114 research outputs found

    Sparsest Cut on Bounded Treewidth Graphs: Algorithms and Hardness Results

    Full text link
    We give a 2-approximation algorithm for Non-Uniform Sparsest Cut that runs in time nO(k)n^{O(k)}, where kk is the treewidth of the graph. This improves on the previous 22k2^{2^k}-approximation in time \poly(n) 2^{O(k)} due to Chlamt\'a\v{c} et al. To complement this algorithm, we show the following hardness results: If the Non-Uniform Sparsest Cut problem has a ρ\rho-approximation for series-parallel graphs (where ρ1\rho \geq 1), then the Max Cut problem has an algorithm with approximation factor arbitrarily close to 1/ρ1/\rho. Hence, even for such restricted graphs (which have treewidth 2), the Sparsest Cut problem is NP-hard to approximate better than 17/16ϵ17/16 - \epsilon for ϵ>0\epsilon > 0; assuming the Unique Games Conjecture the hardness becomes 1/αGWϵ1/\alpha_{GW} - \epsilon. For graphs with large (but constant) treewidth, we show a hardness result of 2ϵ2 - \epsilon assuming the Unique Games Conjecture. Our algorithm rounds a linear program based on (a subset of) the Sherali-Adams lift of the standard Sparsest Cut LP. We show that even for treewidth-2 graphs, the LP has an integrality gap close to 2 even after polynomially many rounds of Sherali-Adams. Hence our approach cannot be improved even on such restricted graphs without using a stronger relaxation

    Graph Pricing Problem on Bounded Treewidth, Bounded Genus and k-partite graphs

    Full text link
    Consider the following problem. A seller has infinite copies of nn products represented by nodes in a graph. There are mm consumers, each has a budget and wants to buy two products. Consumers are represented by weighted edges. Given the prices of products, each consumer will buy both products she wants, at the given price, if she can afford to. Our objective is to help the seller price the products to maximize her profit. This problem is called {\em graph vertex pricing} ({\sf GVP}) problem and has resisted several recent attempts despite its current simple solution. This motivates the study of this problem on special classes of graphs. In this paper, we study this problem on a large class of graphs such as graphs with bounded treewidth, bounded genus and kk-partite graphs. We show that there exists an {\sf FPTAS} for {\sf GVP} on graphs with bounded treewidth. This result is also extended to an {\sf FPTAS} for the more general {\em single-minded pricing} problem. On bounded genus graphs we present a {\sf PTAS} and show that {\sf GVP} is {\sf NP}-hard even on planar graphs. We study the Sherali-Adams hierarchy applied to a natural Integer Program formulation that (1+ϵ)(1+\epsilon)-approximates the optimal solution of {\sf GVP}. Sherali-Adams hierarchy has gained much interest recently as a possible approach to develop new approximation algorithms. We show that, when the input graph has bounded treewidth or bounded genus, applying a constant number of rounds of Sherali-Adams hierarchy makes the integrality gap of this natural {\sf LP} arbitrarily small, thus giving a (1+ϵ)(1+\epsilon)-approximate solution to the original {\sf GVP} instance. On kk-partite graphs, we present a constant-factor approximation algorithm. We further improve the approximation factors for paths, cycles and graphs with degree at most three.Comment: Preprint of the paper to appear in Chicago Journal of Theoretical Computer Scienc

    The complexity of general-valued CSPs seen from the other side

    Full text link
    The constraint satisfaction problem (CSP) is concerned with homomorphisms between two structures. For CSPs with restricted left-hand side structures, the results of Dalmau, Kolaitis, and Vardi [CP'02], Grohe [FOCS'03/JACM'07], and Atserias, Bulatov, and Dalmau [ICALP'07] establish the precise borderline of polynomial-time solvability (subject to complexity-theoretic assumptions) and of solvability by bounded-consistency algorithms (unconditionally) as bounded treewidth modulo homomorphic equivalence. The general-valued constraint satisfaction problem (VCSP) is a generalisation of the CSP concerned with homomorphisms between two valued structures. For VCSPs with restricted left-hand side valued structures, we establish the precise borderline of polynomial-time solvability (subject to complexity-theoretic assumptions) and of solvability by the kk-th level of the Sherali-Adams LP hierarchy (unconditionally). We also obtain results on related problems concerned with finding a solution and recognising the tractable cases; the latter has an application in database theory.Comment: v2: Full version of a FOCS'18 paper; improved presentation and small correction

