
Generalized centrality in trees

Henry Martyn Mulder
Econometrisch Instituut, Erasmus Universiteit,

P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
hmmulder@few.eur.nl

Michael J. Pelsmajer
Illinois Institute of Technology, Department of Applied Mathematics

Chicago, IL 60616
pelsmajer@iit.edu

K. B. Reid
Department of Mathematics

California State University San Marcos
San Marcos, California 92096-0001

breid@csusm.edu

April 18, 2006

Econometric Institute Report EI 2006-16

Abstract

In 1982, Slater defined path subgraph analogues to the center, median, and
(branch or branchweight) centroid of a tree. We define three families of central
substructures of trees, including three types of central subtrees of degree at most D
that yield the center, median, and centroid for D = 0 and Slater’s path analogues
for D = 2. We generalize these results concerning paths and include proofs that
each type of generalized center and generalized centroid is unique. We also present
algorithms for finding one or all generalized central substructures of each type.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6904805?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

For many purposes one is interested in determining the “middle” of the graph. For in-
stance, already in 1869 Jordan [11] used this idea in the case of trees to determine the
automorphism group of a tree. From the viewpoint of applications, an interesting example
is the placing of a facility on a network: given a set of clients that has to be serviced by
the facility, one wants to find a location for the facility that optimizes certain criteria. It
turns out that even in the case of trees, there is no such uniquely determined “middle”
of a tree; it very much depends on the problem at hand. For example, if the facility is a
fire station, then one wants to minimize the maximum distance to the flammable objects.
Whereas if the facility is a distribution center for a set of warehouses, then the sum of
the distances to all the warehouses is a determining factor in the cost of servicing the
warehouses. To date, there is an abundance of all kinds of centrality notions for trees, and
many (but not all) have natural generalizations for arbitrary graphs. The two classical
examples of Jordan [11] are the center of a tree (the set of vertices that minimize the
maximum distance to other vertices) and the centroid of a tree (the set of vertices x in
the tree T that minimize the maximum order of a component of T − x.) A third type
of middle is the median (the set of vertices that minimize the sum of the distances—or,
equivalently, the average distance—to other vertices). The center and the median have
natural generalizations for arbitrary graphs, while it is less obvious how to generalize the
centroid to arbitrary graphs [17].

Slater took the first step in generalizing these notions, although in a different sense [21]:
he considered paths in a tree that minimize the appropriate criteria. In this case, the
notions of center, centroid, and median lead to three different optimal paths: central path,
spine, and core, respectively, in the terminology of [21].

A path in a tree is a subtree of maximum degree at most 2. So a natural next step is to
consider subtrees of maximum degree at most D. Thus we get the TD-center, TD-centroid,
and TD-median. More importantly, we extend these ideas to quite general families of
subtrees that include the family of paths and families of trees of maximum degree at most
D. Thus our definitions generalize centers, centroids, medians, central paths, spines, and
cores, and in fact our results generalize known results for these six as well. It also generalizes
work by McMorris and Reid [14] (following Minnieka [15]) on subtrees of order k that
minimize eccentricity. Our work also includes the notion of a central caterpillar, suggested
by McMorris [13]. While there have been other many other generalizations of the center
and centroid (some of which we discuss in Section 5), none directly generalize central paths
or spines. There have been some very interesting generalizations of a core [19, 20, 23, 24, 1].
In particular, the k-tree core is similar to our TD-median, except that instead of bounding
the maximum degree, this concept considers subtrees with at most k leaves. There are
linear time algorithms for finding a k-tree core of a tree when k is fixed [19, 20].

We will give linear time algorithms for finding the unique TD-center, the unique TD-
centroid, a TD-median, and the set of vertices contained in TD-medians, for any tree when
D is fixed. We will also show how to obtain all of the TD-medians in time that is linear
in the sum of the order of G and the number of TD-medians. Also, every one of our
generalizations of a center and centroid of a tree T gives a unique member of a small
family of subtrees of T that can be produced in linear time.

2

2 Preliminaries

Let G = (V,E) be a connected graph with vertex set V and edge set E. For any subgraph
H of G, we denote its vertex set by V (H). The subgraph of G induced by a subset W of V
is denoted by G[W]. The order of a (sub)graph is the number of vertices in the (sub)graph.
The length l(P) of a path P in G is the number of edges in P . The distance d(u, v) between
vertices u and v in G is the length of a shortest path between u and v. The eccentricity
e(v) of a vertex v in G is the maximum of the distances from v to the other vertices in G.
The center C(G) of G is the set of vertices of G with minimum eccentricity. The status
s(v) of a vertex v is the sum of the distances from v to all other vertices in G. Clearly,
s(v)
|V |−1

is the average distance from v to the other vertices of G. A median vertex is a vertex

that minimizes the status. The median M(G) of G is the set of median vertices of G.
In the case that G is a tree, the branchweight bw(v) of a vertex v in G is the order

(i.e., number of vertices) of the largest component of G− v. The centroid B(G) of G is the
set of all vertices with minimum branchweight. For a tree, the centroid and median are
identical [25], while the median can be arbitrarily far apart from the center. (In fact, given
any two graphs H1 and H2 and any positive integer k, there exists a connected graph H
such that H1 and H2 are induced subgraphs of G with C(H) = V (H1), M(H) = V (H2),
and the distance between H1 and H2 is k, where the distance between two subgraphs is
the minimum of all possible distances between a vertex from one subgraph to a vertex
of the other [10]). In the classical paper by Jordan [11] it was already proved that C(G)
and M(G) each consist of one vertex or two adjacent vertices. Linear time algorithms for
finding each can be found in [3, 5, 6, 9].

