123,761 research outputs found

    Coordination approaches and systems - part I : a strategic perspective

    Get PDF
    This is the first part of a two-part paper presenting a fundamental review and summary of research of design coordination and cooperation technologies. The theme of this review is aimed at the research conducted within the decision management aspect of design coordination. The focus is therefore on the strategies involved in making decisions and how these strategies are used to satisfy design requirements. The paper reviews research within collaborative and coordinated design, project and workflow management, and, task and organization models. The research reviewed has attempted to identify fundamental coordination mechanisms from different domains, however it is concluded that domain independent mechanisms need to be augmented with domain specific mechanisms to facilitate coordination. Part II is a review of design coordination from an operational perspective

    Scalable Coordinated Beamforming for Dense Wireless Cooperative Networks

    Full text link
    To meet the ever growing demand for both high throughput and uniform coverage in future wireless networks, dense network deployment will be ubiquitous, for which co- operation among the access points is critical. Considering the computational complexity of designing coordinated beamformers for dense networks, low-complexity and suboptimal precoding strategies are often adopted. However, it is not clear how much performance loss will be caused. To enable optimal coordinated beamforming, in this paper, we propose a framework to design a scalable beamforming algorithm based on the alternative direction method of multipliers (ADMM) method. Specifically, we first propose to apply the matrix stuffing technique to transform the original optimization problem to an equivalent ADMM-compliant problem, which is much more efficient than the widely-used modeling framework CVX. We will then propose to use the ADMM algorithm, a.k.a. the operator splitting method, to solve the transformed ADMM-compliant problem efficiently. In particular, the subproblems of the ADMM algorithm at each iteration can be solved with closed-forms and in parallel. Simulation results show that the proposed techniques can result in significant computational efficiency compared to the state- of-the-art interior-point solvers. Furthermore, the simulation results demonstrate that the optimal coordinated beamforming can significantly improve the system performance compared to sub-optimal zero forcing beamforming

    Spatial Coordination Strategies in Future Ultra-Dense Wireless Networks

    Full text link
    Ultra network densification is considered a major trend in the evolution of cellular networks, due to its ability to bring the network closer to the user side and reuse resources to the maximum extent. In this paper we explore spatial resources coordination as a key empowering technology for next generation (5G) ultra-dense networks. We propose an optimization framework for flexibly associating system users with a densely deployed network of access nodes, opting for the exploitation of densification and the control of overhead signaling. Combined with spatial precoding processing strategies, we design network resources management strategies reflecting various features, namely local vs global channel state information knowledge exploitation, centralized vs distributed implementation, and non-cooperative vs joint multi-node data processing. We apply these strategies to future UDN setups, and explore the impact of critical network parameters, that is, the densification levels of users and access nodes as well as the power budget constraints, to users performance. We demonstrate that spatial resources coordination is a key factor for capitalizing on the gains of ultra dense network deployments.Comment: An extended version of a paper submitted to ISWCS'14, Special Session on Empowering Technologies of 5G Wireless Communication

    Cheating for Problem Solving: A Genetic Algorithm with Social Interactions

    Get PDF
    We propose a variation of the standard genetic algorithm that incorporates social interaction between the individuals in the population. Our goal is to understand the evolutionary role of social systems and its possible application as a non-genetic new step in evolutionary algorithms. In biological populations, ie animals, even human beings and microorganisms, social interactions often affect the fitness of individuals. It is conceivable that the perturbation of the fitness via social interactions is an evolutionary strategy to avoid trapping into local optimum, thus avoiding a fast convergence of the population. We model the social interactions according to Game Theory. The population is, therefore, composed by cooperator and defector individuals whose interactions produce payoffs according to well known game models (prisoner's dilemma, chicken game, and others). Our results on Knapsack problems show, for some game models, a significant performance improvement as compared to a standard genetic algorithm.Comment: 7 pages, 5 Figures, 5 Tables, Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2009), Montreal, Canad
    • ā€¦
    corecore