.e. the set of sentences true in A. Note that Th(A) is recursive
in A, consistent and complete in the vocabulary of A.

In our considerations we also need notions concerning concrete mappings
between structures and models.

Definition 4.1.7 (Concrete Morphisms) Let F and G be concrete struc-
tures of the same vocabulary σ and let R be a concrete binary relation. Re-
striction h = R �|F|×|G| of R to the cartesian product of domains of concrete
structures F and G is a concrete homomorphism if:

• h is a function from |F| into |G|,

• for every predicate P ∈ σ and elements a1, . . . , aar(P) ∈ |F|
if PF (a1, . . . , aar(P)), then P G(h(a1), . . . , h(aar(P))),

• for every constant c ∈ σ it holds that h(cF) = cG.

We say that h is a concrete embedding of F into G if h is an injective
homomorphism and for every predicate P ∈ σ and elements a1, . . . , aar(P) ∈
|F|, PF (a1, . . . , aar(P)) if and only if P G(h(a1), . . . , h(aar(P))).

We say that h is onto G if h is surjective.
We say that h is an isomorphism if h is an embedding and onto G.

We naturally transfer notions of concrete morphisms from concrete struc-
tures to concrete models. Let A = (F , ϕ|=) and B = (G, ψ|=) be concrete
models and let h be a concrete morphism from F to G. Then we say that h
is a concrete morphism from A to B.

The notion of elementary embedding requires concerning satisfaction re-
lations in concrete models, therefore we define it for concrete models (not
concrete structures).

Definition 4.1.8 (Concrete Elementary Embedding) Let A, B be con-
crete models and let h be a concrete morphism from A to B. We say that h
is a concrete elementary embedding of A into B if h is a concrete embedding
and for all formulae ψ and for all elements a1, . . . , ak ∈ |A| it holds that
A |= ψ[a1, . . . , ak] if and only if B |= ψ[h(a1), . . . , h(ak)].

Lemma 4.1.9 (On Concrete Isomorphisms) Let F ,G be concrete struc-
tures. Let B = (G, ϕ|=). Let f : F → G be a concrete isomorphism. The
relation:

R|=(pϕq, pa0, . . . , akq) if and only if∧
i=0,...,k

ai ∈ |F| ∧ B |= ϕ[f(a0), . . . , f(ak)].

is the satisfaction relation in F and is recursive in |F| ⊕ f ⊕ B.

64

Proof: Let F ,G, ϕ|=, B, f and R|= be as in the assumptions of the
lemma. For a = a0, . . . , ak, by f(a) we denote f(a0), . . . , f(ak).

The relation R|= is recursive in |F| ⊕ f ⊕ϕFM(N)
|= i.e. in |F| ⊕ f ⊕B. We

show that it is the satisfaction relation in F . The relation R|= is obviously a
pre–satisfaction relation in F .

We show that R|= satisfies Tarski’s conditions. The cases for atomic for-
mulae are satisfied since f is an embedding from F into G. Let a be a valu-
ation in F and let formulae ϕ, ψ be such that max{i : vi ∈ FV(ϕ)} < lh(a)
and max{i : vi ∈ FV(ψ)} < lh(a).

In the case of negation the following are equivalent:

• R|=(p¬ϕq, paq),

• B |= ¬ϕ[f(a)],

• B 6|= ϕ[f(a)],

• it is not the case that R|=(pϕq, paq).

In the case of conjunction the following are equivalent:

• R|=(pϕ ∧ ψq, paq),

• B |= (ϕ ∧ ψ)[f(a)],

• B |= ϕ[f(a)] and B |= ψ[f(a)],

• R|=(pϕq, paq) and R|=(pψq, paq).

In the case of the existential quantifier the following are equivalent:

• R|=(p∃vk ϕq, paq),

• B |= ∃vk ϕ[f(a)],

• there is n ∈ |B| such that B |= ϕ[f(a)[vk := n]],

• there is m ∈ |F| such that f(m) = n and B |= ϕ[f(a[vk := m])],

• there is m ∈ |F| such that R|=(pϕq, pa[vk := m]q).

Therefore R|= is the satisfaction relation in F . �

Lemma 4.1.9 can be strengthen to to the following form.

Lemma 4.1.10 (Co–image of a Concrete Bijection)
Let A be a concrete set and let B be a concrete σ–model. Let f : A→ |B| be

65

a concrete bijection. Then there is a concrete σ–model A such that A = |A|
and it holds that

A |= ψ[a1, . . . , ak] if and only if
∧

i=1,...,k

ai ∈ A and B |= ψ[f(a1), . . . , f(ak)].

Moreover, f is a concrete isomorphism from A to B and A is recursive
in A⊕ f ⊕ B.

The concrete model A from the above lemma is called a co–image of a
concrete model B under the concrete bijection f . The proof of its existence
is similar to the proof of Lemma 4.1.9. It additionally requires only to com-
pute the relations and the interpretation of constants in A. This is easily
computable in the satisfaction relation.

Let us note that up to a concrete isomorphism all infinite concrete mod-
els can be thought of as models on natural numbers i.e. their universes are
exactly natural numbers and all finite models can be thought of as models on
some initial segment of natural numbers. However, since we are particularly
interested in model–theoretic constructions, in order to get a new concrete
model from a given one, we often need some space for adding new elements.
This, however, always can be achieved via some very simple recursive func-
tions, e.g. i 7→ 2i or i 7→ p1+i

j which induce concrete isomorphisms.
The expansion and reduction of models are very natural in axiomatic

model theory and are used frequently in model–theoretic constructions.

Definition 4.1.11 (Concrete Vocabulary Restriction and Extension)

Let σ = (P1, . . . , Pm, ar, ϕC) be a concrete vocabulary and let ϕD FM–
represent a set of constants D ⊆ C.

Then a concrete vocabulary σ′ = (Pi1 , . . . , Pik , ar
′, ϕD) is called a restric-

tion of the concrete vocabulary σ if {Pi1 , . . . , Pik} ⊆ {P1, . . . , Pm} and ar′ is
a restriction of ar to the set {Pi1 , . . . , Pik}.

If a concrete vocabulary σ′ is an restriction of σ, then σ is called an
extension of σ′.

Definition 4.1.12 (Reduction and Expansion) Let σ be a concrete vo-
cabulary, let σ′ be a restriction of σ and let F = (ϕU , ϕP1 , . . . , ϕPm , ϕC,U)
be a concrete σ–structure. Let G = (ϕU , ϕPi1

, . . . , ϕPik
, ϕD,U) be a concrete

σ′–structure.
We say that G is a reduction (to σ′) of F if ϕFM(N)

D,U is a restriction of

the function ϕFM(N)
C,U .

If A = (F , ϕ|=) is a concrete σ–model and G is a reduction (to σ′) of F ,
then the concrete σ′–model B = (G, ϕ′|=) is called a reduction (to σ′) of A.

If G is a reduction (to σ′) of F , then F is called an expansion (to σ) of
G.

66

If B is a reduction (to σ′) of A, then A is called an expansion (to σ) of
B.

Let σ = (P1, . . . , Pm, ar, ϕC) be a concrete vocabulary and let
σ′ = (Pi1 , . . . , Pik , ar

′, ϕD) be a restriction of σ. It is easy to obtain a reduc-
tion to σ′ of a given concrete σ–model. Let A = (ϕU , ϕP1 , . . . , ϕPm , ϕC,U , ϕ|=)
be a concrete σ–model. Let ϕD,U (x, y) =df (ϕC,U (x, y) ∧ ϕD(x)) and let
ϕ′|=(x, y) =df (ϕ|=(x, y)∧Formσ′(x)). Then B = (ϕU , ϕPi1

, . . . , ϕPik
, ϕD,U , ϕ

′
|=)

is a concrete σ′–model which is a reduction of A to σ′. It is, however, not
obvious that an expansion of a concrete model is also a concrete model – the
key difficulty is to define the satisfaction relation in the extended language.
The following lemma shows, that if we want to obtain an expansion by con-
stants only, it is possible to express it using the satisfaction relation from
the original concrete model and an interpretation of the new constants.

Lemma 4.1.13 (On Expansions) Let σ′ = (P1, . . . , Pm, ar, ϕD) be a con-
crete vocabulary and let σ = (P1, . . . , Pm, ar, ϕC) be an extension of σ′. Let
G = (ϕU , ϕP1 , . . . , ϕPm , ϕD,U) be a concrete σ′–structure and let B = (G, ϕ|=)
be a concrete σ′–model. Let F = (ϕU , ϕP1 , . . . , ϕPm , ϕC,U) be an expansion
of G to σ.

Then the satisfaction relation in F is recursive in ϕFM(N)
C,U ⊕ϕFM(N)

|= and
therefore there is an expansion A = (F , ϕ′|=) of B to σ.

Proof: Let σ, σ′, F , B and G be as in the assumptions of the lemma.
Observe that the satisfaction relation R|= in F can be defined as follows:

R|=(pψ(c0, . . . , ck)q, paq) ≡ ∃b (Seq(b) ∧
k∧
i=0

ϕ
FM(N)
C,U (pciq, bi)∧

ϕ
FM(N)
|= (pψ(vlh(a), . . . , vlh(a)+k)q, pa, b0, . . . , bkq)).

Similarly R|= can be defined also as follows:

R|=(pψ(c0, . . . , ck)q, paq) ≡ ∀b ((Seq(b) ∧
k∧
i=0

ϕ
FM(N)
C,U (pciq, bi))

⇒ ϕ
FM(N)
|= (ψ(vlh(a), . . . , vlh(a)+k), pa, b0, . . . , bkq)).

Since ϕFM(N)
|= and ϕFM(N)

C,U are FM–representable, they can be defined by
Σ2 and Π2 formulae. It follows that R|= can be defined by a Σ2 formula, as
well as by a Π2 formula. Therefore by the generalised Post’s theorem R|= is
∆0

2 i.e. concrete and more precisely it is recursive in ϕFM(N)
C,U ⊕ ϕFM(N)

|= . Let
ϕ′|= FM–represent R|=. Then A = (F , ϕ′|=) is a concrete σ–model which is an

67

expansion of B to σ. �

In the axiomatic model theory we often consider expansions of a model by
constants naming some elements of some subset of the universe. We show how
this is done in the concrete context. Let σ = (P1, . . . , Pm, ar, ϕC) be concrete
vocabulary, and let F = (ϕU , ϕP1 , . . . , ϕPm , ϕC,U) be a concrete σ–structure.
Let D be a recursive set of new constants with an effective presentation
d0, d1, Let A ⊆ |F| be a concrete set, let E = {da : a ∈ A} and let ϕE
FM–represent E. Then σ′ = (P1, . . . , Pm, ar, ϕC ∨ ϕE) is an extension of σ
and we write σ′ = σ∪E. The function IE,A : E → A such that for each a ∈ A
it holds that IE,A(pdaq) = a is recursive in A. Let ϕE,A FM–represent IE,A.
Then F ′ = (ϕU , ϕP1 , . . . , ϕPm , ϕC,U ∨ϕE.A) is a concrete σ′–structure. Using
classical model–theoretic nomenclature we write F ′ = (F , a)a∈A. Similarly
we write (A, a)a∈A to denote a concrete σ′–model (F ′, ϕ|=). If A is a concrete
model we say that (A, a)a∈|A| is a natural expansion of A.

For concrete vocabularies σ, τ we also use standard notation σ ∪ τ , σ ∩ τ
and σ ⊆ τ in the intuitive meaning.

Being able to expand concrete models to new concrete vocabularies we
can define such basic concepts as a diagram Diag(A) or an elementary dia-
gram ElDiag(A) of a concrete model A. Recall that by Litσ we denote the
set of literals in vocabulary σ.

Definition 4.1.14 ((Elementary) Diagram of a Concrete Model)
Let A be a concrete σ–model and let A′ = (A, a)a∈|A| be its natural expansion
to σ′.

The elementary diagram ElDiag(A) of A is defined as Th(A′).
The diagram Diag(A) of A is defined as Litσ′ ∩ ElDiag(A).

Note that the diagram and the elementary diagram of a concrete model is
relative to its natural expansion which depends on the underlying set of new
constants naming the elements of the concrete model. Observe also that the
diagram and the elementary diagram of a concrete model A are recursive in
A and are consistent. Moreover elementary diagrams are complete and have
the witness property.

Now we transfer basic relations between models in the context of the
concrete models.

Definition 4.1.15 (Concrete Submodel)
Let A = (ϕU , ϕP1 , . . . , ϕPm , ϕC,U , ϕ|=) and B = (ψV , ψP1 , . . . , ψPm , ψC,V , ψ|=)
be concrete σ–models. We say that A is a submodel of B, in symbols A ⊆ B,
when:

• |A| ⊆ |B|,

• for i = 1, . . .m, PAi = PBi ∩ |A|ar(Pi),

68

• ϕC,U and ψC,V FM–represent the same function.

When A ⊆ B we also say that model B is a concrete extension of a
concrete model A. Note that if A ⊆ B, then the identity function restricted
to |A| is an embedding from A into B.

Definition 4.1.16 (Concrete Elementary Submodel)
Let A = (ϕU , ϕP1 , . . . , ϕPm , ϕC,U , ϕ|=) and B = (ψV , ψP1 , . . . , ψPm , ψC,V , ψ|=)
be concrete models. We say that A is an concrete elementary submodel of B,
in symbols A 4 B, if:

• A ⊆ B,

• for every formula ϑ(x) and valuation a in |A| if A |= ϑ[a], then B |=
ϑ[a].

When A 4 B we also say that model B is a concrete elementary extension
of model A. Note that if A 4 B, then the identity function restricted to |A|
is an elementary embedding from A into B.

In the axiomatic model theory it is a basic fact that if for models A′, B
we have A′ |= Diag(B), then there is a canonical embedding f from B into
the reduction A of A′ to the common vocabulary and a canonical embedding
f∗ from (B, b)b∈|B| into A′. The following lemma shows that those canonical
embeddings are recursive in A⊕ B, therefore concrete.

Lemma 4.1.17 (On Embeddings) Let σ be a concrete vocabulary and let
B be a concrete σ–model. Let B′ = (B, b)b∈|B| be a natural expansion of B
and let σ′ be the concrete vocabulary of B′. Let A′ be a concrete σ′–model
such that A′ |= Diag(B) and let A be a reduction of A′ to σ.

Then there is a concrete embedding f of B′ into A′ and therefore also f
is the concrete embedding of B into A. Moreover f is recursive in A⊕ B.

Proof: Let σ, σ′, A, A′, B, B′ be as in the assumptions of the lemma.
Therefore σ = (P1, . . . , Pm, ar, ϕC), and σ′ = (P1, . . . , Pm, ar, ϕC ∨ ϕD),
where D = {db : b ∈ |B|}.

Let IB′ be the interpretation of constants in B′. Then by the definition
of the natural expansion IB′(pdbq) = b for all b ∈ |B|. Let IA′ be the inter-
pretation of constants in A′.

We define:
f(b) =df IA′(pdbq).

The function f : |B′| → |A′| for an element b ∈ |B′| returns the interpre-
tation of constant db in A′. Since A′ |= Diag(B), the function f is a concrete
homomorphism and is injective, since IB′ is injective.

It remains to show that for every P ∈ σ and every elements b1, . . . , bar(P) ∈
|B′| if A′ |= P [f(b1), . . . , f(bar(P))], then B |= P (b1, . . . , bar(P)). Fix P ∈ σ

69

and b1, . . . , bar(P) and suppose that A′ |= P [f(b1), . . . , f(bar(P)]. Then A′ |=
P (db1 , . . . , dbar(P)) and therefore, sinceA′ |= Diag(B), B′ |= P (db1 , . . . , dbar(P)

).
Thus B′ |= P [b1, . . . , bar(P)].

Moreover, f is recursive in A′⊕B′ and therefore in A⊕B. This ends the
proof that f is a concrete embedding of B′ into A′ and therefore that it is
also a concrete embedding of B into A. �

We therefore can construct a concrete canonical embedding of (B, b)b∈|B|
into A′ knowing that A′ |= Diag(B). However, in the model–theoretic con-
structions of the axiomatic model theory the fact that A′ |= Diag(B) and
that (B, b)b∈|B| is a submodel of A′ are treated as equivalent, since up to iso-
morphism they are equivalent. If f : (B, b)b∈|B| → A′ is an embedding, then
the image f [(B, b)b∈|B|] of (B, b)b∈|B| under f is isomorphic to (B, b)b∈|B| and
f [(B, b)b∈|B|] ⊆ A′. Or, the other way round, (B, b)b∈|B| ⊆ C, where C is the
model obtained by replacing the submodel f [(B, b)b∈|B|] of A′ by (B, b)b∈|B|.
Those are two canonical ways to justify inferring (B, b)b∈|B| ⊆ A′ from A′ |=
Diag(B). As we show they both fail in the context of concrete models. The
reason is that the image of a function is defined as im(f) = {j : ∃i f(i) = j},
therefore it requires an unbounded quantification which raises the computa-
tional complexity. In the worst case we may have that deg(im(f)) = deg(f)′

which could be a non–concrete set. The following theorem provides an ex-
ample of such a situation – the image of the universe of a concrete model
under a concrete injective function is Σ0

2–complete.

Theorem 4.1.18 There are concrete sets A, B and injective concrete func-
tion f : B → A such that f [B] is Σ0

2–complete and (A − f [B]) ∪ B is Π0
2–

complete.

Proof: The proof bases on the fact that every infinite recursively enu-
merable set is an image of an injective total recursive function. This fact
can be relativised to infinite Σ0

2 sets and functions recursive in the halting
problem K. Therefore a Σ0

2–complete set (e.g. K∗ = {i ∈ ω : ΦK
i (i)↓}) is an

image of an injective total concrete function.
Let B = 2K + 1 = {2k + 1: k ∈ K}, let A = {2i : i ∈ ω} and let

C = 2K∗ = {2k∗ : k∗ ∈ K∗}. There is a recursive in K (thus concrete)
injective function f : B → A such that f [B] = C.

Both sets A,B are concrete and the injection f is also concrete. The
set C = f [B] is Σ0

2–complete. Since f [B] ⊆ A and A ∩ B are disjoint
(A− f [B]) ∪B is Π0

2–complete. �

By Theorem 4.1.18, in the concrete models context we cannot perform
model–theoretic constructions as freely as in the axiomatic model theory. In
particular, the constructions of chains of models may fail since we cannot
infer (B, b)b∈|B| ⊆ A′ from A′ |= Diag(B).

70

We define what we mean by sequences and chains of models in the con-
crete case.

Definition 4.1.19 (Concrete Sequence of Concrete Models)
A formula ϕMod(x, y) is a concrete sequence of concrete models if ϕMod(x, y)
FM–represents a functionMod such that for all i ∈ ω,Mod(i) is Gödel num-
ber of a concrete model.

We use the standard notation for concrete sequences of concrete models.
By (Ai)i∈ω we abbreviate that ϕMod(x, y) is a concrete sequence of concrete
models such that for each i ∈ ω, Mod(i) = pAiq.

We can require a concrete sequence of low concrete models to satisfy
certain additional condition – that the halting problem for i–th concrete
model in the sequence is concretely computable from i. This motivates the
following definition.

Definition 4.1.20 (Jump–Concrete Sequence of Concrete Models)
Let (Ai)i∈ω be a concrete sequence of low concrete models. For i ∈ ω let ϕi
FM–represent the halting problem for Ai. We say that (Ai)i∈ω is a jump–
concrete sequence of concrete models if the map i 7→ pϕiq is concrete.

Definition 4.1.21 (Concrete Chain of Concrete Models)
Let (Ai)i∈ω be a concrete sequence of concrete models. We say that (Ai)i∈ω
is a concrete chain of concrete models if:

• for i ∈ ω, Ai ⊆ Ai+1,

•
⋃
i∈ω |Ai| is a concrete set.

We say that a concrete chain of concrete models (Ai)i∈ω is a concrete
elementary chain of concrete models if for each i ∈ ω it holds that Ai 4 Ai+1.

In the model–theoretic constructions presented further in this chapter
we define concrete sequences of concrete models (Ai)i∈ω such that for i ∈ ω
it holds that Ai+1 |= Diag(Ai). The following theorem is essential for us to
perform constructions of concrete chains of concrete models. It states under
what circumstances it is possible for a concrete sequence of concrete models
(Ai)i∈ω to find a concrete chain of concrete models (Bi)i∈ω such that for each
i ∈ ω there is a concrete isomorphism from Bi into a reduction A′i of Ai.

Theorem 4.1.22 (On Concrete Chain Constructions) Let A0 be a low
concrete σ–model. Let (Ai)i∈ω be a jump–concrete sequence of low concrete
models. Suppose that for every i ∈ ω it holds that:

•
⊕

j6iAj is low,

• Ai+1 |= Diag(Ai).

71

For i ∈ ω, let Ri be recursive pairwise disjoint sets such that i 7→ pRiq is
recursive such that |Ai| ⊆ Ri.

Then there is a concrete chain of concrete σ–models (Bi)i∈ω such that
for i ∈ ω there is a concrete isomorphism gi : Bi → Aσi , where Aσi is the
reduction to σ of Ai.

Proof: Let (Ai)i∈ω and Ri, for i ∈ ω be as in the assumptions of the
theorem.

Observe that for i 6= j it holds that |Ai| ∩ |Aj | = ∅. This follows from
the fact that for i 6= j, Ri and Rj are disjoint, |Ai| ⊆ Ri and |Aj | ⊆ Rj .

For i ∈ ω let fi : (Ai, a)a∈|Ai| → Ai+1 be an embedding provided by
Lemma 4.1.17. Note that for each i ∈ ω the function fi is recursive in Ai ⊕
Ai+1, thus low. Moreover, from the proof of Lemma 4.1.17, the codes of
algorithms computing these embeddings inK are computable from the codes
of the algorithms computing Ai and Ai+1 in K. Note also that, since (Ai)i∈ω
is a jump–concrete sequence of low concrete models, i 7→ pA∗i q is concrete
and therefore i 7→ pf∗i q is concrete1.

Define:
UB0 = |A0|,

UBi+1 = UBi ∪ (|Ai+1| − fi[|Ai|]).

We show by induction on i ∈ ω that UBi is a concrete set. The base step
is obvious since |A0| is concrete. For the induction step suppose that UBi is
concrete. It holds that j ∈ fi[|Ai|] if and only if ∃x (x ∈ |Ai| ∧ fi(x) = j).
Since fi is recursive in the low set Ai ⊕ Ai+1, the set defined by the latter
formula has the Turing degree deg(Ai ⊕ Ai+1)′ 6 deg(

⊕
j6i+1Aj)′ = 0′.

Therefore fi[|Ai|] is concrete and UBi+1 is concrete as a boolean combination
of concrete sets. Moreover, the algorithm deciding fi[|Ai|] with K as an
oracle and using i 7→ pA∗i q and i 7→ pf∗i q as subroutines can be computed
recursively.

Recall that since i 7→ pRiq is recursive and for each i ∈ ω the set Ri
is recursive,

⋃
i∈ω Ri is concrete. Observe also that

⋃
i∈ω UBi ⊆

⋃
i∈ω |Ai| ⊆⋃

i∈ω Ri.
It follows that there is a uniform concrete procedure computing a ∈ UBi

given a and i on the input. The algorithm is the following.
1Here f∗i is the halting problem for algorithms with oracle f .

72

Algorithm 6 Algorithm deciding a ∈ UBi
Input: a, i ∈ ω
Output: truth value of a ∈ UBi
if i = 0 then
return truth value of a ∈ |A0|

else
if a ∈ |Ai| and a 6∈ fi−1[|Ai−1|] then
return true

else
return truth value of a ∈ UBi−1

end if
end if

Algorithm 6 uses subroutines which, with K as an oracle, compute a ∈
|A0|, a ∈ |Ai| and a 6∈ fi−1[|Ai−1|]. It also recursively calls itself (with the
second argument decreased).