Slater [21] generalized each of these notions to path subgraphs. If X is a subgraph of
G or a subset of V , then the distance d(X, v) from X to a vertex v in G is the minimum
of the distances from vertices of X to v. Note that d(X, u) = 0 for any vertex u in X.
The eccentricity e(X) of X is the maximum of the distances from X to the vertices of G.
A path center (or central path) of G is a path of minimum length among the paths in G
of minimum eccentricity. The status s(X) of X is the sum of the distances from X to all
other vertices of G. A path median (or core) is a path P of G that minimizes s(P). In
case G is a tree, the branchweight bw(X) of X is the the order of the largest component
of G− V (X) (G−X when X is a set of vertices). A path centroid (or spine) is a path of
minimum length among the paths P of G that minimizes bw(P). It is possible for a path
center, a spine, and a core to be distinct [21]. The path center and spine are unique for
trees, contain C(G) and M(G) respectively, and there are simple linear time algorithms for
computing each [21]. However, there may be many cores of a tree, a core need not contain
M(G), and while there are linear time algorithms for finding a core of a tree and the set of
vertices that are contained in cores [16], we will see that there may be a superpolynomial
number of cores.

In this paper, we generalize these central paths of a tree to central subtrees of a tree.

Definition 2.1 Fix a tree G and let TD be the set of subtrees of G with maximum degree
at most D.

A TD-center of G is a tree of least order in the set {T ∈ TD: e(T) ≤ e(T ′) ∀ T ′ ∈ TD}.

3

A TD-centroid of G is a tree of least order in the set {T ∈ TD: bw(T) ≤ bw(T ′) ∀ T ′ ∈
TD}.

A TD-median of a tree G is a tree in the set {T ∈ TD: s(T) ≤ s(T ′) ∀ T ′ ∈ TD}.
Note that for D = 0 these definitions yield the vertices of the center, centroid, and me-

dian of G, respectively (and is not unique if these sets contain two vertices). The T1-center
and T1-centroid are the subtrees induced by the center and centroid of G, respectively. If
there are two vertices in the median or if |V (G)| = 1, then the T1-median is the subtree
induced by the median. Otherwise, each T1-median is induced by the unique median vertex
x and one neighbor of x in a component of G−x of largest order. Since paths are the trees
of maximum degree 2, when D = 2 the above definitions become the path center, path
centroid, and path median of a tree. When D is greater than or equal to the maximum
degree of G, each of the definitions simply yields G.

3 Generalized path centers and path centroids

The following lemma is key to understanding our generalizations of the path center, in-
cluding the TD-center. Note that a subtree T of a tree G is minimal with respect to some
property P means that no proper subtree of T has property P .

Lemma 3.1 If G is a tree and 0 ≤ k ≤ e(C(G)), then G has a unique minimal subtree
with eccentricity at most k.

Note that if C(G) = {x} then e(C(G)) = e(x), but if C(G) = {x, y} then e(C(G)) =
e(x)− 1 = e(y)− 1.

One consequence of this lemma is that for a given tree G, if T ∗ is the unique minimal
subtree of G with e(T ∗) ≤ k, and T is any subtree of G with e(T) ≤ k, then T ∗ is a subtree
of T . This follows since a smallest subtree of T with eccentricity less than or equal to k is
clearly minimal with respect to this property, so it must be equal to T ∗.

Proof. We will induct on e(C(G))−k to find Xk ⊂ V (G) such that G[Xk] is the unique
minimal subtree of G with e(G[Xk]) ≤ k.

G[C(G)] is a subtree of G with eccentricity e(C(G)). It is easy to see that if T is a
subtree of G that does not contain C(G), then e(T) > e(C(G)). Therefore G[C(G)] is the
unique minimal subtree of G with eccentricity at most e(C(G)), and Xe(C(G)) = C(G).

Suppose that G[Xk] is the unique minimal subtree of G with eccentricity at most k. If
T is a subtree of G with eccentricity at most k− 1, then clearly T has eccentricity at most
k, so (by the remarks preceding this proof) T must contain G[Xk].

For each component H of G−Xk, let xHyH be the edge with xH ∈ Xk and yH ∈ V (H),
and let l(H) be the eccentricity of xH in G[V (H)∪{xH}]. Let Xk−1 = Xk∪{yH : l(H) = k}.
Note that e(G[Xk−1]) = k− 1, and that the eccentricity is larger for any subtree that does
not intersect every H for which l(H) = k.

Therefore G[Xk−1] is the unique minimal subtree of G with eccentricity at most k− 1.

Throughout this section, we will continue to use Xk to represent the vertex sets gener-
ated in the proof of Lemma 3.1.

4

Remark 3.2 The unique minimal subtrees in Lemma 3.1 are nested. That is, if G is a
tree and for 0 ≤ k ≤ e(C(G)), G[Xk] is unique minimal subtree of G with eccentricity at
most k, then G[Xe(C(G))] ⊆ . . . ⊆ G[X1] ⊆ G[X0]. (Of course, G[X0] = G.)

We will present a theorem that applies to a much more general class of central sub-
structures than merely TD-centers. For this we introduce the following definitions.

Definition 3.3 T is a hereditary class of trees if T is a nonempty set of trees such that
for each T ∈ T , every subtree of T is in T .

Observe that this resembles the definition of a hereditary class of graphs except that
“set of trees” and “subtree” replaces “set of graphs” and “subgraph”. However, it is not a
special type of hereditary class of graphs because the subtrees of a tree are its connected
subgraphs.

