7,093 research outputs found

    Generalized centrality in trees

    Get PDF
    In 1982, Slater defined path subgraph analogues to the center, median, and (branch or branchweight) centroid of a tree. We define three families of central substructures of trees, including three types of central subtrees of degree at most D that yield the center, median, and centroid for D = 0 and Slater's path analogues for D = 2. We generalize these results concerning paths and include proofs that each type of generalized center and generalized centroid is unique. We also present algorithms for finding one or all generalized central substructures of each type.

    Intersection representation of digraphs in trees with few leaves

    Full text link
    The leafage of a digraph is the minimum number of leaves in a host tree in which it has a subtree intersection representation. We discuss bounds on the leafage in terms of other parameters (including Ferrers dimension), obtaining a string of sharp inequalities.Comment: 12 pages, 3 included figure

    Kernelizations for the hybridization number problem on multiple nonbinary trees

    Get PDF
    Given a finite set XX, a collection T\mathcal{T} of rooted phylogenetic trees on XX and an integer kk, the Hybridization Number problem asks if there exists a phylogenetic network on XX that displays all trees from T\mathcal{T} and has reticulation number at most kk. We show two kernelization algorithms for Hybridization Number, with kernel sizes 4k(5k)t4k(5k)^t and 20k2(Δ+−1)20k^2(\Delta^+-1) respectively, with tt the number of input trees and Δ+\Delta^+ their maximum outdegree. Experiments on simulated data demonstrate the practical relevance of these kernelization algorithms. In addition, we present an nf(k)tn^{f(k)}t-time algorithm, with n=∣X∣n=|X| and ff some computable function of kk

    Automorphism Groups of Geometrically Represented Graphs

    Full text link
    We describe a technique to determine the automorphism group of a geometrically represented graph, by understanding the structure of the induced action on all geometric representations. Using this, we characterize automorphism groups of interval, permutation and circle graphs. We combine techniques from group theory (products, homomorphisms, actions) with data structures from computer science (PQ-trees, split trees, modular trees) that encode all geometric representations. We prove that interval graphs have the same automorphism groups as trees, and for a given interval graph, we construct a tree with the same automorphism group which answers a question of Hanlon [Trans. Amer. Math. Soc 272(2), 1982]. For permutation and circle graphs, we give an inductive characterization by semidirect and wreath products. We also prove that every abstract group can be realized by the automorphism group of a comparability graph/poset of the dimension at most four
    • …
    corecore