Observe that for i ∈ ω it holds that UBi ⊆
⋃
j6i |Aj |. It is obvious for

i = 0. Suppose that UBi ⊆
⋃
j6i |Aj |. Then UBi+1 = UBi∪(|Ai+1|−fi[|Ai|]) ⊆⋃

j6i |Aj | ∪ |Ai+1| =
⋃
j6i+1 |Aj |.

Let g0 be the identity function restricted to UB0 and for i ∈ ω let:

gi+1(j) =

{
fi(gi(j)) if j ∈ UBi
j if j ∈ UBi+1 − UBi

We show by induction on i ∈ ω that the function gi is a bijection from
UBi to |Ai|. The base step for i = 0 is obvious. Suppose for the induction
hypothesis that gi is a bijection from UBi to |Ai|. We show that gi+1 is a
bijection from UBi+1 to |Ai+1|.

First, we show that gi+1 is injective. It is obvious that gi+1 is injective
on UBi and on |Ai+1| − fi[|Ai|]. For j ∈ UBi , gi+1(j) ∈ fi[|Ai|]. For j ∈
|Ai+1| − fi[|Ai|], gi+1(j) ∈ |Ai+1| − fi[|Ai|]. Therefore gi+1 is injective.

Now we show that gi+1[UBi+1] = |Ai+1|. The following sets are equal:

• gi+1[UBi+1],

• gi+1[UBi ∪ (|Ai+1| − fi[UBi])],

• gi+1[UBi] ∪ gi+1[|Ai+1| − fi[UBi]],

• fi[gi[UBi]] ∪ gi+1[|Ai+1| − fi[UBi]],

• fi[|Ai|] ∪ (|Ai+1| − fi[|Ai|]),

• |Ai+1|.

This ends the proof that for each i ∈ ω the function gi is a bijection from
UBi to |Ai|.

73

By induction on i ∈ ω we show that gi is concrete. The base step is
obvious since g0 is a restriction of a recursive function to a concrete set.
For the inductive step suppose that gi is concrete. We show that gi+1 is
also concrete. Observe that the conditions in the definition of gi+1 are both
concrete. Moreover, fi is concrete and by the induction hypothesis gi is also
concrete. Therefore gi is concrete for each i ∈ ω.

Since for i ∈ ω gi is a concrete bijection from UBi to |Ai|, let B′i be
the co–image of Ai under gi – its existence is provided by Lemma 4.1.10.
Therefore B′i is a recursive in UBi ⊕ gi ⊕ Ai concrete model in the same
concrete vocabulary as Ai and gi : B′i → Ai is a concrete isomorphism. For
i ∈ ω let Aσi be a reduction of Ai to σ and Bi be a reduction of B′i to σ.

It is easy to see that for i ∈ ω it holds that Bi ⊆ Bi+1. Obviously
|Bi| ⊆ |Bi+1|. The interpretation of constants is also obviously the same
in Bi+1 and Bi. Moreover, for P ∈ σ if Bi |= P [a1, . . . , aar(P)], then Aσi |=
P [gi(a1), . . . gi(aar(P))] and Aσi+1 |= P [fi(gi(a1)), . . . , fi(gi(aar(P)))]. The last
statement is equivalent to Aσi+1 |= P [gi+1(a1), . . . , gi+1(aar(P))] by the defi-
nition of gi+1. Since B′i+1 is the co–image of Ai+1 under gi+1 and Bi+1 is its
reduction to σ it follows that Bi+1 |= P [a1, . . . , aar(P)].

Therefore, the following diagram is commutative:

Aσ0

B0

Aσ1

B1

Aσ2

B2

. . .

. . .

f0 f1 f2

⊆ ⊆ ⊆

g0 g1 g2

Note that since i 7→ pAiq is concrete, then also i 7→ pfiq is concrete.
Therefore, i 7→ pUBiq is a concrete function. It follows that i 7→ pgiq is a
concrete function. This implies that i 7→ pB′iq and i 7→ pBiq are also concrete
functions.

We now show that (Bi)i∈ω is a concrete chain of concrete models. We
already know that i 7→ pBiq is concrete, therefore (Bi)i∈ω is a concrete
sequence of concrete models. We also know that for each i ∈ ω it holds
that Bi ⊆ Bi+1. It remains to show that

⋃
i∈ω |Bi| is concrete. Recall that

since i 7→ pRiq is recursive and for each i ∈ ω the set Ri is recursive,
⋃
i∈ω Ri

is concrete. Observe also that
⋃
j6i |Bj | ⊆

⋃
j6i |Aj | ⊆

⋃
j6iRj .

74

Algorithm 7 Algorithm deciding
⋃
i∈ω |Bi|

Input: a ∈ ω
Output: truth value of a ∈

⋃
i∈ω |Bi|

if a ∈
⋃
i∈ω Ri then

i← 0
while a 6∈ Ri do
i← i+ 1

end while
return truth value of a ∈ |Bi|

else
return false

end if

Algorithm 7 uses concrete subroutines to compute a ∈
⋃
i∈ω Ri, i 7→ pBiq

and a ∈ |Bi| (Algorithm 6) and it always halts. Therefore the set decided by
the algorithm is concrete.

Therefore (Bi)i∈ω is a concrete chain of concrete models such that for
each i ∈ ω there is a concrete isomorphism gi : Bi → Aσi . �

Gerald Sacks in [Sac72] shows an alternative way of dealing with infinite
families of structures. He considers directed systems – families of models
and embeddings ((A)d∈D, (fd,e)d,e∈D, d6De)) indexed by a directed set D =
(D,6D) and such that for d, e ∈ D such that d 6D e, fd,e is an embedding of
Ad into Ae. Such families are natural in the computational complexity aware
model–theoretic considerations. For directed systems a direct limit can be
defined without the need of reasoning up to isomorphism which, as we shown,
may lead to increase of the computational complexity. Such systems can be
easily transferred to the concrete models context enabling to define a concrete
structures as limits of a concrete directed systems of concrete (not only low)
models. We, however, do not elaborate on directed systems, since we are
mainly concerned with the classical model–theoretic constructions which deal
with chains and elementary chains of models. Translating those constructions
to the language of directed systems could reduce the clarity of arguments. In
the model–theoretic constructions presented later in this chapter we therefore
construct concrete chains of concrete models using Theorem 4.1.22 instead
of directed systems and their limits.

In the final paragraph of this introductory section we would like to make
a remark on the management of resources in the constructions we perform.
In the concrete models context there is only a limited number of constants:
c0, c1, We implicitly assume that in every construction we can always
take an infinite recursive set of new constants or even an infinite recursive
family of infinite recursive sets of new constants. In the end of this chapter
we justify why this assumption is not a great limitation. Moreover, whenever

75

we consider a theory T in a concrete vocabulary σ, we may also think of T
as a theory in a recursive concrete vocabulary σ′ such that σ ⊆ σ′. Generally
every concrete set is treated as contained in some recursive set R, such that
there are infinite recursive sets S disjoin from R.

4.2 Model Theory without Actual Infinity

Recall that we say that a theory is CCW(σ,D) if it is consistent, complete
in σ and has witness property for σ–formulae in the set of constants D. The
following lemma tells us when we may expect concrete models to exist.

Lemma 4.2.1 Let σ = (P1, . . . , Pm, ar, ϕC) be a concrete vocabulary. Let
R be an infinite recursive set and let D = {cr : r ∈ R} be a recursive set of
constants. Let σ′ = σ∪D and let E = C∪D. Let T be a concrete CCW(σ′, D).
Then there exists a concrete σ′–model A |= T . Moreover, |A| ⊆ R and A is
recursive in T .

Proof: Let σ, σ′, R, D, E and T be as in the assumptions of the lemma.
For c, d ∈ E we define a relation ≈ in the following way: c ≈ d ≡df c = d ∈ T .
Observe that since T is consistent and complete in σ′, for every c, d, e ∈ E
it holds that:

• c = c ∈ T ,

• if c = d ∈ T , then d = c ∈ T ,

• if c = d ∈ T and d = e ∈ T , then c = e ∈ T .

Hence ≈ is an equivalence relation. Moreover, for every predicate P ∈ σ
of arity k and every sequences of constants e1, . . . , ek, f1, . . . , fk from E if
for every i = 1, . . . , k it holds that ei = fi ∈ T and P (e1, . . . , ek) ∈ T ,
then by completeness of T , it holds that P (f1, . . . , fk) ∈ T . Therefore ≈ is a
congruence.

The set of equivalence classes of ≈ can be identified with

U =df {i ∈ ω : i ∈ R ∧ ∀j < i (j ∈ R⇒ ci 6= cj ∈ T)},

the set of indices of the least in R representatives of all equivalence classes.
Note that U is recursive in T , thus FM–representable, and U ⊆ R. Let ϕU
be a formula FM–representing U .

For j = 1, . . . ,m we define relations:

Rj(i1, . . . , iar(Pj)) ≡df
∧

k=1,...,ar(Pj)

ik ∈ U ∧ Pj(ci1 , . . . , ciar(Pj)
) ∈ T.

Those relations are well defined since ≈ is a congruence. They are also re-
cursive in T , thus FM–representable – let ϕPj be formulae representing Rj
for j = 1, . . . ,m.

76

We define the interpretation of constants:

IE,U (pcq) = i ≡df c ∈ E ∧ i ∈ U ∧ c = ci ∈ T.

IE,U is a function from E to U since U is the set of representatives of
equivalence classes of ≈. The function IE,U : E → U is recursive in T . It
picks for c ∈ E the index of the representative from U of the equivalence
class of congruence ≈ to which c belongs. Let ϕE,U FM–represent IE,U .

We have thus defined a concrete σ′–structure F = (ϕU , ϕP1 , . . . , ϕPm , ϕE,U).
To complete the proof we also need to define satisfaction relation R|= in F .

We define:

R|= = {(pψ(vi1 , . . . , vik)q, paq) : ψ(vi1 , . . . , vik) ∈ Formσ′ ∧ a ∈ U<ω∧
∧max{i1, . . . , ik} < lh(a) ∧ ψ(cai1 , . . . , caik) ∈ T}.

Note that R|= is recursive in T , thus FM–representable. Let ϕ|= FM–
represent R|=.

We show that relation R|= has all desired properties i.e. it is the sat-
isfaction relation in F . It is obvious by the definition of R|= that it is a
pre–satisfaction relation in F . It suffices to show that R|= satisfies Tarski’s
conditions. In the following reasoning we assume that a is a sequence of
elements of U such that lh(a) is greater then the greatest index of a free
variable of considered terms and formulae.

It is easy to see by the definition of R|= and ValF that for terms t1, t2 it
holds thatR|=(pt1 = t2q, paq) if and only if ValF (pt1q, paq) = ValF (pt2q, paq).

Let j = 1, . . . ,m. Let t1, . . . , tar(Pj) be terms and let for k = 1, . . . , ar(Pj),
ik = ValF (ptkq, paq). We show that R|=(pPj(t1, . . . , tar(Pj))q, paq) if and only
if Rj(i1, . . . , iar(Pj

). The following are equivalent:

• R|=(pPj(t1, . . . , tar(Pj))q, paq) (by definition of R|= and ValF),

• Pj(ci1 , . . . , ciar(Pj)
) ∈ T (by definition of Rj),

• Rj(i1, . . . , iar(Pj)).

Now let us consider the case of the negation – we show that for any
formula ψ(vi1 , . . . , vik), R|=(p¬ψq, paq) if and only if it is not the case that
R|=(pψq, paq). Fix a formula ψ(vi1 , . . . , vik). The following are equivalent:

• R|=(p¬ψq, paq) (by definition of R|=),

• ¬ψ(cai1 , . . . , caik) ∈ T (by completeness and consistency of T),

• ψ(cai1 , . . . , caik) 6∈ T (by definition of R|=),

• It is not the case that R|=(pψq, paq).

77

For the case of conjunction, for fixed formulae ψ1(vi1 , . . . , vik) and ψ2(vj1 , . . . , vjl),
the following are equivalent:

• R|=(pψ1 ∧ ψ2q, paq) (by definition of R|=),

• ψ1(cai1 , . . . , caik)∧ψ2(caj1 , . . . , cajl) ∈ T (completeness and consistency
of T),

• ψ1(cai1 , . . . , caik) ∈ T and ψ2(caj1 , . . . , cajl) ∈ T (by definition of R|=),

• R|=(pψ1q, paq) and R|=(pψ2q, paq).

The last step of the proof is the quantifier case. Recall the following
definition:

a[vk := n]i =

ai if i < lh(a) and i 6= k
n if i = k

µϕ
FM(N)
U if i > lh(a) and i < k

Now fix ψ(vk, vi1 , . . . , vil). The following are equivalent:

• R|=(p∃vk ψq, paq) (by definition of R|=),

• ∃vk ψ(vk, cai1 , . . . , cail) ∈ T (by witness property for T),

• ψ(cn, cai1 , . . . , cail) ∈ T , for some n ∈ U (by definition of R|=),

• R|=(pψq, pa[vk := n]q), for some n ∈ U .

ThereforeR|= is a satisfaction relation in F andA = (F , ϕ|=) is a concrete
σ′–model. It is easy to see that if ψ is a σ′–sentence such that ψ ∈ T , then
R|=(pψq, pεq) i.e. A |= ψ.

Recall that U = |A| ⊆ R. Moreover, as it is shown above, relations FM–
represented by formulae defining the A are all recursive in T . Thus A is
recursive in T . �

By Lemma 4.2.1 we know which theories have concrete models and that
to construct a concrete model of a theory we need only to find its extension
satisfying the assumptions of the lemma. Is it possible for reasonable the-
ories? The answer is positive and is given in next section where we prove
completeness theorems.

4.2.1 Completeness Theorems

First let us state and prove a lemma which will help us constructing theories
with witness properties.

Lemma 4.2.2 Let T be a consistent theory in σ, let c be a new constant and
let ϕ(x) be a σ–formula. Then T is consistent with the sentence ∃xϕ(x) ⇒
ϕ(c).

78

Proof: Let T , c and ϕ be as in the assumptions of the lemma. Suppose for
the sake of contradiction that T ` ¬(∃xϕ(x)⇒ ϕ(c)). Then, by the lemma
on constants, since c does not occur in T , T ` ∀y ¬(∃xψ(x)⇒ ψ(y)) which
is equivalent to T ` ∀y (∃xψ(x) ∧ ¬ψ(y)). Then T ` ∃xψ(x) ∧ ∀y ¬ψ(y)
which means T is inconsistent which contradicts the hypothesis. �

Recall that for a concrete vocabulary σ the set of all σ–sentences and the
set of all σ–formulae with only one free variable v0 are recursive in σ – thus
they have effective in σ presentations. Let ψ0, ψ1, . . . be an effective in σ pre-
sentation of σ–sentences and let ϕ0, ϕ1, . . . be an effective in σ presentation
of σ–formulae with only one free variable v0.

We work further with a fixed recursive concrete vocabulary σ. Let C be
the set of constants of σ and let R be an infinite recursive set such that
D = {cr : r ∈ R} is a recursive set of new constants. Let d0, d1, . . . be an
effective presentation of D. Let σ′ = σ ∪D.

Our aim is to prove the first completeness theorem i.e. to show when we
can extend a σ theory T to a concrete CCW(σ′, D). Having such an extension
of T we can obtain a concrete σ′–model A′ of T , by Lemma 4.2.1. Then it
suffices to take a reduction A of A′ to σ.

The construction mimics the classical Henkin’s argument on construction
of a model of a consistent theory – our main aim is to show that for consistent
theories which have concrete consequences Henkin’s construction gives us a
concrete model.

First let us define the Henkin’s completion of a consistent theory.

Definition 4.2.3 (Henkin’s Completion) Let T be a consistent theory.
Define a sequence αn of formulae as follows:

• For n = 2k

αn =

{
ψk if T 6` ¬(α0 ∧ · · · ∧ αn−1 ∧ ψk)
¬ψk else

• For n = 2k + 1
αn = ∃v0 ϕk(v0)⇒ ϕk(di),

for i being the least natural number such that di does not occur in
α0, α1, . . . , αn−1, ϕk.

The Henkin’s completion of T (with respect to constants D) is the set
HC(T) = {αn : n ∈ ω}. For n ∈ ω the n–th cut of the Henkin’s completion
of T (with respect to constants D) is the set HCn(T) = {αi : i < n}.

We proceed with a series of lemmata which present properties of Henkin’s
completions. Since we defined Henkin’s completions only for consistent the-
ories, let us fix a consistent theory T in σ for which we prove the following
lemmata.

79

First, we show that the underlying theory is contained within its Henkin’s
completion.

Lemma 4.2.4 T ⊆ HC(T).

Proof: Let ψ be a σ–sentence such that ψ ∈ T . Then ψ = ψm for some
m ∈ ω. Since ψ ∈ T , then T ` ψ and also T ∪ HC2m(T) ` ψ and since
T ∪HC2m(T) is consistent, T ∪HC2m(T) 6` ¬ψ. Then by the deduction the-
orem T 6` ¬(α0 ∧ · · · ∧ α2m−1 ∧ ψ) and by the construction of the theory
HC(T): α2m = ψ and therefore ψ ∈ HC(T). �

Now we show that HC(T) is indeed a completion i.e. not only T ⊆ HC(T)
but also HC(T) is complete in σ′.

Lemma 4.2.5 HC(T) is complete in σ′.

Proof: Let ψ be a σ′–sentence. Then ψ = ψm for some m ∈ ω. If
T 6` ¬(α0∧· · ·∧α2m−1∧ψm), then α2m = ψ and ψ ∈ HC2m+1(T) ⊆ HC(T).
Otherwise α2m = ¬ψ and ¬ψ ∈ HC2m+1(T) ⊆ HC(T).

Therefore for every σ′–sentence ψ, either ψ or its negation is in HC(T).
By the definition this means that HC(T) is complete in σ′. �

The following lemma shows that the Henkin’s completion is also consis-
tent.

Lemma 4.2.6 HC(T) is consistent.

Proof: We show by induction that for each n ∈ ω theory HCn(T) is
consistent. In fact we prove that for each n ∈ ω theory T ∪ HCn(T) is
consistent. For the base step of induction let n = 0. Since T ∪HC0(T) is just
T , T ∪HC0(T) is consistent by the assumption.

Now for the inductive step suppose that T ∪HCn(T) is consistent. There
are two cases – n being even or odd.

Suppose n = 2k for some k ∈ ω.
If T 6` ¬(α0 ∧ · · · ∧ αn−1 ∧ ψk) then αn = ψk and by the deduction

theorem T ∪ HCn(T) 6` ¬αn since ¬(α0 ∧ · · · ∧ αn−1 ∧ αn) is equivalent
to (α0 ∧ · · · ∧ αn−1) ⇒ ¬αn. By the induction hypothesis T ∪ HCn(T) is
consistent, thus T ∪HCn(T) ∪ {αn} = T ∪HCn+1(T) is also consistent.

Suppose now that T ` ¬(α0 ∧ · · · ∧ αn−1 ∧ ψk) and αn = ¬ψk. Then
T ∪ HCn(T) ` αn and by the induction hypothesis T ∪ HCn(T) ∪ {αn} is
consistent. This ends the case of n being even.

Now suppose n = 2k+1 for some k ∈ ω. Then αn = ∃v0 ψk(v0)⇒ ψk(dj)
for some j such that dj does not occur in α0, . . . , αn−1, ψk. Thus by Lemma
4.2.2 T ∪HCn+1(T) is consistent.

80

Since every finite subset of HC(T) is contained in some consistent theory
T ∪HCn(T), HC(T) is also consistent. �

We therefore know that the Henkin’s completion does not spoil the con-
sistency of a given theory. We now show that the Henkin’s completion has
the witness property.

Lemma 4.2.7 HC(T) has witness property for σ′ sentences in D.

Proof: Fix a σ′–formula ϕ(vi). Then there are k, l ∈ ω such that ϕ = ϕk
and ∃v0 ϕk(v0) ⇒ ϕk(dl) ∈ HC2k+2(T). By Lemma 4.2.5 theory HC(T) is
complete. Since ∃vi ϕ(vi) is equivalent to ∃v0 ϕ(v0), then ∃vi ϕ(vi)⇒ ϕ(dl) ∈
HC(T). Thus dl ∈ D is a witness for ϕ(vi). �

We know therefore that the Henkin’s completion of T is CCW(σ′, D).
We need now to focus on the complexity of HC(T) as we want to use the
Lemma 4.2.1 to obtain a concrete σ–model of T . We also need to restrict
the Henkin’s completion’s HC(T) complexity in order to guarantee that it is
not too complicated to apply Lemma 4.2.1 to it. Further we show that it is
enough to assume that Cn(T) is concrete.

Now let us additionally suppose that Cn(T) is concrete.
First, we show an algorithm with recursively enumerable oracle which,

given n ∈ ω as an input, computes the Gödel number of the n–th member
of sequence α0, α1, . . . i.e. the n–th sentence in the construction of HC(T).

Lemma 4.2.8 The map n 7→ pαnq is recursive in Cn(T), therefore con-
crete.

Proof: The algorithm is using two data structures: A and B. A is a (dy-
namic) array which is holding already computed sentences from the sequence
α0, α1, For i ∈ ω, by A[i] we mean the i–th sentence in the sequence A
and A[i] ← ψ means that the i–th member of the array A becomes ψ. The
structure B is a set of indices (i.e. natural numbers), which is holding indices
of all constants occurring in already computed sentences αi. The set B has
a method insert which takes a finite set of natural numbers as an argument
and adds all its elements to B.

The general algorithm is presented below. It proceeds exactly as the
definition specifies.

81

Algorithm 8 Algorithm enumerating the Henkin’s completion of T
Input: n ∈ ω
Output: pαnq
A← Array()
B ← Set()
i← 0
while i 6 n do
if i > 0 then
B.insert(Consts(A[i− 1]))

end if
k ← bi/2c
if 2|i then
if T ` ¬(A[0] ∧ · · · ∧A[k − 1] ∧ ψk) then
A[i]← ¬ψk

else
A[i]← ψk

end if
else
j ← 0
while true do
if j 6∈ B and j 6∈ Consts(ϕk) then
break

end if
j ← j + 1

end while
A[i]← ∃v0 ϕk(v0)⇒ ϕk(dj)

end if
return pA[n]q

end while

Algorithm 8 uses Cn(T) as an oracle for computing T ` ψ. Therefore the
map n 7→ pαnq is recursive in Cn(T) – thus concrete. �

It now remains to show that HC(T) is also concrete. This result is due
to the following lemma.

Lemma 4.2.9 Theory HC(T) is recursive in Cn(T).

Proof: Let ψ be a σ′–sentence. To decide whether ψ is in HC(T) it is
sufficient to check if ψ is αn for some n ∈ ω. Since HC(T) is complete in σ′

and consistent, we only need to generate the sequence (αn)n∈ω until αk = ψ
or αk = ¬ψ for some k. The algorithm deciding HC(T) is defined as follows:

82

Algorithm 9 Algorithm deciding the Henkin’s completion of T .
Input: pψq
Output: truth value of ψ ∈ HC(T)
i← 0
while pαiq 6= pψq and pαiq 6= p¬ψq do
i← i+ 1

end while
if pαiq = pψq then
return true

else
return false

end if

The algorithm halts for every ψ since HC(T) is complete in σ. It uses
Algorithm 8 to compute pαiq from i. Thus HC(T) is recursive in Cn(T) –
thus concrete. �

We are finally ready to make use of the lemmata proved above to obtain the
Concrete Completeness Theorem.

Theorem 4.2.10 (Concrete Completeness Theorem) Let σ be a recur-
sive concrete vocabulary. Let T be a consistent theory in σ, such that Cn(T)
is concrete. Let R be an infinite recursive set such that D = {cr : r ∈ R} is
a recursive set of new constants. Then there is a concrete σ–model A such
that A |= T . Moreover |A| ⊆ R and A is recursive in Cn(T).

Proof: Let σ, R, D and T be as in the assumptions of the theorem. Let
C be the set of constants from σ. Let σ′ = σ ∪D.

