990 research outputs found

    Wavelet Multiresolution Analysis of High-Frequency Asian FX Rates, Summer 1997

    Get PDF
    FX pricing processes are nonstationary and their frequency characteristics are time-dependent. Most do not conform to geometric Brownian motion, since they exhibit a scaling law with a Hurst exponent between zero and 0.5 and fractal dimensions between 1.5 and 2. This paper uses wavelet multiresolution analysis, with Haar wavelets, to analyze the nonstationarity (time-dependence) and self-similarity (scale-dependence) of intra-day Asian currency spot exchange rates. These are the ask and bid quotes of the currencies of eight Asian countries (Japan, Hong Kong, Indonesia, Malaysia, Philippines, Singapore, Taiwan, Thailand), and of Germany for comparison, for the crisis period May 1, 1998 - August 31, 1997, provided by Telerate (U.S. dollar is the numeraire). Their time-scale dependent spectra, which are localized in time, are observed in wavelet based scalograms. The FX increments can be characterized by the irregularity of their singularities. This degrees of irregularity are measured by homogeneous Hurst exponents. These critical exponents are used to identify the fractal dimension, relative stability and long term dependence of each Asian FX series. The invariance of each identified Hurst exponent is tested by comparing it at varying time and scale (frequency) resolutions. It appears that almost all FX markets show anti-persistent pricing behavior. The anchor currencies of the D-mark and Japanese Yen are ultra-efficient in the sense of being most anti-persistent. The Taiwanese dollar is the most persistent, and thus unpredictable, most likely due to administrative control. FX markets exhibit these non- linear, non-Gaussian dynamic structures, long term dependence, high kurtosis, and high degrees of non-informational (noise) trading, possibly because of frequent capital flows induced by non-synchronized regional business cycles, rapidly changing political risks, unexpected informational shocks to investment opportunities, and, in particular, investment strategies synthesizing interregional claims using cash swaps with different duration horizons.foreign exchange markets, anti-persistence, long-term dependence, multi-resolution analysis, wavelets, time-scale analysis, scaling laws, irregularity analysis, randomness, Asia

    Wavelet Multiresolution Analysis of High-Frequency FX Rates, Summer 1997

    Get PDF
    FX pricing processes are nonstationary and their frequency characteristics are time-dependent. Most do not conform to geometric Brownian motion, since they exhibit a scaling law with a Hurst exponent between zero and 0.5 and fractal dimensions between 1.5 and 2. This paper uses wavelet multiresolution analysis, with Haar wavelets, to analyze the nonstationarity (time-dependence) and self-similarity (scale-dependence) of intra-day Asian currency spot exchange rates.foreign exchange, anti-persistence, multi-resolution analysis, wavelets, Asia

    Galling wear detection and measurement in sheet metal forming

    Get PDF
    Galling wear of sheet metal stamping tooling is an expensive issue for sheet metal forming industries. Forming of high strength steels, particularly in the automotive industry, has led to accelerated tool wear rates. These wear rates lead to product quality and die maintenance issues, making galling wear an expensive issue for automotive manufacturers and the sheet metal forming industries in general. Process monitoring allows for the continuous monitoring of tooling condition so that wear development can be detected. The aim of this investigation was to develop an in-depth understanding of the relationship between punch force variation and wear for implementation in future process monitoring regimes. To achieve this aim, the effect of wear and other friction influencing factors on punch force signatures were investigated. This required the development of an accurate method for quantifying galling wear severity so that the relationship between galling wear progression and punch force signature variation could be quantified. Finally, the specific effects of wear and friction conditions on the punch force signatures were examined. An initial investigation using a statistical pattern recognition technique was conducted on stamping force data to determine if the presence of galling wear on press tooling effected punch force variation. Galling wear on tooling, changes in lubrication type, and changes in blank holder pressure were all found to effect variation in punch force signatures shape. A new galling wear severity measurement methodology was developed based on wavelet analysis of 2D surface roughness profiles that accurately provided an indication of the location and severity of galling wear damage. Using the new method for quantifying galling wear severity in the relationship between punch force variation and galling wear progression was investigated, and a strong linear relationship was found. Finally, two prominent vii forms of punch force signature shape variation were linked to friction conditions driven by wear, lubrication, and blank holder pressure. This work describes and quantifies the relationship between galling wear and punch force signature variation. A new methodology for accurate measurement of galling wear severity is presented. Finally, specific forms of punch force signature variation are linked to different friction conditions. These results are critical for future implementation of punch force based galling wear process monitoring and a significant reduction in costs for the metal forming industries