We first note a few easily checked facts.

Proposition 3.4 Let T be a hereditary class of trees. Then

1. K1 ∈ T ,

2. K2 ∈ T unless T = {K1},
3. all subtrees of a fixed tree form a hereditary class of trees,

4. unions and intersections of hereditary classes of trees yield new hereditary classes of
trees, and

5. if T is finite, then T =
⋃{subtrees of T}, where the union is taken over all T such

that T is a maximal tree in T .

Many other observations can be easily generated. For example: If |T | ≥ 2, then
K2 ∈ T . If |T | ≥ 3, then T also contains K1,2. If |T | = 4, then T contains K1, K2, K1,2,
and either K1,3 or P4 (the path of order 4).

Definition 3.5 Let T be a hereditary class of trees, let G be a graph, and let T ′ be the
subtrees of G that are in T . A T -center of G is an element of smallest order in the set
{ T ∈ T : e(T) ≤ e(T ′) ∀T ′ ∈ T ′}.

Note that this directly generalizes the TD-center from Definition 2.1, since TD is the
family of trees of maximum degree at most D, and TD is clearly a hereditary class of trees.

Other examples include trees of order at most k, trees of diameter at most d (for d = 2
these are stars), caterpillars (including all paths), lobsters (a lobster is a tree that contains
a path of eccentricity at most 2), subdivisions of stars, and all the subtrees of any fixed
set of trees. In addition, the union and intersection of two hereditary classes of trees are
both hereditary classes of trees. The following theorem applies to each of these classes.

Theorem 3.6 For a tree G and a hereditary class of trees T , the T -center of G is unique
unless both T = {K1} and |C(G)| = 2.

5

Proof. Clearly there is a T -center of G. Let T be one such subtree. If e(C(G)) < e(T),
then the subtree induced by C(G) is not in T . Then by Proposition 3.4(1), |C(G)| 6= 1.
Hence |C(G)| = 2, and by Proposition 3.4(2), T must be {K1}.

Otherwise we may apply Lemma 3.1, so G has a unique minimal subtree T ∗ with
eccentricity at most e(T). Every subtree of G with eccentricity at most e(T) contains T ∗

as a subgraph; in particular, T ∗ ⊆ T . Since T is a hereditary class of trees, T ∗ ∈ T .
Since T is a T -center, its order is not greater than the order of T ∗. Hence it must be that
T = T ∗.

Corollary 3.7 Let G be a tree, and let D be a positive integer. The TD-center is unique
and contains the TD′-centers of G for all 1 ≤ D′ ≤ D.

Proof. Theorem 3.6 with T = TD immediately implies that the TD-center T is unique.
Similarly, the TD′-center T ′ is unique. Since TD′ ⊆ TD, we have e(T) ≤ e(T ′) by definition.
The proof of Theorem 3.6 shows that T ′ is the unique minimal subtree with eccentricity
at most e(T ′). Then every subtree of G with eccentricity at most e(T ′) contains T ′ as a
subgraph; in particular, T contains T ′.

Similar results can be obtained for other hereditary classes of trees. For example, let
C denote the set of caterpillars (including all paths), let G be a tree, and let C ′ be the
subtrees of G that are in C. A caterpillar center of G is an element of smallest order in
{T ∈ C ′: e(T) ≤ e(T ′) ∀ T ′ ∈ C ′}. Since C is a hereditary class of trees, each tree G has a
unique caterpillar center. Of course, if G is a caterpillar then the caterpillar center of G
is G itself. Note that the caterpillar center of a tree G is usually not a path: The proof
of Theorem 3.6 shows that the caterpillar center is G[Xk], for some k. Now, if k > 0
and G[Xk] is a path, then, according to the proof of Lemma 3.1, G[Xk−1] is a path or a
caterpillar and has eccentricity less than that of G[Xk]. This would contradict the fact
that G[Xk], being the caterpillar center, has smallest eccentricity among all caterpillars of
G. The argument fails if k = 0 and G[Xk] is a path, in which case G = G[Xk]. Hence the
caterpillar center of G is not a path unless G is a path.

Similar results hold for other hereditary classes of trees, such as those mentioned above
following Definition 3.5. Moreover, recall that McMorris and Reid [14] defined a central
k-tree to be a subtree of order k that minimizes eccentricity. A tree need not have a
unique central k-tree. While subtrees of order k do not form a hereditary class of subtrees,
let T be the hereditary class of trees of order at most k. Then following McMorris and
Reid [14], we see that their central k-trees of a tree are obtained from the T -centers by
adding arbitrary adjacent vertices until trees of order exactly k are obtained.

We can find the T -center quickly by finding each Xk as k decreases from e(C(G)) to
0, and stopping when G[Xk] is not in T . Then G[Xk+1] is the T -center. We wish to find
Xk quickly and test quickly whether G[Xk] ∈ T .

Theorem 3.8 Let G be a tree and let G[Xk] be its unique minimal subtree with eccentricity
at most k, for 0 ≤ k ≤ e(C(G)). There is a linear time algorithm that finds all Xk for
0 ≤ k ≤ e(C(G)).