By Lemma 4.2.9 Henkin’s completion HC(T) of theory T is recursive in
Cn(T) and by Lemmata 4.2.5, 4.2.6 and 4.2.7 it is CCW(σ′, D). By Lemma
4.2.1 applied to HC(T) we get a recursive in Cn(T) concrete σ′–model A′
such that A′ |= HC(T) and |A′| ⊆ R. Therefore by Lemma 4.2.4 A′ |= T .
The reduction A to σ of A′ is a concrete model of T which is recursive in
Cn(T). �

Corollary 4.2.11 If T is a consistent, recursively axiomatisable theory, then
T has a concrete model.

By examining the proof of the Concrete Completeness Theorem we can
see that, for a given consistent theory, it is sufficient to construct its maximal
consistent extension using easy enough steps during the construction, to
get its concrete model. If each step is recursive with recursively enumerable
oracle, then the entire construction is so and it leads to obtaining a concrete
model.

83

Theorem 4.2.10 shows that wide range of natural theories have concrete
models. Thus for recursively enumerable and low theories there are concrete
models. However, the resulting concrete model may be ∆0

2–hard. Such a
model turns out to be too hard to use in some interesting cases. Suppose we
have a concrete model A and we wish to find a concrete model B with an
elementary embedding f : A → B. The classical approach is to take a new
constant c and consider the theory T = ElDiag(A) ∪ {c 6= ca : a ∈ |A|} and
the Henkin’s completion of T . But if A is ∆0

2–hard, then Cn(T) may not
be concrete and HC(T) may even be ∆0

3–hard – too complicated to have
concrete models. This shows that the completeness in the concrete context
is not as universal as in the axiomatic one. There exist consistent concrete
theories with no concrete models. This is shown more clearly in Section 4.2.5
where we show that syntactic version of the Robinson’s joint consistency
theorem holds in the concrete models context, while the semantic version
fails.

If we want to perform certain operations on concrete models, we need
them to be easy enough to apply the Henkin’s completion to their elementary
diagrams. But the Henkin’s completion fails to provide us with such concrete
models. Thus, we need to improve the construction. The improvement can
be done with the help of the Low Basis Theorem. The Low Basis Theorem
can be applied to any low infinite tree, so we need to transfer Henkin’s
construction to such trees.

Let σ be a recursive concrete vocabulary and let C be the set of constants
from σ. Let R be an infinite recursive set such that D = {cr : r ∈ R} is
a recursive set of new constants with effective presentation d0, d1, Let
σ′ = σ ∪ D. In order to mimic the Henkin’s construction, we are going to
label the full binary tree with theories. Recall that ψ0, ψ1, . . . is an effective
presentation of σ′–sentences and ϕ0, ϕ1, . . . is an effective presentation of
σ–formulae with only one free variable v0.

Let T be a theory in σ. We define Thσ
′,D
T (ρ) inductively on ρ ∈ 2<ω as

follows:

1. If ρ = ε, then Thσ
′,D
T (ρ) = T ,

2. If ρ = τ0 and lh(ρ) = 2i+ 1, then Thσ
′,D
T (ρ) = Thσ

′,D
T (τ) ∪ {ψi},

3. If ρ = τ1 and lh(ρ) = 2i+ 1, then Thσ
′,D
T (ρ) = Thσ

′,D
T (τ) ∪ {¬ψi},

4. If (ρ = τ0 or ρ = τ1) and lh(ρ) = 2i+2, then Thσ
′,D
T (ρ) = Thσ

′,D
T (τ)∪

{∃v0 ϕi(v0) ⇒ ϕi(dk)}, where k is the least index such that dk does
not occur neither in Thσ

′,D
T (τ) nor ϕi.

Note that for every ρ, theory Thσ
′,D
T (ρ) is recursive in T , since sequences

(ψi)i∈ω and (ϕi)i∈ω are recursive. Since we work with fixed vocabularies σ

84

and σ′ and fixed set of new constants D in further considerations we omit
superscripts in Thσ

′,D
T (ρ) and write ThT (ρ) instead.

We define the theory ThT,f =
⋃
i∈ω ThT (f�i) for each set f ∈ 2ω. Ob-

viously, not every theory ThT,f is interesting. One of them is exactly the
one obtained from the Henkin’s construction applied to T , but there is also
another one which will open our way to perform various model–theoretic
constructions.

Recall that for a tree T , by [T] we mean the class of infinite branches
trough T . We are mainly interested in consistent theories ThT,f . Our target
is to define a subtree CON(ThT) of the full tree ThT such that for every
f ∈ 2ω it holds that f ∈ [CON(ThT)] if and only if ThT,f is consistent. This
should be done without increasing the computational complexity of the tree.

Let us note that the relation of provability in the theory T is recursively
enumerable in T since it can be defined in the following way: T ` ϕ ≡df
∃kProvT (pϕq, k), where ProvT represents a relation which is recursive in T .
Using provability in the theory T we define consistency of T in the standard
way by putting ConT ≡df T 6`⊥. However we can not apply the consistency
requirement, as it is, directly to every node without increasing the complexity
of the tree. Therefore, we introduce the notion of n–provability as follows
T `n ϕ ≡df ∃k 6 nProvT (pϕq, k) – observe that for every n ∈ ω, n–
provability is recursive in T . Note that a sentence ψ is provable in T if
and only if there is n such that ψ is n–provable in T . Now we can define
a subtree CON(ThT) =df {τ ∈ 2<ω : ThT (τ) 6`lh(τ)⊥}. Note that for any
theory T if k < n, then T 6`n⊥ implies T 6`k⊥, hence CON(ThT) is indeed
closed downwards therefore it is a tree.

Now let us establish certain facts about CON(ThT).

Lemma 4.2.12 The tree CON(ThT) is infinite i.e. [CON(ThT)] is not empty.

Proof: Let f ∈ 2ω be such that ThT,f = HC(T). Then f ∈ [CON(ThT)].
�

Recall that f ∈ [CON(ThT)] if and only if for every i ∈ ω it holds that
ThT (f�i) 6`i⊥. The next lemma shows that theories for infinite branches of
CON(ThT) are all consistent.

Lemma 4.2.13 For every f ∈ 2ω it holds that f ∈ [CON(ThT)] if and only
if ThT,f is consistent.

Proof: Fix f ∈ 2ω.
Suppose that f ∈ [CON(ThT)] and for the sake of contradiction that

ThT,f is inconsistent. Then there are i, j ∈ ω such that ThT (f�j) `i⊥.
Therefore for k = max i, j it follows that ThT (f�k) `k⊥, and hence it is
not the case that ∀i ∈ ωThT (f�i) 6`i⊥, thus f 6∈ [CON(ThT)] which is a
contradiction.

85

Suppose now that ThT,f is consistent. Then there is no i ∈ ω such that
ThT (f�i) `i⊥ which means that for all i ∈ ω it holds that f�i ∈ CON(ThT)
which means f ∈ [CON(ThT)] by the definition. �

The following lemma shows that theories for the infinite branches of
CON(ThT) are also complete in σ′.

Lemma 4.2.14 For every f ∈ 2ω if f ∈ [CON(ThT)], then ThT,f is com-
plete in σ′.

Proof: Let T be as in the assumptions of the lemma. Let f ∈ 2ω be
such that f ∈ [CON(ThT)].

Let ψ be an arbitrary σ′–sentence. Then ψ = ψk for some k ∈ ω. If
f(2k + 1) = 0, then ψ ∈ ThT (f�k) ⊆ ThT,f . Otherwise f(2k + 1) = 1 and
then ¬ψ ∈ ThT (f�k) ⊆ ThT,f . �

The last lemma to be proved before the key theorem of this section states
that theories of infinite branches of [CON(ThT)] have witness property.

Lemma 4.2.15 For every f ∈ 2ω if f ∈ [CON(ThT)], then ThT,f have
witnesses for σ′ in D.

Proof: Let f ∈ 2ω be such that f ∈ [CON(ThT)]. We show that ThT,f
has the witness property for σ′ in D.

Fix a σ′–formula ϕ(vi). Then there are k, l ∈ ω such that ϕ = ϕk and
∃v0 ϕk(v0) ⇒ ϕk(dl) ∈ ThT (f�2k + 2). By Lemma 4.2.14 theory ThT,f is
complete. Since ∃vi ϕ(vi) is equivalent to ∃v0 ϕ(v0), then ∃vi ϕ(vi)⇒ ϕ(dl) ∈
ThT,f . Thus, dl is a witness for ϕ(vi). �

We are ready to state and prove one of the most important theorems of
this chapter.

Theorem 4.2.16 (Low Completeness Theorem) Let σ be a recursive
concrete vocabulary and let T be a consistent low theory. Let R be a re-
cursive set such that D = {cr : r ∈ R} is a recursive set of new constants –
the witnesses. Then there is a low concrete σ–model A such that |A| ⊆ R,
A |= T and A⊕ T is low.

Proof: Let σ, R, D and T be a as in the assumptions of the theorem.
Since T is low, the tree CON(Thσ

′,D
T) is recursive in T , thus low. By

Lemma 4.2.12 the tree CON(Thσ
′,D
T) is infinite. Then by the Low Basis The-

orem (2.3.13) there is a low set f ∈ [CON(Thσ
′,D
T)] such that f ⊕ T is low.

Since f ∈ [CON(Thσ
′,D
T)], by Lemmata 4.2.13, 4.2.14 and 4.2.15, it holds

that Thσ
′,D
T,f is low and a CCW(σ′, D). Therefore by Lemma 4.2.1 there is

86

a concrete σ′–model A′ such that |A| ⊆ R, A′ |= Thσ
′,D
T,f and A′ is recur-

sive in f . Therefore A′ |= T . Let A be a reduction of A′ to σ. Then A is
a recursive in f concrete σ–model such thatA |= T . MoreoverA⊕T is low. �

Note that the proof of the Low Basis Theorem is effective (see Theorem
2.3.14). Consider the function (pT ∗q, pDq) 7→ pAq such that given the al-
gorithm deciding the halting problem of a consistent theory T and the set
of witnesses D it computes by means of the Low Completeness Theorem
(4.2.16) the Gödel number pAq of a low concrete model such that A |= T
and such that A⊕T is low. Then (pT ∗q, pDq) 7→ pAq is concrete. Moreover,
by Theorem 2.3.14 the function (pT ∗q, pDq) 7→ pA∗q, outputting the code of
an algorithm which decides in K the halting problem for A, is also concrete.

As usual, by completeness we obtain compactness. The following two
forms of those holds.

Theorem 4.2.17 (Concrete Compactness Theorem) Let T be a the-
ory in a recursive concrete vocabulary σ such that Cn(T) is concrete and
every finite subset T0 of T is consistent. Then T has a concrete model.

Theorem 4.2.18 (Low Compactness Theorem) Let T be a low theory
in a recursive concrete vocabulary σ such that every finite subset T0 of T is
consistent. Then T has a low concrete model.

4.2.2 Omitting Types

One of the very important theorems of model theory is the omitting types
theorem. It characterises theories, models of which are not consistent with
given sets of formulae. With the help of the concrete version of the omitting
types theorem we show that for every low concrete model A of Zermelo–
Fraenkel set theory there exists a concrete model B and concrete elementary
end embedding f : A → B.

We begin with some basic definitions.

Definition 4.2.19 Let Σ = Σ(x1, . . . , xm) be a set of formulae with all
free variables contained in {x1, . . . , xm}, let A be a concrete model and let
a1, . . . , am ∈ |A|.

We say that elements a1, . . . , am realise Σ in A if for every σ ∈ Σ, A |=
σ[a1, . . . , am].

We say that A realises Σ if there are elements a1, . . . , am which realise Σ
in A.

If A does not realise Σ we say that A omits Σ.

An interesting question is whether a theory T has a concrete model which
realises or omits a given set of formulae Σ. We have the following character-
isation of theories realising sets of formulae.

87

Theorem 4.2.20 (Realising Types Theorem) Let T be a theory and let
Σ(x1, . . . , xm) be a set of formulae. Assume that T ⊕Σ is low. The following
are equivalent:

1. T has a concrete model realising Σ,

2. Every finite subset of Σ0 of Σ is realised in some concrete model of T

3. T ∪ {∃x1, . . . , xm σ1 ∧ . . . ∧ σn : n ∈ ω, σ1, . . . , σn ∈ Σ} is consistent.

Proof: The implication from 1 to 2 is obvious.
For the implication from 2 to 3 suppose that every finite subset Σ0 of Σ

is realised in some concrete model of T . Suppose for the sake of contradiction
that T ∪{∃x1, . . . , xm σ1∧. . .∧σn : n ∈ ω, σ1, . . . , σn ∈ Σ} inconsistent. Then
there exists a finite set S0 ⊆ {∃x1, . . . , xm σ1∧. . .∧σn : n ∈ ω, σ1, . . . , σn ∈ Σ}
such that T ` ¬

∧
S0. Let Σ0 be the set of all σ ∈ Σ occurring in S0. The set

Σ0 is finite and it is contained in Σ, therefore by 2 there is a concrete model
A and a ∈ |A| such that A |= T and A |= Σ0[a]. Hence A |= S0, which is a
contradiction.

For the implication from 3 to 1 suppose that theory T ∪{∃x1, . . . , xm σ1∧
. . . ∧ σn : n ∈ ω, σ1, . . . , σn ∈ Σ} is consistent. Let c1, . . . , cm be new con-
stants. Consider theory S = T ∪Σ(c1, . . . , cm). If S was not consistent, then
there would be finite Σ0(c1, . . . , cm) such that T ` ¬

∧
Σ0(c1, . . . , cm). Since

constants c1, . . . , cm do not occur in T , by lemma on constants, we have T `
∀x1, . . . , xm ¬

∧
Σ0(x1, . . . , xm). But by the assumption

T ∪ {∃x1, . . . , xm
∧

Σ0(x1, . . . , xm)} is consistent, which means that T 6`
¬∃x1, . . . , xm

∧
Σ0(x1, . . . , xm) which is a contradiction. Therefore S is con-

sistent.
Since T ⊕ Σ is low, S is low and Cn(S) is concrete.

Hence by the Concrete Completeness Theorem (4.2.10) there is a concrete
model A of S. Therefore A |= T and there are a1, . . . am ∈ |A| such that
A |= Σ[a1, . . . , am]. �

In fact in the proof of the implication from 3 to 1, we could use the Low
Completeness Theorem to S to obtain a low concrete model A realising Σ.

Definition 4.2.21 Let Σ = Σ(x1, . . . , xm) be a concrete set of formulae, let
ϕ ∈ Σ and let T be such a theory that Cn(T) is concrete.

We say that ϕ is consistent with T if there is a concrete model of T
realising {ϕ}.

We say that Σ is consistent with T if there is a concrete model of T
realising Σ.

88

Definition 4.2.22 Let T be such a theory that Cn(T) is concrete and let
Σ = Σ(x1, . . . , xm) be a concrete set of formulae.

We say that T locally realises Σ if there exists a formula ϕ = ϕ(x1, . . . , xm)
such that ϕ is consistent with T and for all σ ∈ Σ it holds that T `
∀x1, . . . , xm (ϕ⇒ σ).

We say that T locally omits Σ if T does not locally realise Σ.

Note that verifying whether even a recursive theory locally omits a recur-
sive set of formulae is computationally hard – in general it is expressed by a
Π3 sentence – standard algorithms to decide the truth value for this class of
sentences are too complex for the concrete models framework. On the other
hand, as we show below, if a theory T is such that Cn(T) is concrete and T
locally omits a set Σ(x1, . . . , xm), then there is a concrete model of T which
omits Σ. We may therefore restrict our interest to pairs of theories and sets
of formulae for which checking whether locally omitting holds is ∆0

2 or treat
it as an external condition for the existence of a concrete model of a theory
omitting a given set of formulae.

We want to prove a version of the Omitting Types Theorem for the con-
crete models framework. One of the proofs of the standard version of the
theorem is based on a construction of a model on constants and is a gener-
alisation of the proof of the completeness theorem. We have transferred the
latter to concrete models as the Concrete Completeness Theorem (4.2.10).
The proof goes by constructing such a Henkin’s completion of a given the-
ory that satisfies the witness property, completeness and consistency of the
resulting theory. Moreover, there is another step in this Henkin’s completion
which guarantees that the resulting model omits the given set of formulae.

Obviously in the concrete models framework we cannot consider arbi-
trary theories since some of them may be computationally too hard to have
concrete models, but it is sufficient to restrict our attention to theories sat-
isfying the assumptions of the Concrete Completeness Theorem (4.2.10) i.e.
to such theories T for which Cn(T) is a concrete set.

Let σ be a recursive concrete vocabulary and let C be the set of con-
stants from σ. Let D be a recursive set of new constants with an effective
presentation d0, d1, . . . , let σ′ = σ ∪ D. Let ψ0, ψ1, . . . be an effective pre-
sentation of σ′–sentences and let ϕ0, ϕ1, . . . be an effective presentation of
σ′–formulae with only one free variable v0. Let d0, d1, . . . be an effective pre-
sentation of sequences of indices of constants from D such that for i ∈ ω,
lh(di) = m. For k ∈ ω, if dk = j1, . . . , jm, then by vk we denote vj1 , . . . , vjm
and dk = cj1 , . . . , cjm .

Definition 4.2.23 (Typification of a Sentence) Let ψ(di1 , . . . , din) be a
σ′–sentence and j1, . . . , jm ∈ ω. A typification βj1,...,jmψ is a formula obtained
by:

89

1. replacing every constant ck in ψ by a variable vk and renaming bounded
variables if necessary – denote this formula by γj1,...,jmψ ,

2. quantifying existentially every free variable occurring in γj1,...,jmψ with
indices not in {j1, . . . , jm}.

Note that FV(βj1,...,jmψ) ⊆ {vj1 , . . . , vjm}.

Lemma 4.2.24 Let T be a consistent theory and α(ci1 , . . . , cin) a sentence
consistent with T . Then α ∧ βdα is consistent with T .

Proof: Let T and α be as in the assumptions of the lemma. Then T∪{α}
is consistent. Note that by the construction of βdα it holds that α ` ∃v βdα.
Therefore T ∪ {α} ` ∃v βdα and since it is consistent, T ∪ {α} 6` ∀v ¬βdα. The
last statement is equivalent to T 6` ∀v (α ⇒ ¬βdα), thus α ∧ βdα is consistent
with T . �

Lemma 4.2.25 Let T be a consistent theory, Σ(x1, . . . , xm) be a set of for-
mulae, and α be a sentence consistent with T . If T locally omits Σ, then there
exists σ ∈ Σ such that T 6` ∀v ((α ∧ βdα)⇒ σ(v)).

Proof: Let T , Σ and α be as in the assumptions of the lemma. Then
by Lemma 4.2.24 α ∧ βdα is consistent with T and by the fact that T locally
omits Σ, there exists σ ∈ Σ such that T 6` ∀v ((α ∧ βdα)⇒ σ(v)). �

Definition 4.2.26 (Type Omitting Henkin’s Completion)
Let Σ = Σ(x1, . . . , xm) be a concrete set and let T be a consistent theory
locally omitting Σ such that Cn(T) is concrete.

Define a sequence αn of formulae as follows:

• For n = 3k

αn =

{
ψk if T 6` ¬(α0 ∧ · · · ∧ αn−1 ∧ ψk)
¬ψk else

• For n = 3k + 1
αn = ∃v0 ϕk(v0)⇒ ϕk(di),

for i being the least natural number such that di does not occur in
α0, α1, . . . , αn−1, ϕk.

• For n = 3k + 2 let βdkα0∧···∧αn−1
be a typification of α0 ∧ · · · ∧ αn−1.

αn = ¬σ(dk),

where σ ∈ Σ is a formula with the least Gödel number such that T 6`
∀vk ((α0 ∧ . . . ∧ αn−1 ∧ βdkα0∧...∧αn−1

) ⇒ σ(vk)). Existence of such σ is
guaranteed by Lemma 4.2.25.

90

We call the set TOHC(T) = {αn : n ∈ ω} the type omitting Henkin’s
completion of T (with respect to constants D). For n ∈ ω we call the set
TOHCn(T) = {αi : i < n} the n–th cut of type omitting Henkin’s completion
of T (with respect to constants D).

From now on, we work with a fixed concrete set of formulae
Σ = Σ(x1, . . . , xm) and a consistent theory T in σ such that Cn(T) is con-
crete and which locally omits Σ. Our aim is to construct a concrete model
of T by means of Lemma 4.2.1. We therefore need a concrete CCW(σ′, D)
containing T and such that the concrete model obtained by means of Lemma
4.2.1 omits Σ. Some part of the work has been already done in the section
on completeness theorems. Let us proceed to lemmata about TOHC(T).

Lemma 4.2.27 T ⊆ TOHC(T).

Lemma 4.2.28 TOHC(T) is complete in σ′.

The two lemmata above state that TOHC(T) is a completion of T and
their proofs are analogous to the proofs of Lemmata 4.2.4 and 4.2.5.

The proof of consistency of the type omitting Henkin’s completion is
harder than the regular Henkin’s completion.

Lemma 4.2.29 TOHC(T) is consistent.

Proof: The proof structure is analogous to the proof of Lemma 4.2.6 –
by induction on n we show that for each n ∈ ω theory T ∪ TOHCn(T) is
consistent.

The base step for n = 0 is obvious since T is consistent.
For the induction hypothesis suppose that T ∪TOHCn(T) is consistent.

There are three cases: n = 3k, n = 3k + 1 and n = 3k + 2 but proofs for
n = 3k and n = 3k + 1 are analogous to proofs of n = 2k and n = 2k + 1
cases in the proof of Lemma 4.2.13.

It remains to show the lemma in the case of n = 3k + 2, when αn =
¬σ(dk), where σ ∈ Σ is the least formula in sense of Gödel number such
that T 6` ∀vk ((α0 ∧ . . . ∧ αn−1 ∧ βdkα0∧...∧αn−1

) ⇒ σ(vk)). Suppose for a
contradiction that T ` (α0 ∧ . . . ∧ αn−1) ⇒ σ(dk). Then by the lemma on
constants T ` ∀x, y γdkα0∧...∧αn−1

(x, y)⇒ σ(y). But on the other hand it holds

that T∪{α0∧. . .∧αn−1} 6` ∀vk (∃x γdkα0∧...∧αn−1
)⇒ σ(vk), which is equivalent

to T ∪{α0∧ . . .∧αn−1} 6` ∀vk ∀x (γdkα0∧...∧αn−1
⇒ σ(vk)). This contradicts the

assumption that σ(dk) is inconsistent with T ∪ {α0 ∧ . . . ∧ αn−1}. Therefore
TOHCn+1(T) = TOHCn(T) ∪ {¬σ(dk)} is consistent.

Since every finite subset of TOHC(T) is contained in some consistent
theory T ∪ TOHCn(T), TOHC(T) is also consistent. �

91

To prove that TOHC(T) is CCW(σ′, D) it remains to show that it has
witness property. This is shown by the following lemma.

Lemma 4.2.30 TOHC(T) has witness property for σ′–sentences in D.

This is guaranteed by the step 3k + 1 of the construction of TOHC(T).

We proceed with two lemmata showing that the type omitting Henkin’s
completion of T is a concrete theory. This is shown by presenting algorithms
with recursively enumerable oracle one of which computes the map n 7→
pαnq and the other decides TOHC(T). The algorithms are similar to ones
presented in the proofs of Lemmata 4.2.8 and 4.2.9 but they have to deal
with additional case in the definition of sequence (αn)n∈ω.

Lemma 4.2.31 The map n 7→ pαnq is recursive in Cn(T) ⊕ Σ, therefore
concrete.

Proof: The algorithm uses the same data structures as Algorithm 8 pre-
sented in the proof of Lemma 4.2.8. The cases of n = 3k and n = 3k + 1
are dealt with in an analogous way as the cases n = 2k and n = 2k + 1 in
the above–mentioned proof, thus it remains to show how to compute pαnq
in the case of n = 3k + 2.

The general algorithm is presented below. Let σ0, σ1, . . . be an effective
in Σ presentation of Σ.

