501 research outputs found

    INTERFACE MODE ASSIGNMENT METHOD FOR SELF-RECONSTRUCTION OF WIRELESS MESH NETWORKS

    Get PDF
    The key features of computer networks available for disaster situation is reliable, fault tolerance and self-configurable. Therefore, using wireless mesh network for disaster prevention and recover system has gain much attention from the research community in last decades. In addition, from the practical aspects of the network infrastructures of the disaster system, we should assume the core capabilities such as wireless connectivity in wide range, ease of use, and low cost so on. In this paper, we propose an interface mode assignment method for reconstructing a route from an isolated router to a gateway (GW) router in a wireless mesh network based on IEEE 802.11 infrastructure mode after a disaster occurrance. The proposed method assigns an adequate mode to each interface in an isolated router to recover the network reachability in distributed manner. Simulation results show the effectiveness of the proposed method via two different scenarios

    Improving the Performance of MANET Gateway Selection Scheme for Disaster Recovery

    Get PDF
    In this paper, we propose an improved MANET gateway selection scheme suitable for disaster recovery applications. Having an infrastructure less and decentralize features, MANET is well suited to bring the network back that has been collapse after a disaster. We focus on improving throughput performance of MANET by designing a better gateway selection scheme. The key idea is to eliminate the congestion at each MANET gateway for improved performance. Simulation results show that the proposed gateway selection scheme can efficiently manage the traffic distribution at each gateway to maximize the network performance

    Distributed Time Division Multiple Access (DTDMA) Medium Access Control Protocol For Wireless Sensor Networks [TK7872.D48 W872 2008 f rb].

    Get PDF
    Rangkaian sensor tanpa wayar menerima perhatian yang memberangsangkan sejak beberapa tahun yang lalu disebabkan oleh peningkatan permintaan terhadap perisian kadar rendah, murah dan menjimatkan tenaga seperti operasi perkilangan, ketenteraan, kesihatan, pengawasan alam sekitar, sekuriti, operasi penyelamatan dan komunikasi tanpa wayar. Wireless Sensor Networks (WSNs) received tremendous attention over the last few years due to increasing demand for low data rate, low-cost and low power applications in industries like factory automation, military, health and hospitality,environment monitoring, security, search and rescue, and wireless communications

    Device-to-device based path selection for post disaster communication using hybrid intelligence

    Get PDF
    Public safety network communication methods are concurrence with emerging networks to provide enhanced strategies and services for catastrophe management. If the cellular network is damaged after a calamity, a new-generation network like the internet of things (IoT) is ready to assure network access. In this paper, we suggested a framework of hybrid intelligence to find and re-connect the isolated nodes to the functional area to save life. We look at a situation in which the devices in the hazard region can constantly monitor the radio environment to self-detect the occurrence of a disaster, switch to the device-to-device (D2D) communication mode, and establish a vital connection. The oscillating spider monkey optimization (OSMO) approach forms clusters of the devices in the disaster area to improve network efficiency. The devices in the secluded area use the cluster heads as relay nodes to the operational site. An oscillating particle swarm optimization (OPSO) with a priority-based path encoding technique is used for path discovery. The suggested approach improves the energy efficiency of the network by selecting a routing path based on the remaining energy of the device, channel quality, and hop count, thus increasing network stability and packet delivery

    Network virtualization in next-generation cellular networks: a spectrum pooling approach

    Get PDF
    The hardship of expanding the cellular network market results from the tremendous high cost of mobile infrastructure, i.e. the capital expenditures (CAPEX) and the operational expenditures (OPEX). Spectrum Sharing is one of the proposed solution for the high-cost of scalability of cellular networks. However, most of the proposed spectrum pooling frameworks in the literature are mostly approached from a technical view besides there are no good cost models based on real datasets for quantifying the circumstances under which sharing the spectrum and network resources would be beneficial to mobile operators. In this thesis, by studying different sharing scenarios in a fiber-based backhaul mobile network, we assess the incentives for service providers (SPs) to share spectrum/infrastructure in different cellular market areas/economic areas (CMA/BEAs) with different population density, allocated bandwidth (BW), spectrum bid values and considering different network topologies. Moreover, we look at the technical problem of sharing the spectrum between two SPs sharing the same basestation (BS), yet they have different traffic demand as well as different QoS constraints. We design a resource allocation scheme to provision real-time (RT), non-real-time (NRT) as well as Ultra-reliable Low Latency Communications (URLLC) traffic in a single shared BS scenario such that SPs achieve isolation, fairness and enforce their QoS constraints. Finally, we exploit spectrum pooling to develop an approach for dynamically re-configuring the base stations that survive a disaster and are powered by a microgrid to form a multi-hop mesh network in order to provide local cellular service