6

Proof. First, C(G) can be found in linear time (successively remove all leaves until
K1 or K2 remains). If C(G) = {x}, we let x be the root of G, and if C(G) = {x, y}
we contract y to x and let x be the root of the “adjusted” tree (and we still refer to the
adjusted tree as G). In the resulting rooted tree each non-root vertex v is itself the root of
a unique maximal tree Gv induced by all vertices reachable from x via v. Let e′(v) be the
eccentricity of v in Gv. We determine e′(v) for each v in V by a depth-first search (DFS)
from the root x as follows. Begin with e′(v) set to 0 for all v in V . When we arrive at
a vertex v from its child u, update e′(v) to be the maximum of e′(u) + 1 and the current
value of e′(v). Observe that when the DFS is done, all e′(v) are correctly computed in
linear time. Note that e′(x) = e(C(G)). For each 0 ≤ k ≤ e(C(G)) we create a list, and
place a vertex v ∈ V in the list with k = e′(v) (in linear time). Now let Xe(C(G)) = C(G),
and for each k < e(C(G)), let Xk = Xk+1∪{v: e′(v) = k}. This can be done in linear time
using the lists we set up. Thus, all Xk are found in linear time, as desired.

It may be interesting to note that the set Xk can also be generated as follows: Let i = 0.
Repeatedly: let Yi be the set of current vertices of degree 1 (or 0), delete Yi while creating
Yi+1, and increment i. Continue until the tree is gone. Afterwards, Yk = {v: e′(v) = k},
so let Xk = Xk+1 ∪ Yk. This way can be implemented in linear time as well.

Corollary 3.9 Let G be a tree and let D be a positive integer. There is a linear time
algorithm for finding the TD-center of G. There are similar linear time algorithms for
finding the T -center if T is the family of all of any of the following: any finite hereditary
class of trees (such as trees of order at most n), stars (including K1 and K2), spiders
(subdivisions of stars, including all stars), trees of diameter at most D, caterpillars (and
paths), and lobsters (and caterpillars and paths).

Proof. To find the TD-center in linear time, we modify the last step of Theorem 3.8
so that each time we add a vertex of Xk −Xk+1 to Xk, we check to see whether a vertex
of degree greater than D has been created in G[Xk]. When that happens, we stop and
G[Xk+1] is the TD-center. When T is the family of trees of order at most n, the T -center
can be found in linear time (much like the algorithm in [14]), since it is trivial to recognize
the minimum n such that |Xk+1| > n. (If n = 1 then C(G) is the set of T -centers, which
can also be found in linear time.) Moreover, since it takes constant time to check whether
a tree is isomorphic to a given fixed tree, whenever T is any a finite hereditary class of
trees, the T -center can be found in linear time. (As above, T = {K1} is a special case.)
If T represents stars (or spiders), one simply chooses the minimum k such that G[Xk+1]
has more than one vertex of degree greater than 1 (degree greater than 2 for spiders).
Thus the T -center is found in linear time. Note that the diameter of G[Xk] is 2 plus the
diameter of G[Xk+1] if k ≥ 0, and the diameter of G[Xe(C(G))] is 0 or 1 when |C(G)| is 1 or
2, respectively. Then it is easy to see that if T is the family of trees of diameter at most D
(with D ≥ 1), then G[Xk] is the T -center for k = max{0, e(C(G))− d(D − |C(G)|)/2e}.

To find the central caterpillar in linear time, we begin by finding k such that G[Xk]
is the T2-center (i.e., path center), as above. Note that this is not so different from the
algorithm for finding a path center given in [21]. Unless G is itself a path, G[Xk−1] is not
a path, in which case it is a caterpillar. Note that no vertex of Xk−1 − Xk is a leaf in

7

G[Xk−2] unless G[Xk−1] = G (and k = 1). Therefore, G[Xk−2] is not a caterpillar when
k ≥ 2, so G[Xk−1] is the central caterpillar unless G is a path. Similarly, G[Xk−2] is the
lobster center unless G is a caterpillar or a path, and thus the lobster center can be found
in linear time.

For an arbitrary hereditary class of trees T , the running time depends on how easy it
is to recognize whether each G[Xk] is in T .

Similar results follow when the branchweight function bw(·) is used in place of ec-
centricity e(·). In particular, the next three results have nearly identical proofs to their
eccentricity analogues, so we omit the proofs.

Lemma 3.10 If G is a tree and 0 ≤ k ≤ bw(M(G)), then G has a unique minimal subtree
with branchweight at most k.

Definition 3.11 Let T be a hereditary class of trees, let G be a graph, and let TG be
the subtrees of G that are in T . A T -centroid of G is an element of smallest order in
{T ∈ TG : bw(T) ≤ bw(T ′) ∀T ′ ∈ TG}.

Note that this definition is consistent with Definition 2.1.

Theorem 3.12 For a tree G and a hereditary class of trees T , the T -centroid of G is
unique unless both T = {K1} and |M(G)| = 2.

Corollary 3.13 Let G be a tree, and let D be a positive integer. The TD-centroid of G is
unique and contains the TD′-centroids of G for all 1 ≤ D′ ≤ D.

The algorithms for finding T -centroids are not quite the same as for finding T -centers.

Theorem 3.14 Let G be a tree and let G[Yk] be its unique minimal subtree with branch-
weight at most k, for 0 ≤ k ≤ bw(M(G)). There is a linear time algorithm that finds all
Yk for 0 ≤ k ≤ bw(M(G)).

Proof. We show that we can compute all Yk in linear time in a similar way as done
for the sets Xk. First, M(G) can be found in linear time [5]. If M(G) = {x}, we let x
be the root of the tree G. If M(G) = {x, y}, we contract y to x and then let x be the
root of the adjusted tree (and we still refer to the adjusted tree as G). Note that now
bw(M(G)) = bw(x). In the resulting rooted tree, each non-root vertex v is itself the root
of a unique maximal tree Gv, induced by all vertices reachable from x via v. We compute
|V (Gv)| for all v recursively via a depth-first search. Note that |V (Gv)| ≤ bw(M(G)) for
each non-root vertex v.