92

Algorithm 10 Algorithm enumerating TOHC(T)

Input: n ∈ ω
Output: pαnq
A← Array()
B ← Set()
i← 0
while i 6 n do
if i > 0 then
B.insert(Consts(A[i− 1]))

end if
k ← bi/3c
if 3|i then
if T ` ¬(A[0] ∧ · · · ∧A[k − 1] ∧ ψk) then
A[i]← ¬ψk

else
A[i]← ψk

end if
end if
if 3|i+ 2 then
j ← 0
while true do
if j 6∈ B and j 6∈ Consts(ϕk) then
break

end if
j ← j + 1

end while
A[i]← ∃v0 ϕk(v0)⇒ ϕk(dj)

end if
if 3|i+ 1 then
j ← 0

while T ` ∀vk ((A[0] ∧ . . . ∧A[n− 1] ∧ βdkA[0]∧...∧A[i−1])⇒ σj(vk)) do
j ← j + 1

end while
A[i]← ¬σj(dk)

end if
return pA[n]q

end while

Note that computing βdkA[0]∧...∧A[i−1] in the case of n = 3k + 2 requires
only syntactic transformations i.e. is recursive. Similarly, by the facts that
T locally omits Σ and T is consistent with α0 ∧ . . .∧αn−1 ∧βdkA[0]∧...∧A[i−1] it
holds that there exists σ ∈ Σ such that ¬σ is consistent with T ∪TOHCn(T).

93

Therefore, the while–loop in this case always ends and thus the algorithm
always halts.

Since T ` ψ is recursive with recursively enumerable oracle as Cn(T) is
concrete, Algorithm 10 is recursive with recursively enumerable oracle that
is Cn(T)⊕ Σ and therefore the map n 7→ pαnq is concrete. �

Lemma 4.2.32 TOHC(T) is recursive in Cn(T)⊕ Σ, therefore concrete.

To decide TOHC(T) Algorithm 9 presented in the proof of Lemma 4.2.9
is sufficient.

Theorem 4.2.33 (Concrete Omitting Types Theorem) Let σ be a re-
cursive concrete vocabulary. Let T be a consistent theory in σ such that Cn(T)
is concrete and let Σ(x1, . . . , xm) be a concrete set of formulae. Let R be a
recursive set such that D = {cr : r ∈ R} be a recursive set of new constants
and let σ′ = σ ∪D. If T locally omits Σ, then there is a concrete σ′–model
A |= T omitting Σ. Moreover A is recursive in Cn(T)⊕ Σ and |A| ⊆ R.

Proof: Let σ, D, σ′, T and Σ be as in the assumptions of the theorem.
Then, by Lemma 4.2.32 type omitting Henkin’s completion TOHC(T) of

theory T is recursive in Cn(T)⊕Σ and by Lemmata 4.2.28, 4.2.29 and 4.2.30
it is CCW(σ′, D). By Lemma 4.2.1 applied to TOHC(T) we get a recursive
in Cn(T)⊕ Σ concrete σ′–model A such that A |= TOHC(T) and |A| ⊆ R.
Therefore by Lemma 4.2.27 A′ |= T .

It remains to show that A omits Σ i.e. for every a1, . . . , am ∈ |A| there ex-
ists τ ∈ Σ such thatA |= ¬τ [a1, . . . , am]. Fix a tuple a1, . . . , am ∈ |A|. Then a
sequence da1 , . . . , dam occurs in the presentation d0, d1, . . . of all m–tuples of
constants from D – let l be the index of da1 , . . . , dam in this sequence. Then
α3l+2 = ¬τ(da1 , . . . , dam) for some τ ∈ Σ. Therefore ¬τ(da1 , . . . , dam) ∈
TOHC(T) and A |= ¬τ [a1, . . . , am]. Thus a1, . . . , am does not realise Σ in A
and since the choice of a1, . . . , am ∈ |A| was arbitrary – A omits Σ. �

The Concrete Omitting Types Theorem can be strengthened to the ver-
sion with countable number of types. This is shown by the following theorem
which helps us prove the main theorem of this section stating that for every
low concrete model A of ZF there exists a concrete model B and a concrete
elementary end embedding f : (A, a)a∈A → B.

Theorem 4.2.34 (Concrete Countable Omitting Types Theorem)
Let σ be a recursive concrete vocabulary and let T be a consistent σ–theory
such that Cn(T) is concrete. For each i ∈ ω let the set of formulae
Σi(x1, . . . , xmi) be concrete. Let the map i 7→ pΣiq be concrete. For i ∈ ω,
let Ri be a recursive set such that Di = {cr : r ∈ Ri} is a recursive set of new
constants such that

⋃
i∈ωDi is recursive. Let σ′ = σ ∪D. If T locally omits

94

Σi for each i ∈ ω, then there is a concrete σ′–model A |= T omitting Σi for
each i ∈ ω.

Proof: The proof is similar to the proof of the Concrete Omitting Types
Theorem (4.2.33). Suppose the assumptions of the theorem hold.

Let di0, d
i
1, . . . be an effective presentation of mi–tupes of constants from

D. We change the definition of αn in the case of n = 3k + 2 – we put
αn =

∧
i=0,...,k ¬σi(d

k
k−i), where σi ∈ Σi is a formula with the least Gödel

number such that for i = 0, . . . , k it holds that

T 6` ∀vk ((α0 ∧ . . . ∧ αn−1 ∧
∧
j<i

¬σj(djk−j) ∧ β
d
j
k−j
α0∧...∧αn−1

)⇒ σi(vik−i)).

Existence of such σi is guaranteed by Lemma 4.2.25. Thus, TOHC′(T), de-
fined in such a way has the property that for every i ∈ ω and every mi–tuple
of constants dij there exists σi ∈ Σi such that ¬σi(dij) ∈ TOHC(T). By the
argument analogous to one from proof of Theorem 4.2.33 we obtain a con-
crete σ′–model A |= T and A omits Σi for all i ∈ ω. �

Now, using the Concrete Omitting Types Theorem we will show that for
every low concrete model A of Zermelo–Fraenkel set theory there exists a
concrete model B and a concrete elementary end embedding f : A → B. First
we define a concrete end embedding.

Definition 4.2.35 Let A, B be concrete models of Zermelo–Fraenkel set
theory. An embedding f : A → B is a concrete end embedding, in symbols
A ↪→end B if f is a concrete embedding and for every a ∈ |A|, b ∈ |B| if
B |= b ∈ f(a), then b = f(d), for some d ∈ |A|.

A concrete end embedding is proper if it is not onto.

Theorem 4.2.36 Let A be a low concrete model of Zermelo–Fraenkel set
theory. Then there is a concrete model B, and a proper elementary end em-
bedding f from A to B.

Proof: Fix a low concrete σ–model A |= ZF . Let CA = {ca : a ∈ |A|}
be new constants from ElDiag(A) and let c be a constant such that c 6∈ CA
and c 6∈ σ. Let σ′ = σ ∪CA ∪ {c}. Let T = ElDiag(A)∪ {c 6∈ ca : a ∈ |A|} be
a theory in σ′.

First we show that T is consistent. Suppose for the sake of contradiction
that T is not consistent. Then there is a finite sequence a1, . . . , an ∈ |A| such
that ElDiag(A) ` ¬

∧
i=1,...,n c 6∈ cai . By the lemma on constants, since c does

not occur in ElDiag(A), the following holds ElDiag(A) ` ∀x¬
∧
i=1,...,n x 6∈

cai . The last statement implies that ElDiag(A) ` ∀x
∨
i=1,...,n x ∈ cai . This

means that every set (as an element of the universe) in (A, a)a∈|A| is con-
tained in

⋃
i=1,...,n cai . We have ZF ` ∀xx 6∈ x, therefore also ElDiag(A) `

95

∀xx 6∈ x. But we also have ElDiag(A) `
⋃
i=1,...,n cai ∈

⋃
i=1,...,n cai which is

a contradiction, since ElDiag(A) is consistent.
We claim that a formula ϕ(x, c) is consistent with T if and only if

ElDiag(A) ` ∀y ∃x ∃z (z 6∈ y ∧ ϕ(x, z)).
For the right–to–left implication suppose that

ElDiag(A) ` ∀y ∃x ∃z (z 6∈ y ∧ ϕ(x, z)).

Suppose for the sake of contradiction that ϕ(x, c) is not consistent with
T . By arguments similar to those used in the proof of consistency of T , there
is a finite sequence a1, . . . , an ∈ |A| such that it holds that

ElDiag(A) ` ∀x ∀z (z ∈
⋃

i=1,...,n

cai ∨ ¬ϕ(x, z)).

Therefore ElDiag(A) ` ∃y ∀x ∀z (z ∈ y∨¬ϕ(x, z)) by the completeness of
ElDiag(A). This implies that ElDiag(A) ` ¬∀y ∃x ∃z (z 6∈ y ∧ ϕ(x, z)). This
contradicts the consistency of ElDiag(A).

For the converse suppose that

ElDiag(A) 6` ∀y ∃x ∃z (z 6∈ y ∧ ϕ(x, z)).

Then, by the completeness of ElDiag(A) it holds that

ElDiag(A) ` ∃y ∀x ∀z (ϕ(x, z)⇒ z ∈ y).

Therefore there is a ∈ |A| such that

ElDiag(A) ` ∀x ∀z (ϕ(x, z)⇒ z ∈ ca).

This entails that ElDiag(A) ` ∀x (ϕ(x, c)⇒ c ∈ ca). On the other hand,
we have T ` c 6∈ ca, thus T ` ∀x¬ϕ(x, c) and therefore ϕ(x, c) is inconsistent
with T . This ends the proof of the claim.

For a ∈ |A| we define:

Σa(x) = {x ∈ ca} ∪ {x 6= cb : ElDiag(A) ` cb ∈ ca}.

We show that for every a ∈ |A| the theory T locally omits Σa(x). Fix a ∈
|A|. Let ϕ(x, c) be an arbitrary formula consistent with T . If ϕ(x, c)∧x 6∈ ca
is consistent with T then we are done. Suppose then that ϕ(x, c) ∧ x 6∈ ca
is not consistent with T . Then ϕ(x, c) ∧ x ∈ ca is consistent with T i.e.
ElDiag(A) ` ∀y ∃x ∃z (z 6∈ y ∧ ϕ(x, z) ∧ x ∈ ca).

We want to show that ElDiag(A) ` ∃x ∀y ∃z (z 6∈ y ∧ ϕ(x, z) ∧ x ∈ ca).
In order to do so, we show that

ZF ` ¬∃x ∀y ∃z (z 6∈ y∧ϕ(x, z)∧x ∈ ca)⇒ ¬∀y ∃x ∃z (z 6∈ y∧ϕ(x, z)∧x ∈ ca).

96

We perform the argument in ZF . Fix some set A. Suppose that

∀x ∃y ∀z (z ∈ y ∨ ¬ϕ(x, z) ∨ x 6∈ A).

This is equivalent to

∀x ∈ A∃y ∀z (ϕ(x, z)⇒ z ∈ y).

For x ∈ A let

Yx =
⋂
{y : ∀z (ϕ(x, z)⇒ z ∈ y)},

which is a set since Yx is not empty by the assumption.
Now let Y =

⋃
x∈A Yx. We show that for every x ∈ A and z such that ϕ(x, z),

z ∈ Y hold. Fix x ∈ A and z such that ϕ(x, z) holds. Let y be such that
∀w (ϕ(x,w)⇒ w ∈ y). Then z ∈ y and therefore also z ∈ Yx ⊆ Y . Therefore,

∃y ∀z ∀x ∈ A (ϕ(x, z)⇒ z ∈ y)

which is equivalent to

∃y ∀z ∀x (z ∈ y ∨ ¬ϕ(x, z) ∨ x 6∈ A).

Therefore, the following implication holds: if ElDiag(A) ` ∀x ∃y ∀z (z ∈
y ∨ ¬ϕ(x, z) ∨ x 6∈ ca), then ElDiag(A) ` ∃y ∀z ∀x (z ∈ y ∨ ¬ϕ(x, z) ∨ x 6∈
ca). But the negation of the consequent of this implication holds. Hence,
ElDiag(A) ` ∃x ∀y ∃z (z 6∈ y ∧ ϕ(x, z) ∧ x ∈ ca).

Therefore there is b ∈ |A| such that ϕ(cb, c)∧ cb ∈ ca is consistent with T
and thus ϕ(x, c) ∧ x ∈ ca is also consistent with with T . Therefore for each
a ∈ |A| theory T locally omits Σa.

For every a ∈ |A| the set Σa(x) is recursive in A, thus low. Moreover,
there is an effective in A presentation of {pΣa(x)q : a ∈ |A|}.

Since T is a low theory, Cn(T) is concrete. The set {pΣa(x)q : a ∈ |A|}
can be enumerated concretely and for each a ∈ |A| the theory T locally
omits Σa. Therefore, by the Concrete Countable Omitting Types Theorem
(4.2.34), there exists a concrete σ′–model B′ |= T such that B′ omits Σa for
each a ∈ |A|.

Observe that by Lemma 4.1.17 there exists a concrete embedding f of
the concrete σ′–model (A, a)a∈|A| to B′, since B′ |= Diag(A). This concrete
embedding is elementary since B′ |= ElDiag(A). Since B′ |= c 6∈ ca for every
a ∈ |A|, it holds that B′ |= c 6= ca, therefore f is not onto B′.

For every a ∈ |A|, B′ omits Σa. Thus, f is an end embedding. Let a ∈ |A|
and b ∈ |B| and suppose that B′ |= b ∈ f(a). We want to find d ∈ |A| such
that b = f(d). By the construction of f , f(a) = cB

′
a . Therefore B′ |= b ∈ ca.

Since B′ omits Σa there is σa,b ∈ Σa such that B′ |= ¬σa,b[b]. By the definition

97

of Σa, σa,b is either of the form x 6∈ ca or x 6= cd for some d ∈ |A| such that
ElDiag(A) ` cd ∈ ca. The first case is impossible since B′ |= b ∈ ca. Therefore
let d ∈ |A| be such that B′ |= b = cd. This is equivalent to B′ |= b = f(d).
Therefore, f is an end embedding.

�

Let us end this section with the following example. Let T be Peano arith-
metic (and suppose that T is consistent) and let Σ = {x > n : n ∈ ω}. Both
T and Σ are recursive and the only model of T which omits Σ is necessarily
the standard model of arithmetic – N , which is obviously not a concrete
model, since the satisfaction relation in this model is not even arithmetical.
Therefore T cannot locally omit Σ as otherwise by the Concrete Omitting
Types Theorem (4.2.33) there would be a concrete model T which omits Σ.
This is a very non–constructive proof of the fact that T locally realises Σ. To
get a constructive proof of this fact one should show a formula ϕ(x) consis-
tent with T such that for all σ ∈ Σ it holds that T ` ∀x (ϕ(x) ⇒ σ(x)) i.e.
ϕ(x) forces that x is not a standard element. The existence of such ϕ(x) fol-
lows from the argument from the proof of the second Gödel’s incompleteness
theorem which states that T 6` ConT i.e. T 6` ∀x¬ProvT (x, p⊥q). There-
fore ProvT (x, p⊥q) is consistent with T , but since for every n ∈ ω we have
T 6` ProvT (pn̄q, p⊥q) it holds that T ` ∀x (ProvT (x, p⊥q) ⇒ x > n̄). This
proves that for each σ ∈ Σ it holds that T ` (ProvT (x, p⊥q)⇒ σ(x)) which
literally means that T locally realises Σ.

4.2.3 Σn Chains of Concrete Models and Applications

First, recall an interesting result from the axiomatic model theory.

Theorem 4.2.37 (Chang–Keisler) Let n > 0 and let ψ be a sentence.
The following are equivalent:

• ψ is equivalent to a Σn+1 sentence and to a Πn+1 sentence,

• ψ is equivalent to a Boolean combination of Σn sentences.

First let us show that there is a recursively enumerable (with an empty
oracle) algorithm such that given logically equivalent Σn+1 sentence ϕ and
Πn+1 sentence ψ, it browses all pairs (β, p), where β is a boolean combination
of Σn sentences and p is a purely logical proof, and halts if and only if p is the
proof of ϕ ≡ β∧ψ ≡ β. Let β0, β1, . . . be an effective presentation of boolean
combinations of Σn sentences. Let p0, p1, . . . be an effective presentation of
all purely logical proofs. The algorithm is presented below.

98

Algorithm 11 Algorithm searching for a boolean combination of Σn sen-
tences
Input: sentences ψ ∈ Σn+1, ϕ ∈ Πn+1 such that ψ ≡ ϕ
Output: θ ∈ Bool(Σn) such that θ ≡ ϕ ≡ ψ
i← 0
while true do
for j ← 0 to i do
for k ← 0 to i do
if pk is a proof of (ϕ ≡ βi ∧ ψ ≡ βi) then
return βi

end if
end for

end for
i← i+ 1

end while

The algorithm halts on every proper (ϕ ≡ ψ, ψ ∈ Σn+1 and ϕ ∈ Πn+1)
input if and only if Theorem 4.2.37 holds. Moreover using the halting problem
K as an oracle we can decide whether the algorithm halts on a given input
and if the input is proper. Therefore for every pair of equivalent sentences
ψ, ϕ such that ψ is Σn+1 and ϕ is Πn+1 we can concretely find a Boolean
combination θ of Σn sentences equivalent to both ϕ and ψ or decide that
there is no such θ.

The classical proof of Theorem 4.2.37 in the axiomatic model theory
goes through Σn chains of models. The aim of this section is to analyse the
model–theoretic construction in this proof of the theorem. We show that the
construction fails is the final step. We cannot expect the sum of a concrete
Σn chain of concrete models to be a concrete model. In fact we only need the
Πn+1 theory of such a sum to be consistent. However such Πn+1 theory is
not necessarily concrete and moreover, there is no obvious way for showing
its consistency. In the axiomatic model–theoretic version of the proof of the
theorem this is provided by the existence of the sum of a Σn chain of models.
However, we believe that the part of the construction up to the infelicitous
step is itself interesting and we present it below.

First, let us define what we mean by a Σn chain in concrete models
framework.

Definition 4.2.38 (Concrete Σn Chain of Concrete Models)
A concrete chain of concrete models (Ai)i∈ω is a concrete Σn chain if for
every Σn formula ψ(x), i ∈ ω and a finite sequence a ∈ |Ai| if Ai |= ψ[a],
then Ai+1 |= ψ[a].

As we mentioned above, we cannot expect the sum of a concrete Σn chain
of concrete models to be a concrete model. This is shown by the following
theorem.

99

Theorem 4.2.39 There is a recursive concrete Σ1 chain (Ai)i∈ω of recur-
sive concrete models such that

⋃
i∈ωAi is not a concrete model.

Proof: The proof goes by showing a chain of recursive models whose sum
is the standard model of arithmetic. For i ∈ ω let ϕi FM–represent the set
{0, . . . , n}, ϕi+ FM–represent the the R+∩{0, . . . , n}3 and ϕi× FM–represent
R× ∩ {0, . . . , n}3. We put Fi = (ϕi, ϕ

i
+, ϕ

i
×) i.e. the i–th concrete structure

FM–represents the i–th initial segment of the standard model of arithmetic
N . Each Fi is finite so there are recursive concrete models Ai = (Fi, ϕi|=).
Moreover, the map i 7→ pAiq is recursive and

⋃
i∈ω |Ai| = ω is also recursive.

Therefore (Ai)i∈ω is a concrete chain of concrete models. Since concrete Σ1

chains of concrete models are just concrete chains of concrete models, (Ai)i∈ω
is a concrete Σ1 chain of concrete models.

On the other hand F =
⋃
i∈ω Fi = (ϕω, ϕ+, ϕ×), where ϕω FM–represents

ω, ϕ+ FM–represents R+ and ϕ× FM–represents R×. Therefore F FM–
represents the standard model of arithmeticN . Since the satisfaction relation
in N is not even arithmetical there is no formula ϕ|= which FM–represents
it. Therefore there is no concrete model A = (F , ϕ|=). �

Since by Theorem 4.2.39 we cannot expect the sum of a concrete Σn

chain of concrete models to be a concrete model, we want to avoid using
such sums in our construction. In fact we only need to consider Πn+1 theory
of such a sum. Therefore we introduce the following definition.

Definition 4.2.40 ((n+ 1)–th Universal Sentences of a Σn Chain)
Let (Ai)i∈ω be a concrete Σn chain of concrete models. The (n+ 1)–th set of
universal sentences of (Ai)i∈ω is defined as follows:

Πn+1((Ai)i∈ω) = {∀xψ(x) : ψ(x) ∈ Σn∧

∀a ∈
⋃
i∈ω
|Ai|ψ(a) ∈

⋃
i∈ω

Σn–Diag(Ai)}.

Note that the (n + 1)–th universal sentences of a concrete Σn chain of
concrete models may be not a concrete set. We introduce it just for the
presentation of the construction.

Lemma 4.2.41 Let (Ai)i∈ω be a concrete Σn chain of concrete models. Then
for every Πn+1 sentence ψ, if ∀i ∈ ωAi |= ψ, then ψ ∈ Πn+1((Ai)i∈ω).

Proof: Let (Ai)i∈ω be a concrete Σn chain of concrete models.
Let ψ be a Πn+1 sentence and suppose that for every i ∈ ω it holds that

Ai |= ψ. Then ψ = ∀xψ′(x), for some Σn formula ψ′(x).
For every i ∈ ω and every ai ∈ |Ai| it holds that Ai |= ψ′(ai) i.e. ψ′(ai) ∈

Σn–Diag(Ai). We show that ψ ∈ Πn+1((Ai)i∈ω). It is sufficient to show that
for every a ∈

⋃
i∈ω |Ai| it holds that ψ′(a) ∈

⋃
i∈ω Σn–Diag(Ai). Fix a ∈

100

⋃
i∈ω |Ai|. Then there is k ∈ ω such that a ∈ |Ak|.

But ψ′(a) ∈ Σn–Diag(Ai) ⊆
⋃
i∈ω Σn–Diag(Ai), thus indeed

ψ′(a) ∈
⋃
i∈ω Σn–Diag(Ai) and therefore ψ ∈ Πn+1((Ai)i∈ω).

�

The main lemma in the proof of Theorem 4.2.37 translated to the concrete
models framework is presented below.

Lemma 4.2.42 Let ϑ be a sentence equivalent to both Σn+1 and Πn+1 sen-
tences and let A,B be concrete models computable in C, for some low set C.
If every Σn sentence holds in A if and only if it holds in B, then A |= ϑ if
and only if B |= ϑ.

It is the model–theoretic construction from the proof of Lemma 4.2.42
which fails and makes the entire proof of the Theorem 4.2.37 fail. However if
Lemma 4.2.42 was proven the proof of Theorem 4.2.37 would go as follows.

Let σ be a recursive concrete vocabulary. Let ϕ be a σ–sentence. The
easy implication of Theorem 4.2.37 is from the bottom up and can be easily
proven by putting ϕ to prenex normal form in obvious two ways to obtain
equivalent Σn+1 and Πn+1 sentences.

For the harder implication suppose that ϕ is equivalent to both Σn+1

sentence and Πn+1 sentence and for the sake of contradiction suppose that
it is not equivalent to any Boolean combination of Σn sentences.

Let σ1, . . . , σm be a finite sequence of Σn sentences. There are 2m con-
junctions of the form ρ = σ′1∧ . . .∧σ′m, where σ′i is σi or ¬σi for i = 1, . . . ,m.
Some of those conjunctions are consistent with both ϕ and ¬ϕ as otherwise
for every such conjunction ρ there would be ` ρ ⇒ ϕ or ` ρ ⇒ ¬ϕ and
therefore by taking ξ =

∨
{ρ : ` ρ ⇒ ϕ} ∨

∨
{¬ρ : ` ρ ⇒ ¬ϕ} we could

easily show via propositional calculus that ϕ is equivalent to ξ and thus,
contrary to our assumptions, that ϕ is equivalent to a Boolean combination
of Σn sentences.

There are, therefore, low concrete models A,B such that for i = 1, . . . ,m
it holds that A |= σi if and only if B |= σi, A |= ϕ and B |= ¬ϕ. Since
the choice of the sequence σ1, . . . , σm was arbitrary, for every finite set S =
{σ1, . . . , σm} of Σn sentences there are concrete models A |= S ∪ {ϕ} and
B |= S ∪ {¬ϕ}.

