Several network embedding models have been developed for unsigned networks.
However, these models based on skip-gram cannot be applied to signed networks
because they can only deal with one type of link. In this paper, we present our
signed network embedding model called SNE. Our SNE adopts the log-bilinear
model, uses node representations of all nodes along a given path, and further
incorporates two signed-type vectors to capture the positive or negative
relationship of each edge along the path. We conduct two experiments, node
classification and link prediction, on both directed and undirected signed
networks and compare with four baselines including a matrix factorization
method and three state-of-the-art unsigned network embedding models. The
experimental results demonstrate the effectiveness of our signed network
embedding.Comment: To appear in PAKDD 201