    A Research on Dimension Reduction Method of Time Series Based on Trend Division

    Get PDF
    The characteristics of high dimension, complexity and multi granularity of financial time series make it difficult to deal with effectively. In order to solve the problem that the commonly used dimensionality reduction methods cannot reduce the dimensionality of time series with different granularity at the same time, in this paper, a method for dimensionality reduction of time series based on trend division is proposed. This method extracts the extreme value points of time series, identifies the important points in time series quickly and accurately, and compresses them. Experimental results show that, compared with the discrete Fourier transform and wavelet transform, the proposed method can effectively process data of different granularity and different trends on the basis of fully preserving the original information of time series. Moreover, the time complexity is low, the operation is easy, and the proposed method can provide decision support for high-frequency stock trading at the actual level

    Detecting patterns in Time Series Data with applications in Official Statistics

    Get PDF
    This thesis examines the issue of detecting components or features within time series data in automatic procedures. We begin by introducing the concept of Wavelets and briefly show their usage as a tool for detection. This leads to our first contribution which is a novel method using wavelets for identifying correlation structures in time series data which are often ambiguous with very different contexts. Using the properties of the wavelet transform we show the ability to distinguish between short memory models with changepoints and long memory models. The next two Chapters consider seasonality within data, which is often present in time series used in Offical Statistics. We first describe the historical evolution of identification of seasonality, comparing and contrasting methodology as it has expanded throughout time. Following this, motivated by the increased use of high-frequency time series in Official Statistics and a lack of methods for identifying low-frequency seasonal components within high-frequency data, we present a method for identifying periodicity in a series with the use of a simple wavelet decomposition. Presented with theoretical results and simulations, we show how the seasonality of a series is uniquely represented within a wavelet transform and use this to identify low frequency components which are often overlooked in favour of a trend, with very different interpretations. Finally, beginning with the motivation of forecasting European Area GDP at the current time point, we show the effectiveness of an algorithm which detects the most useful data and structures for a Dynamic Factor Model. We show its effectiveness in reducing forecasting errors but show that under large scale simulation that the recovery of the true structure over two dimensions is a difficult task. All the chapters of this thesis are motivated by, and give applications to, time series from different areas of Official Statistics

    Influence of Preprocessing on Deep Learning Models

    Get PDF

    Super Resolution of Wavelet-Encoded Images and Videos

    Get PDF
    In this dissertation, we address the multiframe super resolution reconstruction problem for wavelet-encoded images and videos. The goal of multiframe super resolution is to obtain one or more high resolution images by fusing a sequence of degraded or aliased low resolution images of the same scene. Since the low resolution images may be unaligned, a registration step is required before super resolution reconstruction. Therefore, we first explore in-band (i.e. in the wavelet-domain) image registration; then, investigate super resolution. Our motivation for analyzing the image registration and super resolution problems in the wavelet domain is the growing trend in wavelet-encoded imaging, and wavelet-encoding for image/video compression. Due to drawbacks of widely used discrete cosine transform in image and video compression, a considerable amount of literature is devoted to wavelet-based methods. However, since wavelets are shift-variant, existing methods cannot utilize wavelet subbands efficiently. In order to overcome this drawback, we establish and explore the direct relationship between the subbands under a translational shift, for image registration and super resolution. We then employ our devised in-band methodology, in a motion compensated video compression framework, to demonstrate the effective usage of wavelet subbands. Super resolution can also be used as a post-processing step in video compression in order to decrease the size of the video files to be compressed, with downsampling added as a pre-processing step. Therefore, we present a video compression scheme that utilizes super resolution to reconstruct the high frequency information lost during downsampling. In addition, super resolution is a crucial post-processing step for satellite imagery, due to the fact that it is hard to update imaging devices after a satellite is launched. Thus, we also demonstrate the usage of our devised methods in enhancing resolution of pansharpened multispectral images