    Tight Size-Degree Bounds for Sums-of-Squares Proofs

    Full text link
    We exhibit families of 44-CNF formulas over nn variables that have sums-of-squares (SOS) proofs of unsatisfiability of degree (a.k.a. rank) dd but require SOS proofs of size nΩ(d)n^{\Omega(d)} for values of d=d(n)d = d(n) from constant all the way up to nδn^{\delta} for some universal constantδ\delta. This shows that the nO(d)n^{O(d)} running time obtained by using the Lasserre semidefinite programming relaxations to find degree-dd SOS proofs is optimal up to constant factors in the exponent. We establish this result by combining NP\mathsf{NP}-reductions expressible as low-degree SOS derivations with the idea of relativizing CNF formulas in [Kraj\'i\v{c}ek '04] and [Dantchev and Riis'03], and then applying a restriction argument as in [Atserias, M\"uller, and Oliva '13] and [Atserias, Lauria, and Nordstr\"om '14]. This yields a generic method of amplifying SOS degree lower bounds to size lower bounds, and also generalizes the approach in [ALN14] to obtain size lower bounds for the proof systems resolution, polynomial calculus, and Sherali-Adams from lower bounds on width, degree, and rank, respectively

    Rank Lower Bounds in Propositional Proof Systems Based on Integer Linear Programming Methods

    Get PDF
    The work of this thesis is in the area of proof complexity, an area which looks to uncover the limitations of proof systems. In this thesis we investigate the rank complexity of tautologies for several of the most important proof systems based on integer linear programming methods. The three main contributions of this thesis are as follows: Firstly we develop the first rank lower bounds for the proof system based on the Sherali-Adams operator and show that both the Pigeonhole and Least Number Principles require linear rank in this system. We also demonstrate a link between the complexity measures of Sherali-Adams rank and Resolution width. Secondly we present a novel method for deriving rank lower bounds in the well-studied Cutting Planes proof system. We use this technique to show that the Cutting Plane rank of the Pigeonhole Principle is logarithmic. Finally we separate the complexity measures of Resolution width and Sherali-Adams rank from the complexity measures of Lovasz and Schrijver rank and Cutting Planes rank

    Fractional Homomorphism, Weisfeiler-Leman Invariance, and the Sherali-Adams Hierarchy for the Constraint Satisfaction Problem

    Get PDF
    Given a pair of graphs ? and ?, the problems of deciding whether there exists either a homomorphism or an isomorphism from ? to ? have received a lot of attention. While graph homomorphism is known to be NP-complete, the complexity of the graph isomorphism problem is not fully understood. A well-known combinatorial heuristic for graph isomorphism is the Weisfeiler-Leman test together with its higher order variants. On the other hand, both problems can be reformulated as integer programs and various LP methods can be applied to obtain high-quality relaxations that can still be solved efficiently. We study so-called fractional relaxations of these programs in the more general context where ? and ? are not graphs but arbitrary relational structures. We give a combinatorial characterization of the Sherali-Adams hierarchy applied to the homomorphism problem in terms of fractional isomorphism. Collaterally, we also extend a number of known results from graph theory to give a characterization of the notion of fractional isomorphism for relational structures in terms of the Weisfeiler-Leman test, equitable partitions, and counting homomorphisms from trees. As a result, we obtain a description of the families of CSPs that are closed under Weisfeiler-Leman invariance in terms of their polymorphisms as well as decidability by the first level of the Sherali-Adams hierarchy
    corecore