For each 1 ≤ k ≤ bw(M(G)) we create a list, and place each non-root vertex v in the list
with k = |V (Gv)| (in linear time). Now let Ybw(M(G)) = M(G), and for each k < bw(M(G)),
let Yk = Yk+1 ∪ {v: |V (Gv)| = k + 1}. This can be done in linear time using the lists we
set up. Thus, all Yk are found in linear time.

8

Corollary 3.15 Let G be a tree and let D be a positive integer. There is a linear time algo-
rithm for finding the TD-centroid of G. There are similar linear time algorithms for finding
the T -centroid if T is the family of all of any of the following: any finite hereditary class of
trees (such as trees of order at most n), stars (including K1 and K2), spiders (subdivisions
of stars, including all stars), caterpillars (and paths), and lobsters (and caterpillars and
paths).

Proof. The TD-centroid can be found in linear time for the same reasons that the
TD-center can be found in linear time, and the D = 2 case resembles the algorithm for
finding the path centroid given in [21]. Likewise, we can find the T -centroid in linear time
if T represents any finite hereditary class of tree (such as the trees of order at most n),
the stars, or the spiders.

Let C be the hereditary class of all caterpillars and paths. The caterpillar centroid (i.e.,
C-centroid) is a bit harder to find than the caterpillar center, since a vertex of Yk − Yk+1

may remain a leaf in Yk−1 (indeed, Yk = Yk−1 is a possibility). Still, we can begin with the
path centroid P = G[Yk] for some k. Gradually we decrease k, adding vertices of Yk−1−Yk.
Label the non-leaves of P in order: vm, . . . , vm+p, where m is any integer. If a vertex of
Yk−1 − Yk is adjacent to a leaf u of G[Yk] that is adjacent to some vi with m < i < m + p,
then we stop: G[Yk] is the caterpillar centroid. If the next vertex of Yk−1 − Yk is adjacent
to a leaf u of G[Yk] that is adjacent to vm or vm+p, we relabel u as vm−1 or vm+p+1 as
appropriate, descrease m or increase p by 1, and continue. Thus, we find the caterpillar
centroid in linear time. If we continue on from this point we can find the T -centroid where
T is the set of lobsters, in linear time. The process is quite similar to the caterpillar case,
except that we act when a vertex is added that is at distance 3 from some vi. Again, the
action depends on whether i is an extreme value.

Corollary 3.15 did not mention the case where T is the family of trees with diameter at
most D, since is not as obvious for T -centroid as it is for T -center. Certainly the formula
for k in Corollary 3.9 does not extend to this situation.

4 TD-medians

Now we turn to the TD-medians. Recall that Slater’s path median need not be unique.
This is also true for the TD-medians for any D ≥ 2, as the following examples illustrate.

First, recall that any median vertex is a T0-median, and, if there are two median vertices,
then the T1-median is the subgraph on them. If there is only one median vertex x and
|V | > 1, then the T1-medians of G are formed by taking x and one neighbor in a largest
component of G − x. For example, a k-star (with k leaves) has k distinct T1-medians. A
T2-median is just a path median and examples showing that the path median is not unique
and need not contain the median are given in [16] and [21].

Next we investigate the T2-medians of a certain class of trees, in part to motivate the
main proof of this section. Let k ≥ 3, and, for each 1 ≤ i ≤ k, let Ti be a either a
4-vertex path or a 5-star, with one leaf labeled x. Let G the tree formed by identifying all
the vertices labeled x. It is not hard to check that a T2-median must contain x. Since a

9

T2-median must be a maximal path, it must intersect exactly two components of G − x.
Let T be such a maximal path. If T does not enter a Ti which is a path, then the vertices
of Ti contribute 6 to s(T). Otherwise, T contains Ti and there is no contribution from Ti

to s(T). If T does not enter a Ti which is a star, then the vertices of Ti contribute 9 to
s(T); otherwise, the vertices of Ti still contribute 3 to s(T). Therefore, no matter which
two components of G − x intersect T , the status of T is the same, and T is a T2-median.
Thus G may have many T2-medians. Moreover, if k ≥ 3 and G has both types of Ti, then
there are non-isomorphic T2-medians (paths of different lengths)

For D ≥ 3, we also have trees with multiple TD-medians of different isomorphism
classes. Let k ≥ D + 1, and, for 1 ≤ i ≤ k, let Ti be either a (D + 3)-star with a leaf
labeled x, or a D-star with one leaf labeled x, and such that an edge not adjacent to x
is subdivided producing exactly one vertex of degree 2. Now let G be the tree formed by
identifying all the vertices labeled x. (See Fig. 1 for an example.) Any subtree of G not
containing x is not a TD-median, because it can easily be altered to produce a new subtree
with smaller status and with maximum degree still at most D. A TD-median cannot
intersect every component of G − x. A component that does not intersect a TD-median
contributes 2D + 5 or 2D + 2 to its status, and the other components contribute 3 or 0
to the status. The “relative cost” of selecting/not selecting each Ti is 2D + 2. Thus G

has at least
(

k
D

)
distinct TD-medians, and one can easily check that there are TD-medians

of different isomorphism classes as long as G includes both types of Ti. In the case that
k = 2D, one can show that the number of TD-medians in this example is asymptotically
22D/

√
πD and n ∼ 2D2, so the number of TD-medians is superpolynomial in n.

x

(more)

Figure 1: An example with D = 4 and k = 6, focused on T1 and T2.

Despite all this, the following theorem produces all TD-medians quickly. The ideas are
similar to those in [16]. For any vertex v of G, the set of neighbors of v is denoted by
N(v). In the proof we need the following definition.

Definition 4.1 Let G be a tree, let D be a positive integer, let x be a vertex of G, and
let TD be the set of subtrees of G with maximum degree at most D. A subtree T of G is
a (D, x)-core in G if T minimizes status among all subtrees in TD containing x.

Theorem 4.2 Let G be a tree, and let D a positive integer. There exists a recursive
algorithm that finds all TD-medians in time that is linear in the order of G plus the number
of TD-medians. There is an algorithm that finds a single TD-median in linear time.

10

Proof. Let x1, . . . , xn be an ordering of the vertices of G such that xi is a leaf in
G[{xi, . . . , xn}] for each 1 ≤ i < n. For each i < n, let xp(i) be the unique neighbor of xi

with p(i) > i. Then for every edge xixj, j = p(i) if and only if j > i. For each i < n, let
Vi be the vertex set of the component of G− xixp(i) that contains xi. Let Vn = V .

The general idea of the algorithm is as follows. Suppose that T is a TD-median of G.
Let i be maximum such that xi ∈ V (T), then T ⊆ G[Vi]. Note that for any tree T ′ in G[Vi]
that contains xi, the status of T ′ in G is the sum of the status of T ′ in G[Vi] and the status
of xi in G− (Vi − xi). Therefore T must have the least status in G[Vi] among all trees in
G[Vi] that contain xi and have maximum degree at most D, that is, T is a (D, xi)-core
in G[Vi]. This directly motivates the first n steps of the algorithm, in which we find all
(D, xi)-cores in G[Vi], for 1 ≤ i ≤ n. Later in the algorithm we compute the status of
these subtrees with respect to G. The ones that have minimum status with respect to G
are the TD-medians of G.

Suppose that T is a (D, xi)-core in G[Vi]. By a similar argument as above, T is the
union of (D, xi)-cores in G[Vk ∪ {xi}], for some xk with p(k) = i. (See Figure 2.) Note
that for each xk with p(k) = i, removing xi from the (D, xi)-cores in G[Vk ∪ {xi}] yields
precisely the subtrees of G[Vk] with minimum status in G[Vk] among those that contain
xk, have degree at most D−1 at xk, and have degree at most D at every other vertex. We
call such a subtree a (D, xk)

′-core. The difference between this and a (D, xk)-core in G[Vk]
is that the (D, xk)

′-core minimizes status over subtrees with the additional requirement
that the degree at xk is at most D − 1. Thus, in order to use recursion, we keep track of
the (D, xk)

′-cores as well for all k < n. In order to decide which of them might be in T ,
we compute the relative cost of selecting or not selecting each (D, xk)

′-core to be part of a
(D, xi)-core in G[Vi], as in the two examples given prior to this theorem. In particular, for
each xk with p(k) = i, note that if xk 6∈ V (T), then an amount equal to the status of xi in
G[Vk ∪ {xi}] is contributed to the status of T in G[Vi]. Hence, for each i < n, we wish to
know the status of xp(i) in G[Vi ∪ {xp(i)}]. We denote this by s(i). Also, for 1 ≤ i ≤ n:

let sD(i) be the status of a (D, xi)-core in G[Vi],

let S∗D(i) = {xk: p(k) = i and xk is in every (D, xi)-core in G[Vi]}, and

let SD(i) = {xk: p(k) = i and xk is in a (D, xi)-core in G[Vi]} − S∗D(i).

The (D, xi)
′-cores will also be computed recursively, so for 1 ≤ i < n:

let s′D(i) be the status of a (D, xi)
′-core in G[Vi],

let S∗D ′(i) = {xk: p(k) = i and xk is in every (D, xi)
′-core}, and

let S ′D(i) = {xk: p(k) = i and xk is in a (D, xi)
′-core} − S∗D(i).

We keep track of the (D, xi)-cores in G[Vi] and the (D, xi)
′-cores indirectly via these

parameters, because there might be many more of these for various i than there are TD-
medians in G. Generating them all explicitly could conflict with the desired running time.

The algorithm begins with recursive steps 1 ≤ i < n, in step i computing |Vi|, s(i),
s′D(i), S∗D ′(i), S ′D(i), sD(i), S∗D(i), and SD(i). In step n we compute sD(n), S∗D(n), and

11

SD(n). Note that since G[Vn] = G, this computes the status of a (D, xn)-core in G.
Afterwards, we compute the status of all (D, xi)-cores in G as i decreases from n− 1 to 1.
Finally, we show how all this is used to obtain the TD-medians of G.

In Step i for 1 ≤ i < n, let Ni denote N(xi) − xp(i) (= N(xi) ∩ Vi = {xk: p(k) = i}).
Note that Ni is empty whenever xi is a leaf in G. For the non-leaves xi, step i will run in
time proportional to |Ni| for i < n, and the nth step will take time proportional to |N(xn)|,
so the first n steps take O(n) time overall.