Now let α0, α1, . . . be an effective presentation of Σn σ–sentences. Con-
sider full binary trees TreenT labelled with theories, defined inductively on
ρ ∈ 2<ω as follows:

1. If ρ = ε, then TreenT (ρ) = T ,

2. If ρ = τ0, then TreenT (ρ) = TreenT (τ) ∪ {αlh(τ)},

101

3. If ρ = τ1, then TreenT (ρ) = TreenT (τ) ∪ {¬αlh(τ)}.

Consider recursive trees T1 = CON(Treen{ϕ}) and T2 = CON(Treen{¬ϕ}).
By our previous investigations, for every n ∈ ω there is ρ ∈ 2<ω with
lh(ρ) = n such that ρ ∈ T1 and ρ ∈ T2. Thus T1 ∩ T2 is an infinite recursive
tree. By the Low Basis Theorem (2.3.13) there is a low set f ∈ 2ω such that
S1 =

⋃
i∈ω Tree

n
{ϕ}(f�i) and S2 =

⋃
i∈ω Tree

n
{¬ϕ}(f�i) are recursive in f

and consistent theories which agree on all Σn sentences. Let ψ0, ψ1, . . . and
ϕ0, ϕ1, . . . be effective presentations of sentences and formulae with v0 as
the only free variable respectively. We construct a full binary tree T labelled
by pairs of theories inductively on ρ ∈ 2<ω as follows:

1. If ρ = ε, then T (ρ) = (S1, S2),

2. If ρ = τ0 and lh(ρ) = 4i+ 1, then T (ρ) = (T (τ)1 ∪ {ψi}, T (τ)2),

3. If ρ = τ1 and lh(ρ) = 4i+ 1, then T (ρ) = (T (τ)1 ∪ {¬ψi}, T (τ)2),

4. If (ρ = τ0 or ρ = τ1) and lh(ρ) = 4i + 2, then T (ρ) = (T (τ)1 ∪
{∃v0 ϕi(v0)⇒ ϕi(dk1)}, T (τ)2), where k is the least index such that dk
does not occur in T (τ)1 and ϕi.

5. If ρ = τ0 and lh(ρ) = 4i+ 3, then T (ρ) = (T (τ)1, T (τ)2 ∪ {ψi}),

6. If ρ = τ1 and lh(ρ) = 4i+ 3, then T (ρ) = (T (τ)1, T (τ)2) ∪ {¬ψi},

7. If (ρ = τ0 or ρ = τ1) and lh(ρ) = 4i+ 4, then T (ρ) = (T (τ)1, T (τ)2 ∪
{∃v0 ϕi(v0) ⇒ ϕi(dk2)}), where k is the least index such that dk does
not occur in T (τ)2 and ϕi.

We define the subtree CON2(T) of T in the following way: for every
ρ ∈ 2<ω, CON2(T)(ρ) if and only if T1(ρ) 6`lh(ρ)⊥ and T2(ρ) 6`lh(ρ)⊥.

Observe that CON2(T) is recursive in f , and therefore low. Since both
S1 and S2 are consistent, by the Low Basis Theorem (2.3.13) there is a
low g ∈ [CON2(T)]. Let T g = (

⋃
i∈ω T (g�i)1,

⋃
i∈ω T (g�i)2). By arguments

similar to those used in the proof of the Low Completeness Theorem (4.2.16)
there are recursive in g, thus low, models A,B such that A |= S1 and B |= S2.
But this contradicts result from Lemma 4.2.42 since for every Σn sentence
ξ it holds that A |= ξ if and only if B |= ξ but A |= ϕ and B |= ¬ϕ. This
would complete the proof of Theorem 4.2.37.

However, as we mentioned before the construction from the proof of
Lemma 4.2.42 fails. We present below the construction from the proof the
lemma.

Let ϑ be a sentence equivalent to both Σn+1 and Πn+1 sentences. Suppose
for the sake of contradiction that for some low set g there are recursive in g
concrete models A,B which satisfy the same Σn sentences, but A |= ϑ and

102

B |= ¬ϑ. Our aim is to build a tower of concrete models as in the following
diagram.

A

B

A0

B0

A1

B1

A2

B2

. . .

. . .

∼=

≡

⊆
n

⊆
n

⊆
n

≡ ≡ ≡

≡ ≡ ≡

⊆ n ⊆ n

Before proceeding to the construction of concrete models Ai, Bi fitting
the above diagram, we construct concrete models Ci, Di as in the following
diagram:

A

B

C0

D0

C1

D1

C2

D2

. . .

. . .

∼=

≡

≡ ≡ ≡

≡ ≡ ≡

Let V,R0, R1, . . . , V0, V1, . . . be pairwise disjoint recursive sets such that:

• i 7→ pRiq is recursive,

• i 7→ pViq is recursive,

• for i ∈ ω, Di = {cr : r ∈ Ri} is a set of new constants,

• for i ∈ ω, Wi = {cr : r ∈ Vi} is a set of new constants.

In the construction below we define Σn–Diag(Ci) using constants from D2i,
and Σn–Diag(Di) using constants from D2i+1. Constants from sets Wi are
witnesses used while applying the Low Completeness Theorem (4.2.16).

Let a0, a1, . . . be an effective presentation of V and letW = {ai ∈ V : i ∈
|A|}. Then the function iso : W → |A| such that iso(ai) = i is a concrete
bijection. Let C0 be the co–image of A under iso. Then, by Lemma 4.1.10, C0

is a concrete model. Observe that C0 is low since it is recursive in A. Indeed,
Lemma 4.1.10 guarantees that C0 is recursive in W ⊕ A ⊕ iso. Since W is
recursive, a0, a1, . . . is an effective presentation of W , iso is recursive in A.
Moreover, |C0| = W ⊆ V .

For k ∈ ω, let σk = σ ∪
⋃
i<kDi.

We inductively construct a tower of low concrete models in the following
way, for i ∈ ω:

103

• C0

iso∼= A,

• Ti = Th(B) ∪ Σn–Diag(Ci),
• Di is the concrete σ2i+1–model obtained by the Low Completeness

Theorem (4.2.16) applied to Ti and to the set of witnesses W2i,

• Si+1 = Th(A) ∪ Σn–Diag(Di),
• Ci+1 is the concrete σ2i+2–model obtained by the Low Completeness

Theorem (4.2.16) applied to Si+1 and to the set of witnesses W2i+1.

By induction on i ∈ ω we show that the construction is proper. It is
sufficient to show that theories Ti and Si are consistent and low.

For i ∈ ω, let Li =
⊕

m6i(Cm ⊕Dm).

For the base step we show that T0 = Th(B) ∪ Σn–Diag(C0) is consistent
and low σ1–theory.

First, observe that T0 is recursive in B ⊕ C0, therefore it is recursive in
g, thus low.

If T0 was inconsistent, then there would be a finite set of Σn σ
1–sentences

F (d) ⊆ Σn–Diag(C0) such that Th(B) ` ¬
∧
F (d), where d denotes all the

constants in F that are not in σ. Then by the lemma on constants it would
hold that Th(B) ` ∀x¬

∧
F (x). Observe that

∧
F is equivalent to a Σn sen-

tence and therefore ∀x¬
∧
F (x) is equivalent to a Πn σ–sentence. Therefore

B |= ∀x¬
∧
F (x). Since B and A satisfy the same Σn σ–sentences, and C0

is isomorphic to A it holds that C0 |= ∀x¬
∧
F (x). But

∧
F ∈ Σn–Diag(C0)

and therefore C0 |= ∃x
∧
F (x) which is a contradiction. Therefore T0 is con-

sistent.
Let D0 be the low concrete σ1–model obtained by applying the Low

Completeness Theorem (4.2.16) to T0 and the set of witnesses W0. Then
L0 = D0 ⊕C0 is low, |D0| ⊆ V0. Moreover, A, B, C0 and D0 satisfy the same
Σn σ–sentences.

For the induction hypothesis suppose that low concrete models Ci and
Di are constructed and that Li is low. Moreover let A, B, Ci and Di satisfy
the same Σn σ–sentences.

Observe that Si+1 = Th(A) ∪ Σn–Diag(Di) is recursive in Li, therefore
low.

We show that it is also consistent. Otherwise there would be a finite
set of Σn σ

2i+2–sentences F ⊆ Σn–Diag(Di) such that Th(A) ` ¬
∧
F (d),

where d are all the constants from F not occurring in σ. By the similar
arguments to those presented in the base step, we have A |= ∀x¬

∧
F (x)

and Di |= ∃x
∧
F (x). This is a contradiction, since ∃x

∧
F (x) is equivalent

to a Σn σ–sentence and A and Di satisfy the same Σn σ–sentences.

104

Let Ci+1 be the low concrete σ2i+2–model obtained by applying the Low
Completeness Theorem (4.2.16) to Ti+1 and the set of witnessesW2i+1. Then
Ci+1 ⊕ Li is low, |Ci+1| ⊆ V2i+1 and Ci+1 satisfies the same Σn σ–sentences
as Di.

We show that Ti+1 is consistent and low by an analogous arguments. By
the construction we get a low concrete σ2i+2 model Di+1 |= Si+1, such that
Li+1 = Li ⊕ Ci+1 ⊕ Di+1 is low. Moreover, |Di+1| ⊆ V2i+2 and Di+1 satisfy
the same Σn σ–sentences as Ci+1.

We show that C0,D0, C1,D1, . . . is a jump–concrete sequence of low con-
crete models. For i ∈ ω, let C∗i be the halting problem for Ci and let D∗i be the
halting problem for Di. We show that i 7→ pD∗i q and i 7→ pC∗i q are concrete
maps. The halting problem for A⊕B is concrete, since A⊕B is low. The low
concrete model C0 is recursive in A, therefore C∗0 is concrete. Observe that
T0 is a sum of the theory of a low concrete model B and Σn–Diag(C0) which
is low. Computing Σn diagrams and theories of concrete models is recur-
sive in the complexity these concrete models. Therefore, T0 and the halting
problem for T0 are concrete. According to the construction, we apply the
Low Completeness Theorem (4.2.16) to T0 and the to set of witnesses W0

to obtain D0. Therefore, as was already discussed (see 2.3.14, 4.2.16 and the
discussion directly after the latter), D0 is concretely computable from T ∗0
and W0, and d0 such that ΦK

d0
decides the halting problem for D0 can be

computed from T ∗0 and W0.
General algorithms for i 7→ pC∗i q and i 7→ pD∗i q proceed along the con-

struction of the tower of concrete models. They repetitively use the algorithm
from Theorem 2.3.14 to obtain codes of algorithms which, in K, decide the
next concrete model and its halting problem. They also need to compute Σn

diagrams and theories of concrete models as it is discussed in the previous
paragraph.

Therefore the maps i 7→ pC∗i q and i 7→ pD∗i q are concrete.
Henceforth:

• C0,D0, C1,D1, . . . is a jump–concrete sequence of low concrete models,

• for every i ∈ ω it holds that
⊕

j6i Cj ⊕Dj is low,

• for every i ∈ ω it holds thatDi |= Σn–Diag(Ci) and Ci+1 |= Σn–Diag(Di).

Moreover, sets V, V0, V1, . . . are disjoint and such that i 7→ pViq is recursive,
|C0| ⊆ V , |Di| ⊆ V2i and |Ci| ⊆ V2i+1.

Therefore, by Theorem 4.1.22, for every i ∈ ω there is a concrete σ–
model Ai and a concrete isomorphism gi from Ai to the reduction of Ci
to σ. Similarly, for i ∈ ω there is a concrete σ–model Bi and a concrete
isomorphism hi from Bi to a reduction of Di to σ.

We therefore have the following:

105

• A0 ⊆n B0 ⊆n A1 ⊆n B1 ⊆n . . . ,

• ∀i ∈ ωTh(Ai) ≡ Th(A) and ∀i ∈ ωTh(Bi) ≡ Th(B),

which is illustrated by the following diagram.

A

B

A0

B0

A1

B1

A2

B2

. . .

. . .

∼=

≡

⊆
n

⊆
n

⊆
n

≡ ≡ ≡

≡ ≡ ≡

⊆ n ⊆ n

Observe that there are two concrete chains of concrete models (Ai)i∈ω
and (Bi)i∈ω. Since Ai ⊆n Bi ⊆n Ai+1 for each i ∈ ω it holds that
Πn+1((Ai)i∈ω) = Πn+1((Bi)i∈ω).

By the assumption ϑ is equivalent to a Πn+1 sentence and to a Σn+1

sentence. Let ψ be a Πn+1 sentence equivalent to ϑ and let ϕ be a Πn+1

sentence equivalent to ¬ϑ.
Each Ai is elementarily equivalent to A, A |= ϑ and ϑ is equivalent to ψ.

Therefore, by Lemma 4.2.41, it follows that ψ ∈ Πn+1((Ai)i∈ω). On the other
hand, each Bi is elementarily equivalent to B, B |= ¬ϑ and ¬ϑ is equivalent to
ϕ. Then, by Lemma 4.2.41, it holds that ϕ ∈ Πn+1((Ai)i∈ω). Therefore, since
ψ is equivalent to ¬ϕ, the set Πn+1((Ai)i∈ω) is inconsistent.

Here is where the construction fails for concrete models – we do not
know whether Πn+1((Ai)i∈ω) is consistent or not and the contradiction in
the original proof of the lemma comes from the fact that Πn+1((Ai)i∈ω) is
consistent as a subset of a theory Th(

⋃
i∈ωAi).

This, of course, does not imply that Theorem 4.2.37 is false in the concrete
models framework. It just means that the construction by Chang and Keisler
does not work in this context.

4.2.4 Preservation Theorems

We already know that a sum of a recursive concrete chain of recursive con-
crete models may not be a concrete model. In this section we focus on con-
crete elementary chains of concrete models in the case of which the situation
is different. The satisfaction relation in the sum of a concrete elementary
chain of concrete models can be computed from satisfaction relations in con-
crete models in the concrete elementary chain. In fact the sum of elementary
diagrams of concrete models from the concrete elementary chain converges
to the elementary diagram of the sum of the chain. Being able to sum el-
ementary chains, we can perform model–theoretic constructions employing

106

elementary chains. In this section we show two results achieved by the use
of elementary chains and their sums – the so called preservation theorems.

First, let us prove that summing concrete elementary chains is admissible
in concrete models framework.

Theorem 4.2.43 Let σ be a concrete vocabulary. Let ((F , ϕi|=))i∈ω be a con-
crete elementary chain of concrete σ–models. Then there is a concrete model
A =

⋃
i∈ω(Fi, ϕi|=).

Moreover for every k ∈ ω it holds that Ak 4 A.

Proof: For every i ∈ ω we denote the concrete model (Fi, ϕi|=) by Ai.
Let σ be a concrete vocabulary and let (Ai)i∈ω be such that for every i ∈ ω
the model Ai is a concrete model. Moreover, let the set

⋃
i∈ω |Ai| and the

map i 7→ pAiq be also concrete.
It is easy to see that since ((Fi, ϕi|=))i∈ω is a concrete chain of concrete

models,
⋃
i∈ω |Fi| is concrete and the structure F =

⋃
i∈ω Fi is a concrete

structure. It remains to show that the satisfaction relation R|= in F is con-
crete.

The following algorithm decides the satisfaction relation in F .

Algorithm 12 Algorithm deciding the satisfaction relation R|= in F
Input: pψq, pa1, . . . , akq
Output: truth value of R(pψq, pa1, . . . , akq)
if ψ 6∈ Formσ or ¬

∧
j=1,...,k aj ∈ |F| or k 6 max{i : vi ∈ FV(ψ)} then

return false
else
i← 0
while ¬

∧
j=1,...,k aj ∈ |Ai| do

i← i+ 1
end while
if Ai |= ψ[a1, . . . , ak] then
return true

else
return false

end if
end if

Note that Algorithm 12 uses only concrete queries: the membership in
|F|, membership in Formσ, membership in |Ai| and satisfaction in Ai. It also
uses the concrete map i 7→ pAiq. Moreover, the algorithm always halts – the
while–loop must eventually stop, since for j = 1, . . . , k it holds that there
exists i ∈ ω such that aj ∈ |Ai|. Algorithm 12 computes the least index i
such that each aj is in the universe of Ai and checks whether ψ is satisfied
by a1, . . . , ak is Ai.

107

Let R|=(pψq, paq) be the relation decided by Algorithm 12. As we have
shown R|= is concrete. It is easy to see that R|= is a pre–satisfaction in F . It
remains to show that it satisfies the Tarski’s conditions. The case of atomic
formulae is obvious by the definition of F . Let ϕ,ψ be σ–formulae and let
a1, . . . , ak be elements of F such that k is greater the the highest index of
free variables occurring in ϕ and ψ.

For the case of negation, observe that the following are equivalent:

• R|=(p¬ψq, pa1, . . . , akq),

• Ai |= ¬ψ[a1, . . . , ak], where i is the least index such that
a1, . . . , ak ∈ |Ai|,

• Ai 6|= ψ[a1, . . . , ak], where i is the least index such that
a1, . . . , ak ∈ |Ai|,

• it is not the case that R|=(pψq, pa1, . . . , akq).

For the case of conjunction, observe that the following are equivalent:

• R|=(pψ ∧ ϕq, pa1, . . . , akq),

• Ai |= (ψ ∧ ϕ)[a1, . . . , ak], where i is the least index such that
a1, . . . , ak ∈ |Ai|,

• Ai |= ψ[a1, . . . , ak] and Ai |= ϕ[a1, . . . , ak], where i is the least index
such that a1, . . . , ak ∈ |Ai|,

• R|=(pψq, pa1, . . . , akq) and R|=(pϕq, pa1, . . . , akq).

For the case of existential quantification, observe that the following are
equivalent:

• R|=(p∃vm ψq, pa1, . . . , akq),

• Ai |= ∃vm ψ[a1, . . . , ak], where i is the least index such that
a1, . . . , ak ∈ |Ai|,

• there is n ∈ |Ai| such that Ai |= ψ[(a1, . . . , ak)[vm := n]], where i is
the least index such that a1, . . . , ak ∈ |Ai|,

• there is n ∈ |F| such that R|=(pψq, p(a1, . . . , ak)[vm := n]q).

Therefore, R|= is the satisfaction relation in F . Let ϕ|= FM–represent
R|=. Then A = (F , ϕ|=) is a concrete σ–model and A =

⋃
i∈ωAi.

It remains to show that for each i ∈ ω it holds that Ai 4 A. Fix i ∈ ω. It
is obvious that Ai ⊆ A. Suppose that Ai |= ψ[a1, . . . , ak], then let l be the
least index such that Al |= ψ[a1, . . . , ak]. Since l 6 i, it holds that Al 4 Ai.
Therefore, by the definition of satisfaction relation in A, A |= ψ[a1, . . . , ak]

108

holds. This ends the proof. �

We have already shown that the sum of a concrete elementary chain
of concrete models is also a concrete model. This leads us to a search for
applications of elementary chains in the axiomatic model theory. Some of
those applications are known as preservation theorems – they establish a
connection between existence of certain axiomatisations of a given theory
and closures of class of its models on certain operations.

In this section we work with a fixed recursive vocabulary σ i.e. all for-
mulae, theories and sets of formulae are σ–formulae and sets of σ–formulae.
We begin with a useful lemma on axiomatisations. Both the lemma and its
proof come from [CK73], however we have to restrict the complexity of sets
appearing there.

Lemma 4.2.44 Let T be a consistent recursive theory and let ∆ be a recur-
sive set of sentences closed under finite disjunctions. Then the following are
equivalent:

• T has a concrete set of axioms Γ ⊆ ∆,

• for all low concrete models A,B such that A⊕B is low it holds that if

– A |= T and
– for all δ ∈ ∆ if A |= δ, then B |= δ,

then B |= T .

Proof: Let T and ∆ be as in the assumptions of the lemma.
For the easy left–to–right, implication let Γ ⊆ ∆ be a concrete set of

axioms for T .
Fix low concrete models A, B such that A ⊕ B is low, A |= T and for

each δ ∈ ∆ if A |= δ, then B |= δ.

Then, since Γ is a set of axioms for T and Γ ⊆ ∆, from A |= T we infer
that A |= Γ and B |= Γ. Finally, since Γ is an axiomatisation of T it holds
that B |= T .

For the other implication suppose that for all low models A, B such that
if:

• A⊕ B is low,

• A |= T ,

• for each δ ∈ ∆ if A |= δ, then B |= δ

then B |= T .

109

We define the set Γ = {ϕ : T ` ϕ and ϕ ∈ ∆}. Note that since T and ∆
are recursive, Γ is recursively enumerable and by Craig’s theorem it has a
recursive axiomatisation Γ0. Of course T ` Γ. We show that Γ ` T i.e. that
Γ is a concrete axiomatisation of T .

By the Low Completeness Theorem (4.2.16) it is sufficient to show that
for every low model B such that B |= Γ0 it holds that B |= T .

Fix a low model B such that B |= Γ0. Then B |= Γ. Our aim is to show
that B is also a model of T . We define Σ = {¬δ : B |= ¬δ and δ ∈ ∆}. It is
easy to see that Σ is recursive in B and therefore T ∪ Σ is also recursive in
B.

We show that T ∪ Σ is consistent.
Suppose for the sake of contradiction that T ∪ Σ is inconsistent. Then

there are ¬δ1, . . . ,¬δn ∈ Σ such that T ` ¬(¬δ1 ∧ . . . ∧ ¬δn). Therefore
T ` δ1 ∨ . . . ∨ δn. Note that δi ∈ ∆ for i = 1, . . . , n and since ∆ is closed
under finite disjunctions, δ1 ∨ . . . ∨ δn ∈ ∆. Therefore δ1 ∨ . . . ∨ δn ∈ Γ and
thus, since B |= Γ, we have B |= δ1 ∨ . . .∨ δn which contradicts the fact that
B |= ¬δi for i = 1, . . . , n.

We therefore know that T ∪Σ is recursive in B and consistent. Let A be
a low model of T ∪Σ obtained by the Low Completeness Theorem (4.2.16).
Then A⊕ B is low.

Observe that A |= T ∪Σ, hence also A |= T . Fix δ ∈ ∆ such that A |= δ.
If it was the case that B |= ¬δ, then by the definition of Σ it would hold that
¬δ ∈ Σ, which is impossible, since A |= Σ. Therefore, by the assumption,
B |= T . This completes the proof. �

The first preservation theorem which transfers to the concrete models
framework is preservation under unions of chains.

Theorem 4.2.45 Let T be a consistent recursive σ–theory. T is preserved
under union of chains if and only if T has a Π2 axiomatisation.

Proof: Fix a recursive theory T .
For the easy, right–to–left direction, suppose that there is a set S of

Π2 sentences axiomatising T . Let (Ai)i∈ω be a concrete chain of concrete
models of T with the union A =

⋃
i∈ωAi being a concrete model. Consider a

sentence ϕ = ∀x ∃y ϕ0(x, y), where ϕ0 is quantifier free and such that ϕ ∈ S.
Since ϕ ∈ S, for every i ∈ ω it holds that Ai |= ϕ. For every a ∈ |A|

there exists j ∈ ω such that a ∈ |Aj |. Then there exists b ∈ |Aj | such that
Aj |= ϕ0[a, b] and therefore also A |= ϕ0(a, b), hence A |= ϕ.

Therefore, for every ϕ ∈ S it holds that A |= ϕ, and thus A |= T , since
S is an axiomatisation of T . This ends the proof of the easy direction of the
equivalence.

Suppose now that T is preserved under unions of chains i.e. for every
concrete chain of concrete models of T its union (if it exists) also satisfies T .

110

We define the set of sentences ∆ as a set of finite disjunctions of the
set of all Π2 sentences. ∆ is obviously closed under finite disjunctions and
recursive.