    Discretization approach

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€(์—๋„ˆ์ง€ํ™˜๊ฒฝ ํ™”ํ•™์œตํ•ฉ๊ธฐ์ˆ ์ „๊ณต),2019. 8. ์ด์›๋ณด.In recent years, many researchers in chemical engineering have made great efforts to develop mathematical models on the theoretical side that are consistent with experimental results. Despite these efforts, however, establishing models for a system with complex phenomena such as multiphase flow or stirred reactors is still considered to be a challenge. In the meantime, an increase in computational efficiency and stability in various numerical methods has allowed us to correctly solve and analyze the system based on the fundamental equations. This leads to the need for a mathematical model to accurately predict the behavior of systems in which there is interdependence among the internal elements. A methodology for building a model based on equations that represent fundamental phenomena can lower technical barriers in system analysis. In this thesis, we propose three mathematical models validated from laboratory or pilot-scale experiments. First, an apparatus for vaporizing liquid natural gas is surrounded with a frost layer formed on the surface during operation, and performance of the apparatus is gradually deteriorated due to the adiabatic effect. Because the system uses ambient air as a heat sink, it is necessary to consider the phase transition and mass transfer of water vapor, and natural gas in the air in order to understand the fluctuation of system characteristics. The model predicts the experimental data of a pilot-scale vaporizer within a mean absolute error of 5.5 %. In addition, we suggest the robust design methodology and optimal design which is able to maintain the efficiency under the weather conditions for a year. Two or more data analysis techniques including discrete waveform transformation and k-means clustering are used to extract features that can represent time series data. Under the settings, the performance in the optimized desgin is improved by 22.92 percentage points compared to that in the conventional system. In the second system, the continuous tubular crystallization reactor has advantages in terms of production capacity and scale-up compared with the conventional batch reactor. However, the tubular system requires a well-designed control system to maintain its stability and durability, and thus; there is a great deal of demand for the mathematical model of this system. We were able to estimate crystal size distribution by considering the population balance model simultaneously with several heat exchanger models. The model