31,586 research outputs found

    Learning Edge Representations via Low-Rank Asymmetric Projections

    Full text link
    We propose a new method for embedding graphs while preserving directed edge information. Learning such continuous-space vector representations (or embeddings) of nodes in a graph is an important first step for using network information (from social networks, user-item graphs, knowledge bases, etc.) in many machine learning tasks. Unlike previous work, we (1) explicitly model an edge as a function of node embeddings, and we (2) propose a novel objective, the "graph likelihood", which contrasts information from sampled random walks with non-existent edges. Individually, both of these contributions improve the learned representations, especially when there are memory constraints on the total size of the embeddings. When combined, our contributions enable us to significantly improve the state-of-the-art by learning more concise representations that better preserve the graph structure. We evaluate our method on a variety of link-prediction task including social networks, collaboration networks, and protein interactions, showing that our proposed method learn representations with error reductions of up to 76% and 55%, on directed and undirected graphs. In addition, we show that the representations learned by our method are quite space efficient, producing embeddings which have higher structure-preserving accuracy but are 10 times smaller

    EsPRESSo: Efficient Privacy-Preserving Evaluation of Sample Set Similarity

    Full text link
    Electronic information is increasingly often shared among entities without complete mutual trust. To address related security and privacy issues, a few cryptographic techniques have emerged that support privacy-preserving information sharing and retrieval. One interesting open problem in this context involves two parties that need to assess the similarity of their datasets, but are reluctant to disclose their actual content. This paper presents an efficient and provably-secure construction supporting the privacy-preserving evaluation of sample set similarity, where similarity is measured as the Jaccard index. We present two protocols: the first securely computes the (Jaccard) similarity of two sets, and the second approximates it, using MinHash techniques, with lower complexities. We show that our novel protocols are attractive in many compelling applications, including document/multimedia similarity, biometric authentication, and genetic tests. In the process, we demonstrate that our constructions are appreciably more efficient than prior work.Comment: A preliminary version of this paper was published in the Proceedings of the 7th ESORICS International Workshop on Digital Privacy Management (DPM 2012). This is the full version, appearing in the Journal of Computer Securit

    SNE: Signed Network Embedding

    Full text link
    Several network embedding models have been developed for unsigned networks. However, these models based on skip-gram cannot be applied to signed networks because they can only deal with one type of link. In this paper, we present our signed network embedding model called SNE. Our SNE adopts the log-bilinear model, uses node representations of all nodes along a given path, and further incorporates two signed-type vectors to capture the positive or negative relationship of each edge along the path. We conduct two experiments, node classification and link prediction, on both directed and undirected signed networks and compare with four baselines including a matrix factorization method and three state-of-the-art unsigned network embedding models. The experimental results demonstrate the effectiveness of our signed network embedding.Comment: To appear in PAKDD 201

    Automatic Concept Discovery from Parallel Text and Visual Corpora

    Full text link
    Humans connect language and vision to perceive the world. How to build a similar connection for computers? One possible way is via visual concepts, which are text terms that relate to visually discriminative entities. We propose an automatic visual concept discovery algorithm using parallel text and visual corpora; it filters text terms based on the visual discriminative power of the associated images, and groups them into concepts using visual and semantic similarities. We illustrate the applications of the discovered concepts using bidirectional image and sentence retrieval task and image tagging task, and show that the discovered concepts not only outperform several large sets of manually selected concepts significantly, but also achieves the state-of-the-art performance in the retrieval task.Comment: To appear in ICCV 201
    corecore