In the case that xi is a leaf in G, then |Vi| = 1, s(i) = 1, s′D(i) = sD(i) = 0, S∗D ′(i) =
S ′D(i) = S∗D(i) = SD(i) = ∅. Now suppose that xi is not a leaf in G. Clearly |Vi| =
1 +

∑
xk∈Ni

|Vk| and s(i) = |Vi|+ ∑
xk∈Ni

s(k).
Next we find sD(i), S∗D(i), and SD(i). If |Ni| ≤ D, then S∗D(i) = Ni, SD(i) = ∅, and

sD(i) =
∑

xk∈Ni
s′D(k). Otherwise, |Ni| > D. Then S∗D(i) cannot include all of Ni. For

each xk ∈ Ni, let mk = s(k)− s′D(k) which represents the “relative cost” of not having xk

in S∗D(i). Now we place vertices of Ni into S∗D(i) and SD(i) as follows:
Repeatedly consider all xk ∈ Ni with largest mk. If adding these to S∗D(i) will not

make |S∗D(i)| larger than D, then do so, and remove that value mk from consideration (and
repeat). If adding all xk ∈ Ni with currently largest mk to S∗D(i) would make |S∗D(i)| larger
than D, then let SD(i) be the set of xk ∈ Ni with currently largest mk, and stop. Note
that for any set N ′ of size D which contains S∗D(i) and is contained in S∗D(i) ∪ SD(i), we
have that

∑
xk∈N ′ s′D(k) +

∑
xk∈Ni−N ′ s(k) is constant; let sD(i) be this value. Also note

that for any other N ′ ⊆ Ni of size at most D, the sum
∑

xk∈N ′ s′D(k) +
∑

xk∈Ni−N ′ s(k) is
larger than sD(i). Thus, sD(i), S∗D(i), and SD(i) have been computed correctly. Note that
it takes O(Ni) time to select the vertices xk ∈ Ni with currently largest mk, and this is
done at most D times. D is constant so the whole step takes O(Ni) time.

Finding s′D(i), S∗D ′(i), and S ′D(i) is very similar. The difference is that instead of ceasing
to add xk ∈ Ni with largest mk to S∗D(i) when it would make |S∗D(i)| larger than D, we stop
adding xk ∈ Ni with largest mk to S∗D ′(i) when it would make |S∗D ′(i)| larger than D − 1
(or equal to |Ni|). Then let S ′D(i) be the set of xk ∈ Ni with currently largest mk, and let
s′D(i) =

∑
xk∈N ′ s′D(k) +

∑
xk∈Ni−N ′ s(k) where N ′ is any set of size D − 1 which contains

S∗D ′(i) and is contained in S∗D ′(i)∪S ′D(i). Obviously, any reasonable implementation would
combine these three computations with the previous three with the same i.

k
x

x
i

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

V

Vk

i

iG − V
x

p(i)

Figure 2: Something to look at for Steps 1 to n

In Step n we compute sD(n), S∗D(n), and SD(n). These are computed exactly as sD(i),
S∗D(i), and SD(i) are computed for i < n if we define Nn to be N(xn).

12

It still remains to compute the status with respect to G of each (D, xi)-core of G[Vi].
Toward this purpose, let s′(i) denote the status of xi in G − (Vi − xi). We compute s′(i)
as i decreases from n − 1 to 1. Observe that s′(i) is the sum of s′(p(i)), all s(j) such
that p(j) = p(i) and j 6= i, and |V − Vi|. (See Fig. 2 for an example of s′(k).) Since
|V − Vi| = n − |Vi| and s′(p(i)) is computed before s′(i), we are able to compute s′(i) for
all 1 ≤ i < n.

For 1 ≤ i < n, let s∗(i) = sD(i)+s′(i) and let s∗(n) = sD(n). Then for all 1 ≤ i < n, the
value s∗(i) is the status measured in G of a (D, xi)-core in G[Vi]. Let s(G) = min1≤i≤n s∗(i).
Then, by our initial argument, s(G) is the status of a TD-median of G.

Finally, we will show how to obtain every TD-median of G. Begin with any xi ∈ V for
which s∗(i) = s(G). Add min{D, |Ni|} neighbors of xi from S∗D(i)∪SD(i), including all of
S∗D(i). Now starting from each xk just chosen, recursively add min{D − 1, |Ni|} vertices
from S∗D ′(k) ∪ S ′D(k) including all of S∗D ′(k). The choices made determine which of the
TD-medians of G is obtained, and this TD-median is obtained in linear time. By branching
the procedure to follow through with all possible choices, we obtain all TD-medians. Note
that for a given TD-median, if xi is its vertex of maximum index, then this TD-median is
a (D, xi)-core but not a (D, xj)-core for any j 6= i. Hence this TD-median will be only
be produced once by this process, justifying the claimed running time for producing all
TD-medians. Finally, if we add all of S∗D(i) ∪ SD(i) every time, we obtain the set of all
vertices that are are contained in TD-medians of G.

Remark 4.3 If we knew in advance that some vertex of G is in every TD-median, then we
could order the vertices so that xn is that vertex. Then every TD-median would actually be
a (D, xn)-core in G, which would simplify things somewhat. The most obvious candidate
would be a median vertex, except that Morgan and Slater [16] showed that sometimes the
path median of a tree does not contain a median vertex. However, Slater [22] has found a
different sort of vertex which is contained in every path median, so perhaps there is hope
for TD-medians as well. On the other hand, one might try to find an example of a tree G
that has two TD-medians that do not intersect one another.

5 Conclusions

This paper unifies many types of central substructures of trees under the definitions of T -
center and T -centroid, subsuming previous definitions and algorithms. It also deals with
many other potential generalizations, since our work immediately applies whenever T is a
hereditary class of trees. For many choices of T , one can follow our model and show how
to find the T -center and T -centroid in linear time. This leads to the question: are there
linear time algorithms for finding the T -center and T -centroid for any hereditary class of
trees T , and, if so, can the algorithms be described in a unified manner? The answer to
the first part of the question would be ‘Yes’ if, for every hereditary class of trees T , there
is a sufficiently fast recognition algorithm to test whether a subtree T of an arbitrary tree
G is in T . It might help to have a nice alternative characterization of a hereditary class of
trees.