By Lemma 4.2.44, it is sufficient to show that for every low concrete
models A, B such that:

• A⊕ B is low,

• A |= T ,

• for every δ ∈ ∆ if A |= δ, then B |= δ,

it holds that B |= T .
Let A,B be low models such that A⊕B is low. Suppose that A |= T and

for every δ ∈ ∆ if A |= δ, then B |= δ. We show that B |= T . Our aim is to
construct a tower of concrete models as in the following diagram:

B B0

A

B1

A0

B2

A1

. . .

A2 . . .

∼=

⊆ ⊆

⊆ ⊆

⊆

4 4 4

≡ ≡ ≡ ≡

Before proceeding to the construction of the concrete models Ai, Bi as in
the diagram above, we construct concrete models Ci, Di fitting the following
diagram:

B D0

A

D1

C0

D2

C1

. . .

C2 . . .

f0,0 f1,1 f2,2

f0,1 f1,2

g0,1 g1,2 g2,3∼=

≡ ≡ ≡ ≡

The construction below guarantees what follows. For i ∈ ω, concrete mor-
phisms fi,i are from (Di, d)d∈|Di| to Ci and are concrete embeddings. Similarly,
concrete morphisms fi,i+1 are from (Ci, c)c∈|Ci| to Di+1 and are concrete em-
beddings. Concrete morphisms gi,i+1 from (Di, d)d∈|Di| to the restriction of
Di+1 to the common vocabulary are concrete elementary embeddings. We
proceed to the construction of concrete models Ci and Di.

111

Let V,R0, R1, . . . , V0, V1, . . . be pairwise disjoint recursive sets such that:

• i 7→ pRiq is recursive,

• i 7→ pViq is recursive,

• for i ∈ ω, Di = {cr : r ∈ Ri} is a set of new constants,

• for i ∈ ω, Wi = {cr : r ∈ Vi} is a set of new constants.

In the construction below we define Diag(Ci) using new constants fromD2i+1,
and ElDiag(Di) (and Π1–Diag(Di)) using new constants fromD2i. Constants
from sets Wi are witnesses used while applying the Low Completeness The-
orem (4.2.16).

Let a0, a1, . . . be an effective presentation of V . Then V B = {ab : b ∈ |B|}
is recursive in B. The the function iso : V B → |B| such that for each b ∈ |B| it
holds that iso(ab) = b is a concrete recursive in B bijection. Let D0 be the co–
image of B under iso. Therefore by Lemma 4.1.10 D0 is a concrete recursive
in B model and iso is a concrete recursive in B isomorphism. Moreover,
|D0| = V B ⊆ V .

For k ∈ ω, let σk = σ ∪
⋃
i<kDi.

The construction is inductive as follows. For i ∈ ω:

• D0

iso∼= B,

• Ti = Th(A) ∪Π1–Diag(Di),
• Ci is the concrete σ2i+1–model obtained by applying the Low Com-

pleteness Theorem (4.2.16) to Ti and to the set of witnesses W2i,

• Si+1 = Diag(Ci) ∪ ElDiag(Di),
• Di+1 is the concrete σ2i+2–model obtained by applying the Low Com-

pleteness Theorem (4.2.16) to Si+1 and to the set of witnesses W2i+1.

For i ∈ ω, let Li =
⊕

m<i(Cm ⊕Dm)⊕Di.

By induction we show that the construction is correct. It suffices to show
that for every i ∈ ω, theories Ti and Si+1 are low and consistent.

In the base step of induction we have constructed a low concrete model
D0 by means of Lemma 4.1.10.

Now for the inductive hypothesis suppose that the construction was per-
formed up to a low concrete model Di for some i ∈ ω and that Li is low.
Consider theories T i1 = Th(A) and T i2 = Π1–Diag(Di). Note that they are
both recursive in a low set Li and therefore T i1 ∪ T i2 is recursive in Li, thus

112

low.
If T i1 ∪ T i2 was inconsistent, there would be a finite set S(d) ⊆ T i2 such

that T i1 ` ¬
∧
S(d). Then, by lemma on constants, T i1 ` ∀x¬

∧
S(x) and

since T i1 = Th(A) this would mean that A |= ∀x¬
∧
S(x). Observe that

∀x¬
∧
S(x) is equivalent to a Π2 sentence. Since A |= ∀x¬

∧
S(x) it follows

that B |= ∀x¬
∧
S(x). It follows that D0 |= ∀x¬

∧
S(x) and therefore it also

holds that Di |= ∀x¬
∧
S(x). But Di |=

∧
S(d) which is a contradiction.

Therefore T i1 ∪ T i2 is consistent, recursive in a low set Li. Let Ci be
the low concrete σ2i+1–model obtained by the Low Completeness Theorem
(4.2.16) applied to the theory T i1 ∪ T i2 and to the set of witnesses W2i. Since
Ci |= Th(A), it holds that Ci ≡ A. Moreover, Ci |= Diag(Di), therefore
by Lemma 4.1.17 there is a concrete, recursive in Li ⊕ Ci, embedding fi,i :
(Di, d)d∈|Di| → Ci. Finally |Ci| ⊆ V2i and Li ⊕ Ci is low.

Now consider theories T i3 = Diag(Ci) and T i4 = ElDiag(Di) – both recur-
sive in Li ⊕ Ci, thus low.

If T i3 ∪ T i4 was inconsistent, then there would be a finite set of sentences
S(c, d) ⊆ Diag(Ci) such that T i4 ` ¬

∧
S(c, d). Then, by the lemma on

constants, there would be T i4 ` ∀x¬
∧
S(x, d), therefore ∀x¬

∧
S(x, d) ∈

ElDiag(Di). Since ∀x¬
∧
S(x, d) is a Π1 sentence and Ci |= Π1–Diag(Di),

it follows that ∀x¬
∧
S(x, d) ∈ ElDiag(Ci). However, we also have that∧

S(c, d) ∈ ElDiag(Ci) which is a contradiction.

Therefore T i3 ∪ T i4 is consistent and recursive in Li ⊕ Ci, thus low. Let
Di+1 be the low concrete σ2i+2–model obtained by the Low Completeness
Theorem (4.2.16) applied to the theory T i3 ∪ T i4 and the set of witnesses
W2i+1. Recall that Li+1 = Li⊕Ci⊕Di+1. Since Di+1 is obtained by the Low
Completeness Theorem from a low set recursive in Li⊕Ci, the set Li+1 is low.
Since Di+1 |= Diag(Ci), it follows that there is a concrete, recursive in Li+1

embedding fi,i+1 : (Ci, c)c∈|Ci| → Di+1. Since Di+1 |= ElDiag(Di), there is a
concrete, recursive in Li+1, elementary embedding gi,i+1 from (Di, d)d∈|Di|
to the reduction of Di+1 to the common vocabulary. This ends the induction
step.

Therefore, we have:

B D0

A

D1

C0

D2

C1

. . .

C2 . . .

f0,0 f1,1 f2,2

f0,1 f1,2

g0,1 g1,2 g2,3∼=

≡ ≡ ≡ ≡

We show that D0, C0,D1, C1, . . . is a jump–concrete sequence of low con-

113

crete models. For i ∈ ω let C∗i be the halting problem for Ci and let D∗i
be the halting problem for Di. We show that i 7→ pD∗i q and i 7→ pC∗i q are
concrete maps. The argument is similar to that presented in the previous
section. Algorithms for i 7→ pC∗i q and i 7→ pD∗i q use the algorithm from
Theorem 2.3.14 to compute codes of algorithms which decide subsequent
concrete models and halting problem of these models in K. The only differ-
ences come from the construction, where Th(A), Diag(Ci), Π1–Diag(Di) and
ElDiag(Di) are computed. However, these sets are easily computable in the
underlying concrete models. Therefore, D0, C0,D1, C1, . . . is a jump–concrete
sequence of low concrete models.

Therefore:

• D0, C0,D1, C1, . . . is a jump–concrete sequence of low concrete models,

• for every i ∈ ω it holds that
⊕

j6i Cj ⊕Dj is low,

• for every i ∈ ω it holds that Di |= Diag(Ci) ∪ ElDiag(Di) and Ci |=
Th(A) ∪Π1–Diag(Di).

Observe that for each i ∈ ω it holds that |Ci| ⊆ V2i and |Di| ⊆ V2i+1. There-
fore, the universes of all constructed models are all disjoint. We assumed
also that i 7→ pViq is recursive.

By Theorem 4.1.22 it follows that there is a concrete chain of concrete
models B0,A0,B1,A1, . . . and for each i ∈ ω there are concrete isomorphisms
gi : Ai → Cσi and hi : Bi → Dσi , where Cσi and Dσi are reductions to σ of the
underlying concrete models.

Therefore, we have the following diagram:

B B0

A

B1

A0

B2

A1

. . .

A2 . . .

∼=

⊆ ⊆

⊆ ⊆

⊆

4 4 4

≡ ≡ ≡ ≡

The sum
⋃
i∈ω Bi of the concrete chain of concrete models (Bi)i∈ω is a

concrete model by Lemma 4.2.43.

Moreover,
⋃
i∈ω Bi is equal to

⋃
i∈ωAi. It holds that B0 4

⋃
i∈ω Bi. Since

for each i ∈ ω it holds that Ai |= T and T is closed under unions of chains,
it follows that

⋃
i∈ω Bi |= T . Therefore also B0 |= T and thus B |= T .

We have shown then that for all low models A, B such that A⊕B is low,
A |= T and every Π2 sentence δ which is true in A is also true in B (thus
the same holds for sentences from ∆), it holds that B |= T . Therefore by
Lemma 4.2.44, there is an axiomatisation Γ ⊆ ∆ of T . By putting axioms

114

from Γ to prenex normal forms in an appropriate way, we obtain Γ′ which
contains only Π2 sentences and which axiomatises T . �

Another classical preservation result characterises theories closed under
homomorphisms.

We introduce the notion of a positive formula.

Definition 4.2.46 (Positive Formula) A formula ψ is positive if

• ψ is an atomic formula,

• ψ = ψ1 ◦ ψ2, for positive formulae ψ1, ψ2 and ◦ ∈ {∧,∨}.

• ψ = Qxψ1, for a positive formula ψ1 and Q ∈ {∃, ∀}.

We state the characterisation theorem for theories closed under concrete
homomorphisms.

Theorem 4.2.47 Let T be a consistent recursive σ–theory. Then T is pre-
served under concrete homomorphisms if and only if it has a set of positive
axioms.

Proof: For the easy right–to–left implication it is sufficient to show
that concrete homomorphisms preserve the truth of positive formulae i.e.
if h : A → B is a concrete homomorphism of a concrete model A onto a
concrete model B and ϕ(x0, x1, . . . , xn) is a positive formula, then A |=
ϕ[a0, a1, . . . , an] implies B |= ϕ[h(a0), h(a1), . . . , h(an)].

We prove this by induction on the construction of positive formulae. The
base case follows directly from the definition of concrete homomorphism.

Suppose that the truth of formulae ϕ and ψ is preserved under concrete
homomorphisms.

First, we show that the truth of ϕ∧ψ is also preserved under concrete ho-
momorphisms. Let a1, . . . , ak ∈ |A| and let A |= (ϕ∧ψ)[a1, . . . , ak]. Then by
the definition of the satisfaction relation we have that A |= ϕ[a1, . . . , ak] and
A |= ψ[a1, . . . , ak]. By the induction hypothesis it holds that
B |= ϕ[h(a1), . . . , h(ak)] and B |= ψ[h(a1), . . . , h(ak)]. Again, by the defini-
tion of the satisfaction relation it follows that B |= (ϕ ∧ ψ)[h(a1), . . . , h(ak)]
which completes the proof of the case of ∧. The case of ∨ is analogous. Now
suppose that A |= ∃vm ϕ[a1, . . . , ak]. By the definition of the satisfaction re-
lation there exists n ∈ |A| such that A |= ϕ[(a1, . . . , ak)[vm := n]]. Using the
induction hypothesis we infer that B |= ϕ[(h(a1), . . . , h(ak))[vm := h(n)]].
Therefore, B |= ∃vm ϕ[h(a1), . . . , h(ak)]. In the proof of the final case – for
the ∀ quantifier – we use the fact that h is onto |B| i.e. that for every b ∈ |B|
there exists a ∈ |A| such that b = h(a). Let b ∈ |B| and b = h(a) for a ∈ |A|.
Let A |= ∀vm ϕ[a1, . . . , ak]. Then A |= ϕ[(a1, . . . , ak)[vm := a]] and by the in-
duction hypothesis B |= ϕ[(h(a1), . . . , h(ak))[vm := b]]. Since b was arbitrary,

115

B |= ∀xϕ[h(a1), . . . , h(ak)] by the definition of the satisfaction relation. This
ends the proof of the easy direction of the theorem.

For the proof of the other implication suppose that T is preserved under
concrete homomorphisms. Let AposB mean that for every positive sentence
ψ if A |= ψ, then B |= ψ. We want to use Lemma 4.2.44. Let the set ∆
be the set of all positive formulae – it is recursive and closed under finite
disjunctions. Let ∆− be the set of negations of positive formulae, obviously
∆− is also recursive.

We show that for all low concrete models A,B such that:

• A⊕ B is low,

• A |= T ,

• AposB,

it holds that B |= T .
Fix two low models A and B such that A ⊕ B is low, A |= T and such

that AposB. We want to construct a tower of models as in the diagram:

A

B

A0

B0

A1

B1

A2

B2

. . .

. . .

Aω

Bω

h0,1 h1,2

∼=

∼=

4 4 4 4

4 4 4 4

h0,1 h1,2 hω

Similarly to the previous constructions, we start with constructing con-
crete models Ci, Di as in the following diagram:

A

B

C0

D0

C1

D1

C2

D2

. . .

. . .

f0 f1

e0
0 e0

1 e0
2

e1
0 e1

1 e1
2

g1 g2

∼=

∼=

Let R0, R1, . . . , V0, V1, . . . be pairwise disjoint recursive sets such that:

• i 7→ pRiq is recursive,

• i 7→ pViq is recursive,

• for i ∈ ω, Di = {cr : r ∈ Ri} is a set of new constants,

116

• for i ∈ ω, Wi = {cr : r ∈ Vi} is a set of new constants.

In the construction below, for i ∈ ω we define ElDiag(Di) using constants
from D2i, and ElDiag(Ci) using constants from D2i+1. Constants from sets
Wi are witnesses used while applying the Low Completeness Theorem (4.2.16).

Let v0
0, v

0
1, . . . be an effective presentation of V0 and let v1

0, v
1
1, . . . be

an effective presentation of V1. Then V A0 = {v0
a : a ∈ |A|} is a recursive in

A set and V B1 = {v1
b : b ∈ |B|} is a recursive in B set. Then the function

isoA : V A0 → |A| such that for each a ∈ |A| it holds that isoA(v0
a) = a is a

concrete, recursive in A, bijection. Similarly, the function isoB : V B1 → |B|
such that for each b ∈ |B| it holds that isoB(v1

b) = b is a concrete, recursive
in B bijection. Let C0 be the co–image of A under isoA and let D0 be the
co–image of B under isoB. Then, by Lemma 4.1.10 C0 is a recursive in A
concrete model and D0 is a recursive in B concrete model. Note that isoA
and isoB are concrete isomorphisms of the corresponding concrete models.
Note also that |C0| ⊆ V0 and |D0| ⊆ V1.

For i ∈ ω let σi = σ ∪
⋃
j<iDj .

The construction goes by induction.

• C0

isoA∼= A,

• D0

isoB∼= B,

• Ti+1 = (ElDiag(Ci) ∩∆) ∪ ElDiag(Di),
• Di+1 is the low concrete σ2i+2–model obtained applying the Low Com-

pleteness Theorem to Ti+1 and to the set of witnesses W2i+2,

• Si+1 = (ElDiag(Di+1) ∩∆−) ∪ ElDiag(Ci),
• Ci+1 is the low concrete σ2i+3–model obtained applying the Low Com-

pleteness Theorem to Ti+1 and to the set of witnesses W2i+3.

For i ∈ ω, let Li =
⊕

m6i(Cm ⊕Dm).

By induction we show that the construction is correct. It is sufficient to
show that for each i ∈ ω theories Ti and Si are low and both conditions:
Ci posDi and Ci posDi+1 hold.

For the base step we put C0
∼= A with the the concrete isomorphism isoA

and D0
∼= B with the concrete isomorphism isoB. It follows that C0 posD0.

We know that L0 = C0 ⊕D0 is low. This ends the base step.
For the induction hypothesis suppose that the tower is constructed up

to i ∈ ω i.e. low concrete models Ci and Di are given, Li =
⊕

m6i Cm ⊕Dm
is low and Ci posDi.

117

First, consider the σ2i+2–theory Ti+1 = (ElDiag(Ci) ∩∆) ∪ ElDiag(Di).
The theory Ti+1 is recursive in Li, and therefore low.

We show that Ti+1 is consistent. Otherwise, there exists a finite set of pos-
itive σ2i+2 sentences F (a, b) ⊆ ElDiag(Ci) such that
ElDiag(Di) ` ¬

∧
F (a, b), where a, b are all the constants occurring in F ,

from D2i+1 and D2i respectively. In the case of i = 0 the proof is easier
since b is empty. We focus on the case of i > 0. By the lemma on constants
ElDiag(Di) ` ∀x¬

∧
F (x, b). It follows that ElDiag(Di) ` ∃y ∀x¬

∧
F (x, y).

Therefore Di 6|= ∀y ∃x
∧
F (x, y). The sentence ∀y ∃x

∧
F (x, y) is positive

and in the common language of Ci and Di. Since Ci posDi it follows that
Ci 6|= ∀y ∃x

∧
F (x, y). Therefore Ci 6|= ∃x

∧
F (x, b). But∧

F (a, b) ∈ ElDiag(Ci) which is a contradiction.

Therefore Ti+1 is low and consistent σ2i+2 theory. Let Di+1 be the low
concrete σ2i+2–model obtained by applying the Low Completeness Theorem
(4.2.16) to Ti+1 and to the set of witnesses W2i+2. Then Ci posDi+1, since
Di+1 |= ElDiag(Ci)∩∆. The set Li⊕Di+1 is low. It also holds that |Di+1| ⊆
V2i+2.

Now consider the σ2i+3–theory Si+1 = (ElDiag(Di+1)∩∆−)∪ElDiag(Ci).
Si+1 is recursive in Li ⊕Di+1, thus low.

Suppose for the sake of contradiction that Si+1 is inconsistent. Then
there exists a finite set of sentences F (c, d) ⊆ ElDiag(Di+1) ∩ ∆− such
that ElDiag(Ci) ` ¬

∧
F (c, d), c are all the constants from D2i+1 occur-

ring in F and d are all the constants from D2i+2 occurring in F . Let G be
the corresponding set of positive sentences whose negations are in F . Then
ElDiag(Ci) ` ∃x¬

∧
F (x, d) and by the lemma on constants ElDiag(Ci) `

∀y ∃x¬
∧
F (x, y), and therefore ElDiag(Ci) ` ∀y ∃x

∨
G(x, y). Since

∀y ∃x
∨
G(x) is a positive σ2i+1–sentence and Ci posDi+1, we have that

Di+1 |= ∀y ∃x
∨
G(x, y). This is a contradiction, since we have Di+1 |=

∃y ∃x
∧
F (x, y).

Let Ci+1 be the low concrete σ2i+3–model obtained by applying the Low
Completeness Theorem to Si+1 and to the set of witnesses W2i+3. Then we
have that Li+1 = Li ⊕ Ci+1 ⊕Di+1 is low. We have |Ci+1| ⊆ V2i+3.

We show that Ci+1 posDi+1. Let ψ be a positive sentence such that
Ci+1 |= ψ. Suppose for the sake of contradiction that Di+1 6|= ψ. Then
Di+1 |= ¬ψ. Therefore, since Ci+1 |= ElDiag(Di+1) ∩ ∆−, it holds that
Ci+1 |= ¬ψ. This contradicts the assumption.

Observe that for each i ∈ ω, since Di+1 |= ElDiag(Ci) ∩ ∆, there is a
canonical concrete homomorphism fi from (Ci, c)c∈|Ci| to Di+1 such that for
c ∈ |Ci|, fi(c) is the interpretation in Di+1 of the constant naming c in Ci. Du-
ally for i ∈ ω, since Ci+1 |= ElDiag(Di+1)∩∆−, there is a canonical concrete
function gi+1 from |Di+1| to |Ci+1| such that gi+1(d) is the interpretation in
Ci+1 of the constant naming d in Di+1.

118

Moreover, since Ci+1 |= ElDiag(Ci) and Di+1 |= ElDiag(Di), by Lemma
4.1.17 there are concrete elementary embeddings e0

i from Ci into the reduc-
tion of Ci+1 to the common vocabulary and e1

i from Di into the reduction of
Di+1 to the common vocabulary.

We have the following diagram:

A

B

C0

D0

C1

D1

C2

D2

. . .

. . .

f0 f1

e0
0 e0

1 e0
2

e1
0 e1

1 e1
2

g1 g2

∼=

∼=

By the arguments analogous to those presented in the previous proof,
the entire construction can be performed concretely. (Ci)i∈ω and (Di)i∈ω are
jump–concrete sequences of concrete models and they satisfy the assump-
tions of Theorem 4.1.22.

Therefore, by Theorem 4.1.22, for each i ∈ ω there are concrete σ–
models Ai and concrete isomorphisms j0

i from Ai into the reduction of Ci to
σ. Similarly, there are also concrete models Bi and concrete isomorphisms
j1
i from Bi to the reduction of Di to σ.

Moreover, since concrete embeddings e0
i and e1

i are elementary, (Ai)i∈ω
and (Bi)i∈ω are concrete elementary chains of concrete models.

Let Aω and Bω be sums of these concrete elementary chains of concrete
models (their existence is provided by Theorem 4.2.43).

Then, for i ∈ ω, hi,i+1 = (j1
i+1)−1 ◦ fi ◦ j0

i is a concrete homomorphism
from Ai into Bi+1. For i > 0, hi,i = (j0

i)−1◦gi◦j1
i is a concrete function from

|Bi| into |Ai|. It is easy to see that for i > 0 it holds that h−1
i+1,i+1 ⊆ hi+1,i+2.

Moreover for i ∈ ω it holds that hi,i+1 ⊆ hi+1,i+2.
We define hω =

⋃
i∈ω hi,i. Observe that hω is a concrete homomorphism

and it is onto.

We have the following diagram:

A

B

A0

B0

A1

B1

A2

B2

. . .

. . .

Aω

Bω

h0,1 h1,2

∼=

∼=

4 4 4 4

4 4 4 4

h0,1 h1,2 hω

119

Since Aω |= T and T is preserved under concrete homomorphisms, we
have that Bω |= T and therefore B0 |= T . Since B0 is concretely isomorphic
to D0 which is concretely isomorphic to B then also B |= T . Then, by Lemma
4.2.44 T has a set of positive axioms.

�

Note that in this section we considered consistent recursive theories. The
results presented above can be naturally strengthened to consistent, recur-
sively enumerable theories. This can be obtained by means of Craig’s theo-
rem stating that every recursively enumerable theory has a recursive set of
axioms. Moreover the procedure of finding a recursive axiomatisation of a
recursively enumerable theory is recursive. Therefore, for every recursively
enumerable theory we may take its recursive axiomatisation and prove the
theorems presented in this section for this axiomatisation.

4.2.5 Craig’s Interpolation Lemma and Robinson’s Joint Con-
sistency Theorem

In this section we consider two theorems that are very useful in the axiomatic
model theory – Craig’s interpolation lemma and Robinson’s joint consistency
theorem. Let us first state both theorems.

Theorem 4.2.48 (Craig’s Interpolation Lemma) Let ϕ,ψ be σ1 and σ2

sentences respectively and let ϕ |= ψ. The there is a σ1 ∩ σ2 sentence ϑ such
that ϕ |= ϑ and ϑ |= ψ.

Theorem 4.2.49 (Robinson’s Joint Consistency Theorem) Let T be
a consistent and complete theory in vocabulary σ0. Let σ1 and σ2 be vo-
cabularies such that σ0 = σ1 ∩ σ2. Let T1, T2 be consistent σ1, σ2 theories
respectively such that T ⊆ T1 ∩ T2. Then theory T1 ∪ T2 is consistent.