constructed based on the first principle reaction scheme successfully predicted the results from the full-factorial experiment. The experiments were conducted with LAM (L-asparagine monohydrate) solution. In the prediction, the average crystal length and standard deviation were within 20% of the results of an experiment where the crystals were not iteratively dissolved in the liquid but maintained a low-level supersaturation. Furthermore, to confirm the controllability of the crystal size distribution in the system, we replaced the LAM solution with HEWL (Hen-egg white lysozyme) solution. Finally, we propose a multi-compartment model to predict the behavior of a high-pressure autoclave reactor for polymer production. In order to simulate a complex polymer synthesis mechanism, the rotation effect of impellers in the reactor on polymerization and the influence caused by polymerization heat were sequentially evaluated. As a result, This model turned out to be able to predict the physical properties of the polymers produced in an industrial-scale reactor within 7% accuracy. In this thesis, all three systems are distributed parameter systems which can be expressed as partial differential equations for time and space. To construct a high order model, the system was interpreted based on discretization approach under minimal assumptions. This methodology can be applied not only to the systems suggested in this thesis but also to those consisting of interpdependent variables. I hope that this thesis provides guidance for further researches of chemical engineering in nearby future.์ตœ๊ทผ์— ๋ช‡ ๋…„์— ๊ฑธ์ณ์„œ ๋งŽ์€ ์—ฐ๊ตฌ์ž๋“ค์ด ์ด๋ก ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์‹คํ—˜ ๊ฒฐ๊ณผ์™€ ์ผ์น˜ํ•˜๋Š” ์ˆ˜ํ•™ ๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜๊ณ ์ž ๋งŽ์€ ๋…ธ๋ ฅ์„ ๊ธฐ์šธ์—ฌ ์™”๋‹ค. ํ•˜์ง€๋งŒ ์ด๋Ÿฐ ๋…ธ๋ ฅ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ๋‹ค์ƒ ํ๋ฆ„ ํ˜น์€ ๊ต๋ฐ˜ ๋ฐ˜์‘๊ธฐ์™€ ๊ฐ™์€ ๋ณต์žกํ•œ ํ˜„์ƒ์„ ๋‚ดํฌํ•œ ์‹œ์Šคํ…œ์„ ์œ„ํ•œ ๋ชจ๋ธ์„ ์ˆ˜๋ฆฝํ•˜๋Š” ๊ฒƒ์€ ์—ฌ์ „ํžˆ ํ™”ํ•™ ๊ณตํ•™ ๋ถ„์•ผ์—์„œ ์‰ฝ์ง€ ์•Š์€ ์ผ๋กœ ์—ฌ๊ฒจ์ง„๋‹ค. ์ด ์™€์ค‘์— ๋‹ค์–‘ํ•œ ์ˆ˜์น˜์  ๋ฐฉ๋ฒ•์—์„œ์˜ ๊ณ„์‚ฐ ํšจ์œจ์˜ ์ฆ๊ฐ€์™€ ์•ˆ์ •์„ฑ์˜ ํ–ฅ์ƒ์€ ๊ธฐ๋ณธ๋ฐฉ์ •์‹์— ๊ธฐ์ดˆํ•œ ์‹œ์Šคํ…œ์„ ์ •ํ™•ํ•˜๊ฒŒ ํ•ด๊ฒฐํ•˜๊ณ  ๋ถ„์„ํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•ด์ฃผ์—ˆ๋‹ค. ์ด๋กœ ์ธํ•˜์—ฌ ๋‚ด๋ถ€ ์š”์†Œ๋“ค ๊ฐ„์˜ ์ƒํ˜ธ ์˜์กด์„ฑ์ด ์กด์žฌํ•˜๋Š” ์‹œ์Šคํ…œ์˜ ๊ฑฐ๋™์„ ์ •ํ™•ํ•˜๊ฒŒ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•œ ์ˆ˜ํ•™์  ๋ชจ๋ธ์˜ ํ•„์š”์„ฑ์ด ๋ถ€๊ฐ๋˜์—ˆ๋‹ค. ๊ธฐ๋ณธ ํ˜„์ƒ๋“ค์„ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ์ •์‹๋“ค์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•๋ก ์€ ์‹œ์Šคํ…œ ํ•ด์„์— ์žˆ์–ด์„œ ๊ธฐ์ˆ ์  ์žฅ๋ฒฝ์„ ๋‚ฎ์ถœ ์ˆ˜ ์žˆ๋‹ค. ์ด ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ ์šฐ๋ฆฌ๋Š” ์‹คํ—˜์‹ค ๋˜๋Š” ํŒŒ์ผ๋Ÿฟ ๊ทœ๋ชจ์˜ ์‹คํ—˜์œผ๋กœ๋ถ€ํ„ฐ ์ž…์ฆ๋œ ์„ธ ๊ฐ€์ง€ ์ˆ˜ํ•™์  ๋ชจ๋ธ์„ ์ œ์•ˆํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ, ๊ณต๊ธฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์•ก์ƒ์˜ ์ฒœ์—ฐ๊ฐ€์Šค๋ฅผ ๊ธฐํ™”์‹œํ‚ค๋Š” ์žฅ์น˜๋Š” ์šด์ „ ๋„์ค‘์— ๊ธฐํ™”๊ธฐ ํ‘œ๋ฉด์— ์„œ๋ฆฌ ์ธต์ด ํ˜•์„ฑ๋˜๊ณ  ๊ทธ๋กœ ์ธํ•œ ๋‹จ์—ด ํšจ๊ณผ๋กœ ์žฅ๋น„์˜ ์„ฑ๋Šฅ์ด ์„œ์„œํžˆ ์ €ํ•˜๋œ๋‹ค. ์‹œ์Šคํ…œ์€ ์ฃผ๋ณ€ ๊ณต๊ธฐ๋ฅผ ์—ด ํก์ˆ˜์›์œผ๋กœ ์‚ฌ์šฉํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์‹œ์Šคํ…œ ํŠน์„ฑ์˜ ๋ณ€๋™์„ ํŒŒ์•…ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ณต๊ธฐ ์ค‘ ์ˆ˜์ฆ๊ธฐ ๋ฐ ์ฒœ์—ฐ ๊ฐ€์Šค์˜ ์ƒ์ „์ด ๋ฐ ์ „๋‹ฌ ํ˜„์ƒ์„ ๋™์‹œ์— ๊ณ ๋ คํ•˜์—ฌ์•ผ ํ•œ๋‹ค. ์ œ์‹œ๋œ ์ˆ˜ํ•™์  ๋ชจ๋ธ์— ์˜ํ•ด ์˜ˆ์ธกํ•œ ๊ฒฐ๊ณผ๋Š” ํŒŒ์ผ๋Ÿฟ ๊ทœ๋ชจ ๊ธฐํ™”๊ธฐ๋กœ๋ถ€ํ„ฐ ์–ป์€ ์‹คํ—˜ ๋ฐ์ดํ„ฐ์™€ 5.5% ํ‰๊ท  ์ ˆ๋Œ€ ์˜ค์ฐจ๋ฅผ ๋ณด์˜€๋‹ค. ์ด์— ๋”ํ•˜์—ฌ, ์•ž์—์„œ ์ œ์‹œํ•œ ๊ธฐํ™”๊ธฐ ๋ชจ๋ธ์„ ์ด์šฉํ•˜์—ฌ 1๋…„ ๋™์•ˆ์˜ ๊ธฐ์ƒ ์กฐ๊ฑด์—์„œ ์šด์ „ ํšจ์œจ์„ ์œ ์ง€ํ•˜๋ฉด์„œ ์ง€์† ์šด์ „์ด ๊ฐ€๋Šฅํ•œ ๊ธฐํ™”๊ธฐ์˜ ์„ค๊ณ„ ๋ฐฉ๋ฒ•๊ณผ ๊ฒฐ๊ณผ๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด์‚ฐ ํŒŒํ˜• ๋ณ€ํ™˜๊ณผ k-ํ‰๊ท  ๊ตฐ์ง‘ํ™”๋ฅผ ํฌํ•จํ•˜๋Š” ๋‘ ๊ฐ€์ง€ ์ด์ƒ์˜ ๋ฐ์ดํ„ฐ ๋ถ„์„ ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ๋ฅผ ๋Œ€ํ‘œํ•  ์ˆ˜ ์žˆ๋Š” ํŠน์ง•์„ ์ถ”์ถœํ•œ๋‹ค. ์ถ”์ถœ๋œ ํŠน์ง• ์•„๋ž˜์—์„œ ์ตœ์ ํ™”๋œ ๋””์ž์ธ์€ ๊ธฐ์กด ์ œ์‹œ๋œ ์•ˆ์— ๋น„ํ•ด 22.92% ๋งŒํผ ํ–ฅ์ƒ๋œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋‘ ๋ฒˆ์งธ ์‹œ์Šคํ…œ์€ ์‹  ์ œ์•ฝ ๊ธฐ์ˆ  ๊ณต์ •์ธ ์—ฐ์† ๊ด€ํ˜• ๊ฒฐ์ •ํ™” ๋ฐ˜์‘๊ธฐ๋Š” ๊ธฐ์กด์— ๋„๋ฆฌ ์“ฐ์ด๋˜ ํšŒ๋ถ„์‹ ๋ฐ˜์‘๊ธฐ์— ๋น„ํ•˜์—ฌ ์ƒ์‚ฐ ์†๋„ ๋ฐ ์Šค์ผ€์ผ ์—… ์ธก๋ฉด์—์„œ ์žฅ์ ์ด ๋งŽ๋‹ค. ํ•˜์ง€๋งŒ ์ œ์–ด๊ธฐ์ˆ ์ด ๊ธฐ๋ฐ˜์ด ๋˜์–ด์•ผํ•œ๋‹ค๋Š” ์ ์— ์žˆ์–ด์„œ ๊ทธ ๋„์ž…์ด ๋Šฆ์–ด์กŒ๊ณ  ์ด์— ๋”ฐ๋ผ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ๊ฐœ๋ฐœ๋œ ๋ชจ๋ธ ๋˜ํ•œ ์ „๋ฌดํ•˜๋‹ค. ์šฐ๋ฆฌ๋Š” ์ด ์žฅ์น˜์—์„œ ๊ฒฐ์ • ํฌ๊ธฐ ๋ถ„ํฌ๋ฅผ ์ถ”์‚ฐํ•˜๊ธฐ ์œ„ํ•œ ์ธ๊ตฌ ๊ท ํ˜• ๋ชจ๋ธ์„ ์—ด ๊ตํ™˜ ๋ชจ๋ธ๊ณผ ๋™์‹œ์— ๊ณ ๋ คํ•˜์—ฌ ๊ฒฐ์ • ํฌ๊ธฐ ๋ถ„ํฌ๋ฅผ ์ถ”์‚ฐํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ œ 1์›๋ฆฌ ๊ฒฐ์ • ๋ฐ˜์‘์‹์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ตฌ์ถ•๋œ ๋ชจ๋ธ์€ ์™„์ „ ์š”์ธ ๋ฐฐ์น˜๋ฒ•์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์‹คํ—˜๋œ ๋ฐ์ดํ„ฐ๋ฅผ ์„ฑ๊ณต์ ์œผ๋กœ ์˜ˆ์ธกํ•˜์˜€๋‹ค. ๊ฒฐ์ •์ด ์•ก์ƒ์— ์šฉํ•ด๋˜์ง€ ์•Š์œผ๋ฉด์„œ ๋‚ฎ์€ ์ˆ˜์ค€์˜ ๊ณผํฌํ™” ์ƒํƒœ๋ฅผ ์œ ์ง€ํ•œ ์‹คํ—˜์— ๋Œ€ํ•ด์„œ๋Š” ํ‰๊ท  ๊ฒฐ์ • ๊ธธ์ด์™€ ํ‘œ์ค€ํŽธ์ฐจ๊ฐ€ ์‹คํ—˜ ๊ฒฐ๊ณผ์™€ 20% ์ด๋‚ด์˜ ์˜ค์ฐจ๋ฅผ ๋ณด์˜€๋‹ค. ์•ž์—์„œ ๋ชจ๋ธ์˜ ๊ฒ€์ฆ์— ์‚ฌ์šฉ๋œ ๋ฐ์ดํ„ฐ๊ฐ€ LAM (L-์•„์ŠคํŒŒ๋ผ๊ธด ์ผ ์ˆ˜ํ™”๋ฌผ)์šฉ์•ก์œผ๋กœ๋ถ€ํ„ฐ ์–ป์–ด์ง„ ๊ฒƒ์ด์—ˆ๋‹ค๋ฉด ์ดํ›„์—๋Š” HEWL (๋‹ฌ๊ฑ€ ํฐ์ž ๋ฆฌ์†Œ์ž์ž„)๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ œํ’ˆ์˜ ๊ฒฐ์ • ํฌ๊ธฐ ๋ถ„ํฌ์˜ ์กฐ์ ˆ ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ํด๋ฆฌ๋จธ ์ƒ์‚ฐ์„ ์œ„ํ•œ ๊ณ ์•• ์˜คํ† ํด๋ ˆ์ด๋ธŒ ๋ฐ˜์‘๊ธฐ์˜ ๊ฑฐ๋™์„ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•œ ๋‹ค์ค‘ ๊ตฌํš ๋ชจ๋ธ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋ณต์žกํ•œ ๊ณ ๋ถ„์ž ํ•ฉ์„ฑ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๋ชจ์‚ฌํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋ฐ˜์‘๊ธฐ ๋‚ด ์ž„ํŽ ๋Ÿฌ์˜ ํšŒ์ „์ด ์ค‘ํ•ฉ์— ๋ฏธ์น˜๋Š” ํšจ๊ณผ์™€ ์ค‘ํ•ฉ ์—ด๋กœ ์ธํ•œ ์˜ํ–ฅ๋ ฅ์„ ์ˆœ์ฐจ์ ์œผ๋กœ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ๋ชจ๋ธ์€ 3D ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง„ ์‚ฐ์—…ํ™”๋œ ๋ฐ˜์‘๊ธฐ์—์„œ ์ƒ์‚ฐ๋œ ๋‘ ๊ฐ€์ง€ ๊ณ ๋ถ„์ž์˜ ๋ฌผ์„ฑ์„ 7%์ด๋‚ด ์ •ํ™•๋„๋กœ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ๋‹ค๋ฃจ๋Š” ์‹œ์Šคํ…œ์€ ๋ชจ๋‘ ๋ถ„ํฌ ์ •์ˆ˜๊ณ„ ์‹œ์Šคํ…œ์œผ๋กœ ์‹œ๊ฐ„๊ณผ ๊ณต๊ฐ„์— ๋Œ€ํ•˜์—ฌ ํŽธ๋ฏธ๋ถ„๋ฐฉ์ •์‹์œผ๋กœ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ณ ์ฐจ ๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•˜๊ธฐ ์œ„ํ•ด ์ด์‚ฐํ™” ์ ‘๊ทผ๋ฒ•์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์ตœ์†Œํ•œ์˜ ๊ฐ€์ • ํ•˜์— ์‹œ์Šคํ…œ์„ ํ•ด์„ํ•˜์˜€๋‹ค. ์ด๋Š” ๋…ผ๋ฌธ์— ์ œ์‹œํ•œ ์‹œ์Šคํ…œ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์‹œ๊ณต๊ฐ„์—์„œ ์˜ˆ์ธก ์–ด๋ ค์šด ๋ถ„ํฌ๋ฅผ ๊ฐ€์ง€๋Š” ๋ณ€์ˆ˜๋ฅผ ๊ฐ€์ง„ ๋ชจ๋“  ์‹œ์Šคํ…œ์— ๋Œ€ํ•˜์—ฌ ์ ์šฉ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ์ด ๋…ผ๋ฌธ์ด ์•ž์œผ๋กœ ํ™”ํ•™ ๊ณตํ•™ ๋ถ„์•ผ์˜ ์‹œ์Šคํ…œ์„ ํ•ด์„ํ•˜๋Š” ๋ฐ ์žˆ์–ด์„œ ๋” ๋ฐœ์ „๋œ ์—ฐ๊ตฌ๋ฅผ ์œ„ํ•œ ์ง€์นจ์„œ๊ฐ€ ๋˜๊ธฐ๋ฅผ ํฌ๋งํ•œ๋‹ค.Abstract i Contents iv List of Figures viii List of Tables xii Chapter 1 1 Introduction 1 1.1 Research motivation 1 1.2 Research objective 3 1.3 Outline of the thesis 4 1.4 Associated publications 9 Chapter 2 10 Distributed parameter system 10 2.1 Introduction 10 2.2 Modeling methods 11 2.3 Conclusion 16 Chapter 3 17 Modeling and design of pilot-scale ambient air vaporizer 17 3.1 Introduction 17 3.2 Modeling and analysis of frost growth in pilot-scale ambient air vaporizer 24 3.2.1 Ambient air vaporizer 24 3.2.2 Experimental measurement 27 3.2.3 Numerical model of the vaporizer 31 3.2.4 Result and discussion 43 3.3 Robust design of ambient air vaporizer based on time-series clustering 58 3.3.1 Background 58 3.3.2 Trend of time-series weather conditions 61 3.3.3 Optimization of AAV structures under time-series weather conditions 63 3.3.4 Results and discussion 76 3.4 Conclusion 93 3.4.1 Modeling and analysis of AAV system 93 3.4.2 Robust design of AAV