13

Another direction to pursue would be to define a T -median in the obvious way, and to
find fast algorithms for finding one or all T -medians in a tree G, for any hereditary class
of trees T , or merely for special hereditary classes of trees T . Yet another possibility is
to see whether our definitions are related to disconnected central substructures, e.g., is it
true that a p-median [7, 8, 12] and p-core [2, 24] must always be contained in a TD-center
for D sufficiently large (as a function of p)? If so, one might be able to use a TD-median
(which we can find quickly) to quickly find a p-median or p-core. (See [24] for a quick
survey on the best-known algorithms for finding a p-median and p-core.) One might try
to find a p-center quickly by a similar strategy, although there is a (rather complicated)
linear time algorithm already [4]. Finally, there are vertex- and edge-weighted versions of
these problems, versions of the problems where a portion of an edge can be in a central
substructure, and the more general situation of when the host graph is not a tree.

Acknowledgements

We thank Buck McMorris for organizing the 2003 DIMACS Reconnect Workshop at
Illinois Institute of Technology that initiated this study, and for his suggestion of investi-
gating caterpillar centers, which eventually led us to come up with hereditary classes of
trees.

References

[1] R.I. Becker, Y.I. Chang, I. Lari, A. Scozzari, G. Storchi, Finding the l-core of a tree,
Third ALIO-EURO Meeting on Applied Combinatorial Optimization (Erice, 1999).
Discrete Appl. Math. 118 (2002), no. 1-2, 25–42.

[2] R. I. Becker and Y. Perl, Finding the two-core of a tree, Discrete Appl. Math. 11(2)
(1985), pp. 103–113.

[3] E. J. Cockayne, S. T. Hedetniemi, and S. L. Hedetniemi, Linear Algorithms for Finding
the Jordan Center and Path Center of a Tree, Trans. Sci. 15 (1981), pp. 98–114.

[4] G.N. Frederickson, Parametric Search and Locating Supply Centers in Trees, (Algo-
rithms and Data Structures, 2nd Workshop, WADS ’91, Ottawa, Canada, August
1991), LNCS 519, Springer-Verlag, pp. 299-319.

[5] A. J. Goldman, Optimal center location in simple networks, Trans. Sci. 5 (1971),
pp. 212–221.

[6] A. J. Goldman, Minimax location of a facility on a network. Trans. Sci. 6 (1972),
pp. 407–418.

[7] S. L. Hakimi, Optimum locations of switching centers and absolute centers and medi-
ans of a graph, Operations Res. 12 (1964), pp.450-459.

[8] S. L. Hakimi, Optimum locations of switching centers and absolute centers in a com-
munication network and some related graph-theoretic problems, Operations Res. 13
(1965), pp.462–475.

14

[9] G. Y. Handler, Minimax Location of a Facility in an Undirected Tree Graph, Trans.
Sci. 7 (1973), pp. 287–293.

[10] K. S. Holbert, A note on graphs with distant center and median, Recent Studies in
Graph Theory, V.R.Kulli (editor), Vishna, Gulbarza, India, 1989, pp.155–158.

[11] C. Jordan, Sur les assemblages de lignes, J. Reine Agnew. Math. 70, 185–190 (1869).

[12] S. L. Hakimi and O. Kariv, An algorithmic approach to network location problems. II:
The p-medians, Siam. J. Appl. Math. 37(3) (1979), pp. 539–560.

[13] F. R. McMorris, Personal Communication, 2003.

[14] F. R. McMorris and K. B. Reid, Central k-trees in Trees, Congress. Numer. 124
(1997), pp. 139–143.

[15] E. Minnieka, The optimal location of a path or tree in a tree network, Networks 15
(1985), 309–321.

[16] C. A. Morgan and P. J. Slater, A Linear Algorithm for the Core of a Tree, J. Algo-
rithms 1 (1980), 247–258.

[17] J. Nieminen, Centrality, convexity and intersections in graphs, Bull. Math. Soc. Sci.
Math. R. S. Roumanie (N.S.) 28(76) (1984), no. 4, 337–344.

[18] M.J. Pelsmajer and J. Pierce, A linear time algorithm for finding a vertex p-center in
an unweighted tree, in process.

[19] S. Peng, A.B. Stephens, Y. Yesha, Algorithms for a core and k-tree core of a tree, J.
Algorithms 15 (1993), no. 1, 143–159.

[20] A. Shioura and T. Uno, A linear time algorithm for finding a k-tree core, J. Algorithms
23 (1997), no. 2, 281–290.

[21] P. J. Slater, Locating central paths in a graph, Transportation Sci., 16 (1982), 1–18.

[22] P. J. Slater, Centrality of paths and vertices in a graph: cores and pits, The theory
and applications of graphs (Kalamazoo, Mich., 1980), pp. 529–542, Wiley, New York,
1981.

[23] Srivastava, Saurabh and Ghosh, R. K., Distributed algorithms for finding and main-
taining a k-tree core in a dynamic network., Inform. Process. Lett. 88 (2003), no. 4,
187–194.

[24] B.-F. Wang, Finding a 2-core of a tree in linear time., SIAM J. Discrete Math. 15(2)
(2002), pp.193–210.

[25] B. Zelinka, Medians and Peripherians of Trees, Arch. Math. (Brno), 87–95 (1968).

15