Both the above–mentioned theorems give us some insight on how dif-
ferent languages interact. The statement of Craig’s interpolation lemma for
concrete models framework requires only to understand |= symbol as it was
introduced in Section 4.1 instead of the standard model–theoretic interpre-
tation as well as understanding σ1 and σ2 as concrete vocabularies.

The original proof of Craig’s interpolation lemma (see [Cra57]) was per-
formed in the sequent calculus. It is then purely syntactic and constructive,
since it provides us with an algorithm which takes sentences ϕ,ψ such that
ϕ |= ψ as an input and computes the interpolant for them. This tells us that
Craig’s lemma holds for concrete models framework and so does the closely
related to it Robinson’s joint consistency theorem.

Note that we have presented the syntactic version of the Robinson’s joint
consistency theorem stating that the sum T1∪T2 of theories is consistent. In
the axiomatic model–theory there is an equivalent formulation of Robinson’s

120

joint consistency theorem stating that T1 ∪ T2 has a model. In the concrete
models context those two formulation are not equivalent since the Concrete
Completeness Theorem (4.2.10) requires that the set of consequences of a
theory is concrete. In the case of Robinson’s joint consistency theorem, for
concrete theories T1, T2, consequences of T1 ∪ T2 may be Σ0

2–complete and
therefore there may be no concrete model of T1 ∪ T2.

Since we are especially interested in model–theoretic constructions, we
would like to consider Robinson’s construction which was originally used in
the proof of his theorem (see [CK73]). However we consider this construction
in the context of Craig’s interpolation lemma.

We show that Robinson’s construction fails in the final step i.e. we cannot
expect a, so called, glued model to be concrete. First, let us define what we
mean by a glued model.

Definition 4.2.50 (Glued Structures and Models)
Let σ1 = (P1, . . . , Pm, ar, ϕC) and σ2 = (S1, . . . , Sk, ar

′, ϕD) be concrete vo-
cabularies. Let F = (ϕU , ϕP1 , . . . , ϕPm , ϕU,C) and let
G = (ψU , ψS1 , . . . , ψSk

, ψV,D) be concrete σ1 and σ2 structures respectively.
Moreover, let ϕU and ψU FM–represent the same set U and the interpre-
tations of constants FM–represented by ϕC,U and ϕV,D agree on constants
from σ1 ∩ σ2.

Then F∗G = (ϕU , ϕP1 , . . . , ϕPm , ψS1 , . . . , ψSk
, ϕU,C∨ψV,D) is a concrete–

σ1 ∪ σ2 structure. We say that F ∗ G is glued from F and G.
Let A = (F , ϕ|=) and B = (G, ψ|=) be concrete σ1 and σ2 models respec-

tively. We say that a concrete σ1 ∪ σ2–model C = (F ∗ G, θ|=) is glued from
A and B, denoted by C = A ∗ B.

The failure of the construction is due to the following theorem which tells
that a model obtained by glueing even recursive models may not be concrete.

Theorem 4.2.51 There are concrete models A,B such that there is no con-
crete model A ∗ B.

Proof: We prove even stronger fact, namely that there are recursive
concrete models A, B, such that A ∗ B is not arithmetical.

Let ϕω FM–represent ω, ϕ+ FM–represent the ternary relation of addi-
tion on the natural numbers R+ and ϕ× FM–represent the ternary relation
of multiplication on the natural numbers R×.

The concrete structure F = (ϕω, ϕ+) FM–represents the standard model
of Presburger’s arithmetic. The satisfaction relation R|= in F is recursive.
Let ϕ|= FM–represent R|=. Let A = (F , ϕ|=). Note that A is recursive.

Similarly the concrete structure G = (ϕω, ϕ×) FM–represents the stan-
dard model of Skolem’s arithmetic. The satisfaction relation S|= in G is also
recursive. Let ψ|= FM–represent S|=. Let B = (G, ψ|=). Note that B is recur-
sive.

121

Then the concrete structure F ∗ G FM–represents the standard model of
arithmetic of addition and multiplication. The satisfaction relation in F∗G is
not arithmetical and therefore it cannot be FM–represented by any formula
θ|=. Thus there is no concrete model C = A ∗ B. �

Similarly as in Section 4.2.3, we present the Robinson’s construction used
in the proof of Craig’s interpolation lemma, since we are interested rather in
feasibility of the constructions than the results themselves.

Robinson’s construction uses two elementary chains – a tower – of models
which are interlaced by the common stem. This common stem is the com-
plete, consistent theory in the common language. The Low Completeness
Theorem (4.2.16) and Theorem 4.1.22 enable us to construct the desired
tower of concrete models. Lemma 4.2.43 on the existence of the sum of el-
ementary concrete chains proven in the previous section, allows us to sum
those chains to get two concrete models in languages σ1 and σ2 with the
same universe.

However, at the last stage of the proof, a sudden problem appears. In
the axiomatic model theory it is sufficient to glue the two models together
by simply taking relations from both of them into one common model. Such
a construction is not admissible in the concrete models framework as it is
shown by Theorem 4.2.51.

Let us now show how the Robinson’s construction is used to prove the
Craig’s lemma. The construction is performed in concrete models until the
last step which is shown to be illegal in this framework.

Let us fix ϕ and ψ such that ϕ |= ψ. The model–theoretic proof of Craig’s
interpolation lemma goes by showing that if there was no interpolant for ϕ
and ψ, then there would be a model of ϕ∧¬ψ which would contradict ϕ |= ψ.
Let us therefore assume that there is no interpolant for ϕ and ψ.

Let us introduce a convenient notation: σ0 = σ1 ∩ σ2, σ3 = σ1 ∪ σ2.
By the assumption, there is no σ0 sentence ϑ such that ϕ |= ϑ and

ϑ |= ψ. Therefore there is also no interpolant in σ0 ∪ C, for any concrete
set of constants C. Otherwise there would be a σ0 ∪ {c1, . . . , ck}–sentence
ϑ(c1, . . . , ck) such that ϕ |= ϑ(c1, . . . , ck) and ϑ(c1, . . . , ck) |= ψ. Since con-
stants c1, . . . , ck do not appear in ϕ, by the lemma on constants we have that
ϕ |= ∀x1 . . . , xk ϑ(x1, . . . , xk). On the other hand, since ϑ(c1, . . . , ck) |= ψ,
then also ∀x1 . . . , xk ϑ(x1, . . . , xk) |= ψ, since ∀x1 . . . , xk ϑ(x1, . . . , xk) |=
ϑ(c1, . . . , ck). This would mean that ∀x1 . . . , xk ϑ(x1, . . . , xk) is a σ0 inter-
polant for ϕ and ψ which contradicts the assumption.

Before proceeding to the construction itself let us take care of degenerate
cases, which in this context are:

1. ϕ is not satisfiable,

2. ψ is valid.

122

In the case of 1, the sentence ∃xx 6= x would be an interpolant contra-
dicting the assumption. In the case of 2, ∃xx = x would be an interpolant
yielding, again, a contradiction. We can therefore assume that ϕ is satisfiable
and that ψ is not valid i.e. ¬ψ is satisfiable.

In the construction in axiomatic model theory the aim is to construct
a model of ϕ ∧ ¬ψ to get the contradiction with ϕ |= ψ. This aim is not
achievable in the concrete models framework, but since it fails in the final
step, and the previous are feasible in the concrete models framework, we
present them below.

We start with a definition of separable theories.

Definition 4.2.52 (Separable Theories) Theories T1 in a concrete vo-
cabulary σ1 and T2 in a concrete vocabulary σ2 are separable if there is a
σ1 ∩ σ2 sentence ϑ such that T1 ` ϑ and T2 ` ¬ϑ.

If there is no such sentence we call them inseparable.

Therefore {ϕ} and {¬ψ} are inseparable.

Let R be a recursive set such that D = {cr : r ∈ R} is a recursive set
of new constants. We want to construct a low CCW(σ0 ∪ D,D) theory A
such that both theories A∪{ϕ} and A∪{¬ψ} are inseparable and therefore
consistent.

Consider Thσ0∪D,D∅ – the family of Henkin–style extensions of the empty
theory labelled by nodes of the full binary tree. Such families were useful
in the proof of the Low Completeness Theorem (4.2.16). Further we omit
the superscripts σ0∪D,D. Instead of considering CON(Th∅), we need some
other operator such that not only it leaves the infinite branches through Th∅
whose theories are consistent. We want to define an operator such that when
applied it leaves only infinite paths f ∈ 2ω such that for every i ∈ ω, the
theories Th∅(f�i)∪{ϕ} and Th∅(f�i)∪{¬ψ} are inseparable. Of course this
new operator cannot increase the complexity of the tree.

We use the same trick as with introducing the n–provability notion in
the definition of CON. Observe that separability of theories A, B can be
expressed as a Σ1–formula relative to A and B.

Sep(A,B) ≡df ∃k, l1, l2 Sentσ0(k) ∧ ProvA(k, l1) ∧ ProvB(Neg(k), l2).

Since in our case A = {ϕ} and B = {¬ψ} are recursive theories, their
inseparability is expressible by a regular Σ1–sentence.

We may introduce a recursive notion of n–separability in the following
way:

n−Sep(A,B) ≡df ∃k, l1, l2 6 n Sentσ0(k)∧ProvA(k, l1)∧ProvB(Neg(k), l2).

Of course theories A,B are inseparable, therefore for every n ∈ ω they

123

are not n–separable. Finally, we define the operator INSEPA,B:

INSEPA,B(ThT) =df {τ ∈ 2<ω :

it is not the case that lh(τ)− Sep(ThT (τ) ∪A,ThT (τ) ∪B)}.

We consider the recursive tree INSEP{ϕ},{¬ψ}(Th∅). First, note that the
family [INSEP{ϕ},{¬ψ}(Th∅)] of infinite branches through
INSEP{ϕ},{¬ψ}(Th∅) is not empty.

Lemma 4.2.53 [INSEP{ϕ},{¬ψ}(Th∅)] 6= ∅.

Proof: We show that INSEP{ϕ},{¬ψ}(Th∅) has arbitrarily long branches.
It is sufficient to show that for every n ∈ ω there is τ such that lh(τ) = n
and theories Th∅(τ)∪ {ϕ} and Th∅(τ)∪ {¬ψ} are inseparable. We proceed
by induction on n ∈ ω.

For the base step assume that n = 0. Then τ = ε. Then Th∅(ε) = ∅
and theories {ϕ} and {¬ψ} are inseparable by the assumption.

For the inductive step suppose that for some τ such that lh(τ) = n
theories Th∅(τ) ∪ {ϕ} and Th∅(τ) ∪ {¬ψ} are inseparable.

Suppose n = 2i+1. Then, since theories Th∅(τ)∪{ϕ} and Th∅(τ)∪{¬ψ}
are inseparable ψi or ¬ψi is consistent with them both. Therefore ether
theories Th∅(τ0)∪{ϕ} and Th∅(τ0)∪{¬ψ} or theories Th∅(τ1)∪{ϕ} and
Th∅(τ1) ∪ {¬ψ} are inseparable.

Suppose n = 2i. Then, for k = 0, 1 the theories Th∅(τk) and Th∅(τk)
are both equal to Th∅(τ) ∪ {∃v0 ϕi(v0) ⇒ ϕi(d)} for some new constant d.
If Th∅(τk)∪ {ϕ} and Th∅(τk)∪ {¬ψ} were separated by a formula θ, then
θ would also separate Th∅(τ) ∪ {ϕ} and Th∅(τ) ∪ {¬ψ} which contradicts
the assumption. �

Therefore [INSEP{ϕ},{¬ψ}(Th∅)] is not empty. Moreover, for every f ∈ 2ω

if f ∈ [INSEP{ϕ},{¬ψ}(Th∅)], then theories Thf,∅∪{ϕ} and Thf,∅∪{¬ψ} are
inseparable, and therefore consistent. Otherwise, they would be n–separable
for some n ∈ ω. Therefore, for some i ∈ ω theories Th∅(f�i) ∪ {ϕ} and
Th∅(f�i) ∪ {¬ψ} would be n–separable. Therefore, for l = max{i, k} theo-
ries Th∅(f�l)∪{ϕ} and Th∅(f�l)∪{¬ψ} would be l–separable. Thus f�l 6∈
INSEP{ϕ},{¬ψ}(Th∅). This would contradict the fact that
f ∈ [INSEP{ϕ},{¬ψ}(Th∅)].

It is easy to show, by the arguments similar to those from Section 4.2.1,
that if f ∈ [INSEP{ϕ},{¬ψ}(Th∅)], then that Thf,∅ is a CCW(σ0∪D,D). By
the Low Basis Theorem we obtain a low set f such that
f ∈ [INSEP{ϕ},{¬ψ}(Th∅)]. Let A = Thσ0∪D,D∅,f .

Therefore, A∪{ϕ} and A∪{¬ψ} are inseparable, consistent low theories.
Our aim is to build the following tower of concrete models:

124

A0

B0

A1

B1

A2

B2

. . .

. . .

Aω

Bω

4 4 4 4

4 4 4 4

The dashed arrows above are shown to be elementary embeddings of the
reductions of concrete models to the common vocabulary σ0.

Similarly as in previous constructions, we start with the construction of
auxiliary concrete models Ci and Di.

Let R0, R1, . . . , V0, V1, . . . be pairwise disjoint recursive sets such that:

• i 7→ pRiq is recursive,

• i 7→ pViq is recursive,

• for i ∈ ω, Di = {cr : r ∈ Ri} is a set of new constants,

• for i ∈ ω, Wi = {cr : r ∈ Vi} is a set of new constants.

In the argument presented below, for each i ∈ ω we define ElDiag(Ci) taking
new constants from D2i, and ElDiag(Di) taking new constants from D2i+1.
Constants from setsWi are the witnesses used while applying the Low Com-
pleteness Theorem (4.2.16).

For i = 0, 1, 2 and k ∈ ω let σki = σi ∪D ∪
⋃
j<kDj .

We define the tower of low models as follows. For i ∈ ω, we want what
follows:

• T0 = A ∪ {ϕ},
• Ci is the concrete σ2i

1 –model obtained by applying the Low Complete-
ness Theorem (4.2.16) to Ti and to the set of witnesses W2i,

• S0 = (ElDiag(C0) ∩ Sentσ1
0
) ∪ {¬ψ},

• Di is the concrete σ2i+1
2 –model obtained by applying the Low Com-

pleteness Theorem (4.2.16) to Si and to the set of witnesses W2i+1,

• Ti+1 = (ElDiag(Di) ∩ Sentσ2i+2
0

) ∪ ElDiag(Ci),

• Si+1 = (ElDiag(Ci+1) ∩ Sentσ2i+3
0

) ∪ ElDiag(Di).

125

For i ∈ ω, let Li =
⊕

m6i Cm ⊕Dm.
By induction we show that this construction is proper – it is sufficient to

show that for every i ∈ ω the sets Ti and Si are low and consistent. Then, by
the Low Completeness Theorem (4.2.16), we obtain the desired low concrete
models.

Let i = 0. The theory T0 is low and consistent by the previous arguments.
Obviously A ⊆ T0. Let C0 be the concrete σ0

1–model obtained by the Low
Completeness Theorem (4.2.16) applied to T0 and to the set of witnesses
W0. Then A⊕ C0 is low. Moreover, C0 |= A and |C0| ⊆ V0.

We have S0 = (ElDiag(C0) ∩ Sentσ1
0
) ∪ {¬ψ}, where new constants to

define ElDiag(C0) are from D0. Therefore S0 is recursive in C0, thus low, σ1
2

theory.

We show that S0 is consistent. Otherwise, there would be a finite set
F ⊆ ElDiag(C0) such that ¬ψ ` ¬

∧
F (d), such that d are all constants from

D0 appearing in F . Then, by the lemma on constants ¬ψ ` ∀x¬
∧
F (x).

On the other hand,
∧
F (d) ∈ ElDiag(C0), and therefore ∃x

∧
F (x) is a σ0–

sentence true in C0. Then, ∃x
∧
F (x) ∈ A, and thus it is not the case that

¬ψ ` ¬∃x
∧
F (x). This contradicts the assumption.

Therefore, S0 is low and consistent. Let D0 be the concrete σ1
2–model

obtained by applying the Low Completeness Theorem (4.2.16) to S0 and to
the set of witnesses W1. Then, |D0| ⊆ V1 and L0 = D0⊕C0 is low. Moreover,
D0 |= S0. This ends the base step.

For the inductive step suppose that the concrete models Ci, Di such that
Ci |= Ti and Di |= Si are constructed. Moreover, suppose that Li is low.

The σ2i+2
1 –theory Ti+1 = (ElDiag(Di)∩ Sentσ2i+2

0
)∪ElDiag(Ci) is recur-

sive in Ci ⊕Di, and therefore in Li, thus low.

We show that Ti+1 is consistent. Otherwise, there would be a finite set of
σ2i+2

0 –sentences F ⊆ ElDiag(Di) such that ElDiag(Ci) ` ¬
∧
F (d), where d

are all the constants from D2i+1 appearing in F . By the lemma on constants
it would follow that ElDiag(Ci) ` ∀x¬

∧
F (x). Therefore, ∀x¬

∧
F (x) is a

σ2i+1
0 –sentence and ∀x¬

∧
F (x) ∈ ElDiag(Ci). Since Di |= Si, we have also

Di |= ∀x¬
∧
F (x). This contradicts that fact that F ⊆ ElDiag(Di).

Therefore, Ti+1 is a low consistent σ2i+2
1 –theory. Let Ci+1 be the low

concrete σ2i+2
1 –model obtained by applying the Low Completeness Theorem

(4.2.16) to Ti+1 and to the set of witnesses W2i+2. Then Li⊕Ci+1 is low and
|Ci+1| ⊆ V2i+1. Moreover, Ci+1 |= Ti+1.

The σ2i+3
2 –theory Si+1 = (ElDiag(Ci+1) ∩ Sentσ2i+3

0
) ∪ ElDiag(Di) is re-

cursive in Li ⊕ Ci+1, and therefore low.

If Si+1 was inconsistent, there would be a finite set of σ2i+3
0 –sentences

F (d) ⊆ ElDiag(Ci+1) such that ElDiag(Di) ` ¬
∧
F (d) and d are all the

126

constants from D2i+2 appearing in F . By the similar arguments as in the
case of Ti+1 it would contradict the fact that Ci+1 |= Ti+1.

Therefore, Si+1 is a low consistent theory. Let Di+1 be the low concrete
σ2i+3

2 –model obtained by applying the Low Completeness Theorem (4.2.16)
to Si+1 and to the set of witnesses W2i+2. Then Li+1 = Li ⊕Di+1 ⊕ Ci+1 is
low and |Ci+1| ⊆ V2i+1. Moreover, Ci+1 |= Ti+1.

The construction is concrete by the arguments similar to those presented
in the previous sections, since it uses only the Low Completeness Theorem
(4.2.16) applied to boolean combinations of concrete theories. Therefore, the
maps i 7→ pC∗i q and i 7→ pD∗i q are concrete. Hence (Ci)i∈ω and (Di)i∈ω are
jump–concrete sequences of low concrete models.

For each i ∈ ω,
⊕

j6i Cj ⊕ Dj is low. Moreover, the universes of the
concrete models are all disjoint and contained in some disjoint recursive sets
Vi such that i 7→ pViq is recursive.

Consider reductions C0
i and D0

i of Ci to σ2i
0 and Di to σ2i+1

0 respectively.
Then, for i ∈ ω it holds that D0

i |= Diag(C0
i) and C0

i+1 |= Diag(D0
i). Then

the jump–concrete sequence of concrete models C0
0 ,D0

0, C0
1 ,D1, . . . satisfies

the assumptions of Theorem 4.1.22. Therefore, there is a concrete chain of
concrete σ0–models Ã0, B̃0, Ã1, B̃1, . . . and concrete isomorphisms gi from
Ãi to the reduction of C0

i to σ0 and hi from B̃i to the reduction of D0
i to

σ0. For every i ∈ ω, let Ai be the concrete σ1–model obtained by taking the
co–image of the reduction of Ci to σ1 under gi and let Bi be the concrete σ2–
model obtained by taking the co–image of the reduction of Di to σ2 under
hi. These models are concrete by Lemma 4.1.10.

Note that for i ∈ ω it holds that Ci+1 |= ElDiag(Ci) and Di+1 |=
ElDiag(Di). Therefore, (Ai)i∈ω and (B)i∈ω are concrete elementary chains
of concrete models. By Theorem 4.2.43 there exists the concrete σ1–model
Aω =

⋃
i∈ωAi and the concrete σ2–model Bω =

⋃
i∈ω Bi.

Moreover, by the construction it holds that |Aω| = |Bω|. In the axiomatic
model theory it is sufficient to perform a glueing of these two models to
obtain a model of in the full language σ1 ∪ σ2 in which ϕ∧¬ψ is true. Such
a glueing, however, is not admissible in the concrete models framework. The
full picture is as follows.

A0

B0

A1

B1

A2

B2

. . .

. . .

Aω

Bω

Aω ∗ Bω

4 4 4 4

4 4 4 4

One may note that that the concrete models Aω and Bω are not neces-
sarily low. If we were able to perform the construction in such a way as to

127

ensure that those concrete models are low, we might be able to take a low
Th(Aω)∪Th(Bω) and use the Low Completeness Theorem (4.2.16) to obtain
a low concrete (σ1 ∪σ2)–model. First, let us note that such a construction is
possible. We may use the notion of n–separability and the operator INSEP
to directly construct low (with the same Turing degree) theories T1 and T2

such that T1 is a CCW(σ1 ∪D,D) and T2 is a CCW(σ2 ∪D,D). We could
obtain low concrete models Aω |= T1 and Bω |= T2 from these theories. We
would get that T1 ∪ T2 is low, and therefore its consequences are concrete.
But there would be no obvious way to show that T1 ∪ T2 is consistent. The
consistency of T1∪T2 for arbitrary theories obtained this way would actually
be equivalent to the syntactic formulation of the Robinson’s joint consistency
theorem and therefore to the Craig’s lemma itself, which we would like to
prove by this argument. Moreover, such a construction would bypass the
Robinson’s construction which we were particularly interested in.

4.3 A Note on the Usage of Resources in the Con-
crete Constructions

As we declared earlier, we want to elaborate on the usage of resources in the
concrete model–theoretic constructions. In previous sections we have shown
how to build various concrete chains and towers of concrete models. This is
done by constructing concrete sequences of low concrete models which satisfy
the assumptions of Theorem 4.1.22.

First, observe that these constructions cannot be, in general, extended
beyond ω steps. Concrete models obtained by them are not necessarily low
whereas all of our constructions require that we start with low concrete mod-
els. However, if resulting concrete models are low, there are no contraindica-
tions to use them as starting models in further constructions.

We also need to justify our assumption from the beginning of this chapter.
Namely we need to justify that we can always assume that we can take a
set or a recursive family of sets of new constants. This may seem impossible,
since we have only a limited number of constants in the language – namely:
c0, c1,

In our constructions we needed at most ω ·2 infinite sets of new constants.
We could have indexed these sets more carefully so that only ω sets of new
constants are needed. Then it is simple to devise a notation, with desired
properties, for such families of constants.

Let A be a recursive set and let a0, a1, . . . be its effective presentation.
First, we take A2 = {a2i : i ∈ ω}. This is to ensure that after performing
the construction there is still a recursive set, namely, {a2i+1 : i ∈ ω} left for
further constructions. For i ∈ ω let bi = a2i and let B = {bi : i ∈ ω} = A2.
For i ∈ ω we define recursive subsets Ci of B such that:

1.
⋃
i∈ω Ci is recursive,

128

2. i 7→ pCiq is recursive,

3. ind :
⋃
i∈ω Ci → ω, such that ind(c) = i if and only if c ∈ Ci, is

recursive.

Note that 1 and 2 imply 3 and we add this last point just for clarity. For
i ∈ ω we put Ci = {bp1+k

i
: k ∈ ω}. Each Ci can be used as a set of indices of

new constants. It is easy to see that this definition satisfies our requirements.
This allows performing each model–theoretic construction presented in this
chapter.