system 95 Chapter 4 97 Tunable protein crystal size distribution via continuous crystallization 97 4.1 Introduction 97 4.2 Mathematical modeling and experimental verification of fully automated continuous slug-flow crystallizer 101 4.2.1 Experimental methods and equipment setup 101 4.2.2 Mathematical model of crystallizer 109 4.2.3 Results and discussion 118 4.3 Continuous crystallization of a protein: hen egg white lysozyme (HEWL) 132 4.3.1 Introduction 132 4.3.2 Experimental method 135 4.3.3 Results and discussion 145 4.4 Conclusion 164 4.4.1 Mathematical model of continuous crystallizer 164 4.4.2 Tunable continuous protein crystallization process 165 Chapter 5 167 Multi-compartment model of high-pressure autoclave reactor for polymer production: combined CFD mixing model and kinetics of polymerization 167 5.1 Introduction 167 5.2 Method 170 5.2.1 EVA autoclave reactor 170 5.2.2 Multi-compartment model of the autoclave reactor 173 5.2.3 CFD simulation of mixing effects in the autoclave reactor 175 5.2.4 Region-based dividing algorithm 178 5.2.5 Polymerization kinetic model 182 5.3 Results and discussion 191 5.4 Conclusion 203 5.5 Appendix 205 Chapter 6 210 Concluding Remarks 210 6.1 Summary of contributions 210 6.2 Future work 211 Appendix 214 Acknowledgment and collaboration declaration 214 Supplementary materials 217 Reference 227 Abstract in Korean (๊ตญ๋ฌธ์ดˆ๋ก) 249Docto

    Another Look at the Consumer Price Index - A wavelet Approach

    Get PDF
    A wavelet approach was applied to a consumer price index (CPI) series to address the draw backs of some periodic models. The method requires no assumption of the data generating process but involves the spliting of a given signal into several components with each component reflecting the evolution trough of the signal at a particular time. The multi-level stationary Haar ย wavelet decomposition was applied to the series which gave rise to a dyadic sequence of ย , and the series was decomposed accordingly using a computer program written for the purpose. Multi-resolution wavelet method was then used to reconstruct the series and the significant details ) that captured the season were added to the ย trendย ย component for the estimatation of the series ย The resulting wavelet model was subjected to diagnostic checks and were found to be adequate. Comparative study was carried out with some hilighted CPI models built by some researchers. It was discovered that the wavelet models performs better. Keywords: Mother wavelets, Haar ย wavelet decomposition, Multi-resolution, Auto-correlation and Partial auto-correlation function
    • โ€ฆ
    corecore