In fact, we could devise notations for way more than just ω recursive sets
of new numbers, satisfying conditions:

1.
⋃
β∈αCβ is recursive,

2. pβq 7→ pCβq is recursive,

3. ind :
⋃
β∈αCβ → α, such that ind(c) = pβq if and only if c ∈ Cβ , is

recursive.

To be precise, we need a proper notation for ordinal numbers 6 α i.e. we
need to define pβq.

In [Kle38] Kleene considered notations for ordinal numbers. He proposed
an encoding of ordinal numbers such that the successor and the limit of a
recursive increasing ω–sequence of ordinal numbers is easily computable. His
notation system captures all recursive ordinal numbers. The limit of Kleene’s
system – the first non–recursive ordinal number – is denoted by ωCK1 . The
class of all recursive ordinal numbers is denoted by O. We can use Kleene’s
notation for our purposes.

4.4 Beyond Concrete Foundations, Open Problems
and Further Work

4.4.1 Summary of the Concrete Model Theory

In Section 4.2 we have investigated well known model–theoretic construc-
tions from the axiomatic model theory. We have shown which of these con-
structions may be performed in the concrete models framework. Section 4.2
may leave an impression that one needs to deal very cautiously with con-
crete models. There is a lot of arguments which are natural in the axiomatic
model theory, and which lead to obtaining non–concrete models from con-
crete models. In this section we summarise our knowledge about the concrete
model theory. We also state some open problems and further development
paths for the concrete model theory.

The first, not very surprising, observation is that all concrete models are
at most countable. Therefore, a large part of the axiomatic model theory,

129

concerning higher cardinalities, is automatically excluded from the concrete
models framework. This is intended, since concrete models are those which
are representable without actual infinity, whereas uncountable cardinalities
are certainly not.

We show that some constructions that are natural in the axiomatic
model theory are not admissible in the concrete models framework. The-
orem 4.2.39 shows that a recursive chain of recursive models may sum to
a non–arithmetical model, far beyond the concrete models framework. An-
other construction which leads from concrete models to non–concrete models
is model glueing. Model glueing makes one model from two models which
have the same universe (but maybe different relations), by taking all rela-
tions from both models altogether. Theorem 4.2.51 shows that a model glued
from two concrete models may be even non–arithmetical.

In this chapter we also show a general difficulty in constructing concrete
chains and towers of concrete models. In Theorem 4.1.18 we show that we
cannot reason up to an isomorphism as freely as in the axiomatic model
theory. We show that from the fact that A |= Diag(B) we cannot, in gen-
eral, infer that (B, b)b∈|B| is concretely isomorphic to a concrete submodel of
A. Such inferences are very common in classical versions of model–theoretic
constructions which we consider. In the axiomatic model theory such rea-
sonings are justified by the fact that an image of an isomorphism of models
is also a model. If A |= Diag(B), then there is an isomorphism f such that
f [(B, b)b∈|B|] ⊆ A. However, the image of a set is defined with the use of
an unbounded existential quantification. Taking an image of a set increases
Turing degree by a jump. Therefore, an image of a concrete model, under a
concrete isomorphism, may be a non–concrete model. This problem is solved
by Theorem 4.1.22 which enables us to construct concrete chains and con-
crete towers of concrete models. Theorem 4.1.22 is essential in our concrete
reconstructions of the classical model–theoretic constructions.

It is worth noting that the Concrete Completeness Theorem (4.2.10) is
not as universal as the Completeness Theorem from the axiomatic model
theory. It requires the consequences Cn(T) of a theory T to be concrete, to
infer that there exists a concrete model of T . Therefore, there are concrete,
syntactically consistent theories with no concrete models. Such theories ap-
pear in the discussion of Robinson’s joint consistency theorem, semantic and
syntactic versions of which are not equivalent in the concrete context. This
is why the Concrete Completeness Theorem (4.2.10) was not sufficient for
performing model–theoretic constructions requiring iterative constructions
of concrete models. On the other hand, the Low Completeness Theorem
(4.2.16) is perfectly suitable for these purposes, since it produces low con-
crete models of low theories. Therefore, consistency of a low theory T is
equivalent to the existence of a low concrete model of T .

In Section 4.2.4 we have shown that even though we cannot, in general,
sum concrete chains of concrete models, by Theorem 4.2.43, if the concrete

130

chain is elementary, then the sum exists. This enables us to perform vari-
ous model–theoretic constructions (see Sections 4.2.4 and 4.2.5). Being able
to sum concrete elementary chains of concrete models, we prove Preserva-
tion Theorems (4.2.45, 4.2.47) for recursive (in fact recursively enumerable)
theories.

4.4.2 A Comparison with Experimental Logics

An interesting consequence about a large class of concrete models can be
drawn from a theorem presented by Jeroslow in [Jer75], where experimen-
tal logics are considered. This are trial–and–error systems that learn their
theorems over time. Experimental logics are just ternary recursive predicates
H(t, x, y) with the intended meaning: at time t, the finite sequence with Gödel
number y is accepted as a proof of the sentence with Gödel number x. The
definition is very broad as there are no further requirements for being ac-
cepted as a proof. There are two important notions regarding experimental
logics. The theorems of an experimental logic H are defined by:

RecH(x) ≡df ∀t∃s > t ∃y H(s, x, y),

which means that the sentence with Gödel number x is provable in infinite
number of points in time. Another very important notion is the notion of
stability of a sentence:

StblH(x) ≡df ∃t ∃y ∀s > tH(s, x, y),

which means that there is a point in time after which the sentence with
Gödel number x is always provable. One may see a similarity between stable
sentences in experimental logics and sentences true in FM–domains with
respect to sl–semantics.

Jeroslow focuses on convergent experimental logics i.e. those H for which
it holds that for every x, RecH(x) ≡ StblH(x). In his paper the following
theorem is shown:

Theorem 4.4.1 ([Jer75]) The sets of theorems of convergent experimental
logics are exactly ∆0

2 sets.

For instance, elementary diagrams of concrete models may be seen also
as theorems of some convergent experimental logic. The following theorem
comes from [Jer75].

Theorem 4.4.2 ([Jer75]) Let H be a consistent, convergent, experimental
logic whose theorems contain PA and are closed under first order reasonings.
Then, there is a Π1–sentence unprovable in H which is true in N .

As a corollary we obtain that every concrete model A of PA satisfies a
false (in N) Σ1–sentence. This follows from the fact that the theory Th(A)
satisfies the assumptions of Theorem 4.4.2.

131

4.4.3 Paths of Further Investigations

In this section we present some remarks on the open problems of concrete
model theory and possible directions of further investigations in this field.

One obvious path of further investigations of concrete foundations of
mathematics is further recognition of classical model–theoretic constructions
and theorems fitting the concrete models framework. Recursively saturated
models and their use in model theory are particularly interesting. Another
topic concerns transferring the method of ultrafilters to concrete model the-
ory.

Another path of further development we emphasise, concerns low sets.
Low sets appear not to be sufficiently well–researched. A comprehensive
study on low sets would bring a lot of insight into model–theoretic con-
structions admissible in concrete models framework. Knowing some decent
properties of low sets would significantly simplify the work with concrete
models. One of the problems concerning low sets that appeared in this chap-
ter concerns with sequences of concrete models. Constructions of sequences
of concrete models presented in this chapter have a common stem. They
start with low concrete models A, B and proceed by defining some recursive
(or recursive in A⊕B) operations to obtain a consistent, recursive in A⊕B
theory. Then, the Low Completeness Theorem is applied to this theory to
obtain the next low concrete model in a sequence. Theorem 4.1.22 is ap-
plied to extract a concrete chain of concrete (not necessarily low) models.
We can switch to the approach of Sacks, presented in [Sac72], and consider
concrete directed systems of low concrete models instead of concrete chains
of concrete models. However, to compute the limit of a concrete directed
system of low concrete models A0 ↪→ A1 ↪→ . . . , one requires

⊕
i∈ωAi as an

oracle. Possibility of continuing model–theoretic constructions after reaching
the limit requires that this limit should be a low concrete model. It remains
an open question whether the constructions we consider have this property
and, if they do not have it, whether they can be improved.

Last but not least, a very interesting path of further study is considering
partial models. A partial model is a model whose structure is concrete, but
only a part i.e. some subset of the satisfaction relation is concrete. Relaxing
the requirement on the satisfaction relation would be very helpful even in
the context of the work presented in this chapter. Recall that in Sections
4.2.3 and 4.2.5 we present some negative results – constructions which fail
for concrete models. Observe that in both cases we construct a partial model
which is not necessarily concrete (by summing a concrete Σn chain of concrete
models and by glueing two concrete models). Similarly, in the original proof of
the Gödel’s completeness theorem, we only know that a irrefutable sentence
ϕ is true in the model obtained by the construction, whereas the entire
satisfaction relation – firstly: is not of the main concern, and secondly: may
be not concrete. Partial models would also enable us to consider the standard

132

model of arithmetic – N , while in the concrete models framework N simply
does not exist.

133

Bibliography

[Aria] Aristotle. Physics. Circa 350 BC. English translation in Hardie,
R. P. and Gaye, R. K. url:
http://classics.mit.edu/Aristotle/physics.html.

[Arib] Aristotle. Posterior Analytics. Circa 350 BC. Oxford:
B.H. Blackwell. English translation in G. R. G. Mure. url:
http://classics.mit.edu/Aristotle/posterior.html.

[AZ11] Z. Adamowicz and P. Zbierski. Logic of Mathematics: A Mod-
ern Course of Classical Logic. Pure and Applied Mathematics: A
Wiley Series of Texts, Monographs and Tracts. Wiley, 2011.

[Boo93] G. Boolos. The logic of provability. Cambridge University Press,
1993.

[CK73] C. C. Chang and J. Keisler. Model Theory. Studies in Logic and the
Foundations of Mathematics. North-Holland, 1973. Third edition,
1990.

[Cra57] W. Craig. Three uses of the Herbrand–Gentzen theorem in relating
model theory and proof theory. The Journal of Symbolic Logic,
22:269–285, 9 1957.

[CZ10] M. Czarnecki and K. Zdanowski. A modal logic of a truth defini-
tion for finite models. In manuscript, 2010.

[Eps79] R. L. Epstein. Degrees of Unsolvability Structure and Theory. Lec-
ture Notes in Mathematics. Springer, 1 edition, 1979.

[Ers73] Yu. L. Ershov. Constructive models. In Selected Problems in Alge-
bra and Logic, pages 111–130. Nauka, Novosibirsk, 1973. In Rus-
sian.

[Ewa05] W. B. Ewald. From Kant to Hilbert, volume 2. OUP Oxford, 2005.

[Fra76] A. A. Fraenkel. Abstract set theory. Studies in logic and the
foundations of mathematics. North-Holland Pub. Co., 1976.

134

[Fre79] G. Frege. Begriffsschrift, eine der arithmetischen nachgebildete
Formelsprache des reinen Denkens. Verlag von Louis Nebert,
Halle, 1879.

[GKP94] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Math-
ematics: A Foundation for Computer Science. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition,
1994.

[Göd30] K. Gödel. Die Vollständigkeit der Axiome des logischen Funktio-
nenkalküls. Monatshefte für Mathematik und Physik, 37(1):349–
360, 1930. English translation in [Göd02a].

[Göd31] K. Gödel. Über Formal Unentscheidbare Sätze der Principia
Mathematica und Verwandter Systeme, I. Monatshefte für
Math.u.Physik, 38:173–198, 1931. English translation in [Göd02b].

[Göd02a] K. Gödel. The completeness of the axioms of the functional cal-
culus of logic. In J. van Heijenoort, editor, From Frege to Gödel:
A Source Book in Mathematical Logic, 1879–1931, pages 582–591.
Harvard University Press, 2002.

[Göd02b] K. Gödel. On formally undecidable propositions of Principia math-
ematica and related systems i. In J. van Heijenoort, editor, From
Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931,
pages 596–617. Harvard University Press, 2002.

[Gol65] E. M. Gold. Limiting recursion. Journal of Symbolic Logic, 30:28–
48, 1965.

[GSP60] C. F. Gauss, H. C. Schumacher, and C. A. F. Peters. Briefwechsel
zwischen C. F. Gauss und H. C. Schumacher. Number vol. 2 in
Briefwechsel zwischen C. F. Gauss und H. C. Schumacher. 1860.

[Har98] V. Harizanov. Pure computable model theory. In Handbook of
Recursive Mathematics - Volume 1: Recursive Model Theory, vol-
ume 138 of Studies in Logic and the Foundations of Mathematics,
pages 3–114. Elsevier, 1998.

[HB39] D. Hilbert and P. Bernays. Grundlagen der Mathematik. Number
vol. 2 in Grundlagen der Mathematik. Springer-Verlag, 1939.

[Hea56] T. L. Heath. The Thirteen Books of the Elements. Number vol. 1.
Dover Publications, 1956.

[Hil26] D. Hilbert. Über das Unendliche. Mathematische Annalen,
(95):161–190, 1926. Lecture given in Münster, 4 June 1925. En-
glish translation in [Hil02].

135

[Hil02] D. Hilbert. On the infinite. In J. van Heijenoort, editor, From
Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931,
pages 367–392. Harvard University Press, 2002.

[Hod93] W. Hodges. Model Theory. Encyclopedia of Mathematics and its
Applications. Cambridge University Press, 1993.

[HP93] P. Hájek and P. Pudlák. Metamathematics of First–Order Arith-
metic. Springer Verlag, 1993.

[Jer75] R. G. Jeroslow. Experimental logics and ∆0
2-theories. Journal of

Philosophical Logic, 4(3):253–267, 1975.

[JS72] C. G. Jr Jockusch and R. I. Soare. Classes and degrees of theories.
Transactions of the American Mathematical Society, 173:33–56,
1972.

[Kle38] S. C. Kleene. On notation for ordinal numbers. J. Symb. Log.,
3(4):150–155, 1938.

[Kle52] S. Kleene. Introduction to Metamathematics. North-Holland, Am-
sterdam, 1952.

[Koł04] L. A. Kołodziejczyk. Truth definitions in finite models. J. Symb.
Log., 69(1):183–200, 2004.

[KP54] S. C. Kleene and E. L. Post. The upper semi-lattice of degrees
of recursive unsolvability. Annals of Mathematics, 59(3):37–407,
1954.

[Kro87] L. Kronecker. Über den Zahlbegriff. Journal für die reine und
angewandte Mathematik, 101:337–355, 1887. English translation
in [Ewa05].

[KZ05] M. Krynicki and K. Zdanowski. Theories of arithmetics in finite
models. J. Symbolic Logic, 70(1):1–28, 03 2005.

[Mar54] A. A. Jr Markov. The theory of algorithms. Trudy Mat. Instituta
im. Steklova, (42), 1954. In Russian.

[Mon14] B. Monin. personal communication, 2014.

[Mos01] M. Mostowski. On representing concepts in finite models. Mathe-
matical Logic Quarterly, 47:513–523, 2001.

[Mos03] M. Mostowski. On representing semantics in finite models. In
A. Rojszczak†, J. Cachro, and G. Kurczewski, editors, Philosoph-
ical Dimensions of Logic and Science, pages 15–28. Kluwer Aca-
demic Publishers, 2003.

136

[Mos08] M. Mostowski. On representability in finite arithmetics. In
A. Cordon-Franco, A. Fernandez-Margarit, and F. Felix Lara-
Martin, editors, JAF26, 26eme Journees sur les Arithmetiques
Faibles (26th Weak Arithmetics Days), pages 53–64, Sevilla, 2008.
Fenix Editora.

[Mos11] M. Mostowski. Finitistic foundations of mathematics. In
manuscript, 2011.

[MW04] M. Mostowski and A. Wasilewska. Elementary properties of divis-
ibility in finite models. Mathematical Logic Quarterly, 50:169–174,
2004.

[Myc81] J. Mycielski. Analysis without actual infinity. Journal of Symbolic
Logic, 46:625–633, 1981.

[Myc86] J. Mycielski. Locally finite theories. Journal of Symbolic Logic,
51:59–62, 1986.

[MZ05a] M. Mostowski and K. Zdanowski. Coprimality in finite models. In
Luke Ong, editor, Computer Science Logic, volume 3634 of Lec-
ture Notes in Computer Science, pages 263–275. Springer Berlin
Heidelberg, 2005.

[MZ05b] M. Mostowski and K. Zdanowski. FM-representability and be-
yond. In Proceedings of the First International Conference on
Computability in Europe: New Computational Paradigms, CiE’05,
pages 358–367, Berlin, Heidelberg, 2005. Springer-Verlag.

[Pos44] E. L. Post. Recursively enumerable sets of positive integers and
their decision problems. Bull. Amer. Math. Soc., 50(5):284–316,
05 1944.

[Put65] H. Putnam. Trial and error predicates and the solution to a prob-
lem of Mostowski. J. Symbolic Logic, 30:49–57, 1965.

[Sac72] G. E. Sacks. Saturated model theory. Mathematics lecture note
series. Benjamin, W. A., 1972.

[Sho59] J. R. Shoenfield. On degrees of unsolvability, volume 69. Annals
of Mathematics, 1959.

[Sim77] S. G. Simpson. First order theory of the degrees of recursive un-
solvability. Ann. of Math. (2), 105:121–139, 1977.

[Sim10] S. G. Simpson. Subsystems of Second Order Arithmetic. Perspec-
tives in Logic. Cambridge University Press, 2010.

137

[Smo85] C. Smoryński. Self-reference and Modal Logic. Universitext (1979).
Springer–Verlag, 1985.

[Sol76] R. M. Solovay. Provability interpretations of modal logic. Israel
Journal of Mathematics, 25(3-4):287–304, 1976.

[Tai81] W. W. Tait. Finitism. Journal of Philosophy, 78(9):524–546, 1981.

[Tar33] A. Tarski. Pojęcie Prawdy W Językach Nauk Dedukcyjnych. Num-
ber 34 in Prace Towarzystwa Naukowego Warszawskiego, Wydział
III–Nauk matematyczno-fizycznych. 1933. English translation in
[Tar56].

[Tar56] A. Tarski. The concept of truth in formalized languages. In ed.
J. H. Woodger, editor, Logic, Semantics, Metamathematics, pages
152–278. Oxford University Press, 1956. Translated from the Ger-
man version by J. H. Woodger.

[Tur36] A. Turing. On computable numbers, with an application to the
Entscheidungsproblem. In Proc. of the London Math. Soc., vol-
ume 42, pages 230–265, 1936.

[Tur39] A. Turing. Systems of logic based on ordinals. In Proc. of the
London Math. Soc., 1939.

[TV58] A. Tarski and R. L. Vaught. Arithmetical extensions of relational
systems. Compositio Mathematica, 13:81–102, 1956–1958.

[WR27] A. N. Whitehead and B. A. W. Russell. Principia mathematica;
2nd ed. Cambridge Univ. Press, 1927.

138

Index

2<ω, 25
A<ω, 18
R+, 17
R×, 17
T ` ϕ, 16
�−1F , 52
CCW(σ,C), 17
CON(ThT), 85
Cn(T), 16
FM(A), 34
FV(ϕ), 16
INSEPA,B, 124
MAX, 34
Φf
i , 23

Φf
i (j)↓, 23

Φf
i (j)↓ = k, 24

Φf
i (j)↑, 24

Φi, 21
Φi(n)↓, 21
Φi(n)↑, 22
ProvT , 85
Var, 15
D, 24
D(6 0′), 25
∪, 24
deg(f), 24
≡T , 24
∃=n, 17
∃>n, 17
FormAtσ, 15
Formσ, 16
pϕq, 18
Litσ, 16
ci, 15
A ∗ B, 121

⊕, 24
⊥, 16
f�i, 25
rk(ϕ), 17
Termσ, 15
n, 17
|ϕ|, 18
ϕFM(N), 35
ar(P), 15
f 6T g, 24
f∗, 24
sl–semantics, 34

approximate FM–truth definition, 48
arithmetical hierarchy, 17

class
Π0

1, 25
concrete, 36

chain of concrete models, 71
Σn, 99
elementary, 71

model, 63
co–image, 66
diagram, 68
elementary diagram, 68
expansion, 67
reduction, 66

morphism
embedding, 64
homomorphism, 64
isomorphism, 64
onto, 64

sequence of concrete models, 71
jump, 71

structure, 61

139

submodel, 68
elemenatry, 69

vocabulary, 61
consequence, 16
constant, 15

q〈ϕ,p〉, 49
propositional, 38

degree of unsolvability, 24

effective presentation, 23

FM–domain, 34
standard, 34

FM–representability, 34
FM–truth definition, 37
formula, 16

∆0, 17
Πn, 17
Σn, 17
atomic, 15
bounded, 17
length, 18
modal logic, 38

function
concrete, 36

Gödel number, 18

halting problem, 22
for A, 24

Henkin’s completion, 79
type omitting, 90

Kripke frame, 38

literal, 16
low degree, 25

modal depth, 38
modal language

basic, 49
extended, 49

modal logic
LTr, 50
LTr
∗, 50

SL, 49
SL∗, 49
K, 39
complete, 52
extension, 39
sound, 52

model
concrete, 63
Kripke, 38

quantifier rank, 17

recursive
in A, 24
join, 24
sum, 24

relation
∆0
n, 17

Π0
n, 17

Σ0
n, 17

n–provability, 85
concrete, 36
FM–representable, 35
FM–represented by a formula, 34
pre–satisfaction in a concrete struc-

ture, 62
provability, 85
satisfaction in a concrete struc-

ture, 62

set
K–complete, 24
K–hard, 24
computable, 22
computable in A, 24
concrete, 36
consistent (of modal formulae),

52
decidable, 22
decidable in A, 24
FM–representable, 35
FM–represented by a formula, 34
low, 25
partially decidable, 22
partially recursive, 22

140

recursive, 22
recursive in A, 24
recursively enumerable, 22
undecidable, 22

structure
glued, 121

term, 15
theorem

concrete completeness, 83
Gödel’s completeness, 20
Low Basis, 25
Low Completeness, 86
Mostowski’s FM–representability,

35
omitting types
concrete, 94

Post’s, 22
relativised, 33

Tarski’s on the undefinability of
truth, 19

finite version, 37
Turing’s undecidability of the halt-

ing problem, 22
theory, 16

CCW(σ,C), 17
with witness property, 16
complete, 16
consistent, 16
locally omitting (Σ), 89

translation, 50
extended, 50

tree
binary, 25

truth definition, 19
Turing degree, 24

of a concrete model, 63
Turing equivalence, 24
Turing jump, 24
Turing machine, 21

oracle, 23
universal, 22

valuation

admissible, 52
in a concrete structure, 62

variable, 15
free, 16
propositional, 38
guarded, 49

vocabulary, 15
concrete, 61
extension, 66
restriction, 66

141

	Motivations
	Potential and Actual Infinity
	Hilbert's Programme
	Concrete Mathematics
	Concrete and Axiomatic Model Theory
	Recursive and Constructive Model Theories
	Semantics without Actual Infinity

	Preliminaries
	Basic Notions
	Early Foundations
	Arithmetics and Arithmetisation
	Model Theory – Mathematisation of Truth

	Computability Theory
	Turing Machines
	Degrees of Unsolvability

	Finite Models and Potentially Infinite Domains
	Representing Concepts in a Language without Actual Infinity
	FM–Truth Definitions

	Modal Logic Basics

	Approximating Truth in Finite Models
	A Truth Definition for Almost All Finite Models
	Modal logics SL, SL*, LTr and LTr*
	Completeness Theorems for SL and SL*
	The Main Theorem
	Summary

	The Concrete Foundations of Mathematics
	Basic Definitions
	Model Theory without Actual Infinity
	Completeness Theorems
	Omitting Types
	Sigma n Chains of Concrete Models and Applications
	Preservation Theorems
	Craig's Interpolation Lemma and Robinson's Joint Consistency Theorem

	A Note on the Usage of Resources in the Concrete Constructions
	Beyond Concrete Foundations, Open Problems and Further Work
	Summary of the Concrete Model Theory
	A Comparison with Experimental Logics
	Paths of Further Investigations