    Models and Protocols for Resource Optimization in Wireless Mesh Networks

    Get PDF
    Wireless mesh networks are built on a mix of fixed and mobile nodes interconnected via wireless links to form a multihop ad hoc network. An emerging application area for wireless mesh networks is their evolution into a converged infrastructure used to share and extend, to mobile users, the wireless Internet connectivity of sparsely deployed fixed lines with heterogeneous capacity, ranging from ISP-owned broadband links to subscriber owned low-speed connections. In this thesis we address different key research issues for this networking scenario. First, we propose an analytical predictive tool, developing a queuing network model capable of predicting the network capacity and we use it in a load aware routing protocol in order to provide, to the end users, a quality of service based on the throughput. We then extend the queuing network model and introduce a multi-class queuing network model to predict analytically the average end-to-end packet delay of the traffic flows among the mobile end users and the Internet. The analytical models are validated against simulation. Second, we propose an address auto-configuration solution to extend the coverage of a wireless mesh network by interconnecting it to a mobile ad hoc network in a transparent way for the infrastructure network (i.e., the legacy Internet interconnected to the wireless mesh network). Third, we implement two real testbed prototypes of the proposed solutions as a proof-of-concept, both for the load aware routing protocol and the auto-configuration protocol. Finally we discuss the issues related to the adoption of ad hoc networking technologies to address the fragility of our communication infrastructure and to build the next generation of dependable, secure and rapidly deployable communications infrastructures

    ์ด๊ธฐ์ข… IoT ๊ธฐ๊ธฐ๊ฐ„ ํ˜‘๋ ฅ์„ ํ†ตํ•œ ๋„คํŠธ์›Œํฌ ์„ฑ๋Šฅ ํ–ฅ์ƒ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2022. 8. ๋ฐ•์„ธ์›….The Internet of Things (IoT) has become a daily life by pioneering applications in various fields. In this dissertation, we consider increasing transmission data rate with energy efficiency, extending transmission coverage with low power, and improving reliability in congested frequency bands as three challenges to expanding IoT applications. We address two issues to overcome these challenges. First, we design a layered network system with a new structure that combines Bluetooth Low Energy (BLE) and Wi-Fi networks in a multi-hop network. Based on the system, we propose methods to increase data rate with energy efficiency and extend transmission coverage in a low-power situation. We implement the proposed system in the Linux kernel and evaluate the performance through an indoor testbed. As a result, we confirmed that the proposed system supports high data traffic and reduces average power consumption in the testbed compared to the existing single BLE/Wi-Fi ad-hoc network in a multi-hop situation. Second, we tackle the adaptive frequency hopping (AFH) problem of BLE through cross-technology communication (CTC) and channel weighting. We design the AFH scheme that weights the channels used by BLE devices with improving reliability in the congested bands of both Wi-Fi and BLE devices. We evaluate the proposed scheme through prototype experiments and simulations, confirming that the proposed scheme increases the packet reception rate of BLE in the congested ISM band compared to the existing AFH algorithm.์‚ฌ๋ฌผ์ธํ„ฐ๋„ท์€ ํ˜„์žฌ ๋‹ค์–‘ํ•œ ์˜์—ญ์—์„œ application์„ ๊ฐœ์ฒ™ํ•˜์—ฌ ์ƒํ™œํ™”๋˜์–ด ์™”๋‹ค. ์ด ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ์‚ฌ๋ฌผ์ธํ„ฐ๋„ท์˜ ์‘์šฉ ์‚ฌ๋ก€ ํ™•์žฅ์„ ์œ„ํ•ด ์—๋„ˆ์ง€ ํšจ์œจ์ ์ธ ์ „์†ก ์†๋„ ํ–ฅ์ƒ, ์ €์ „๋ ฅ ์ƒํ™ฉ์—์„œ์˜ ์ „์†ก ๋ฒ”์œ„ ํ™•์žฅ, ํ˜ผ์žกํ•œ ๋Œ€์—ญ์—์„œ์˜ ์‹ ๋ขฐ์„ฑ ํ–ฅ์ƒ์„ ์ƒˆ๋กœ์šด ๋„์ „ ๊ณผ์ œ๋กœ ์‚ผ๊ณ , ์ด๋Ÿฌํ•œ ๋„์ „ ๊ณผ์ œ๋ฅผ ๊ทน๋ณตํ•  ๋‘ ๊ฐ€์ง€ ์ฃผ์ œ๋ฅผ ๋‹ค๋ฃฌ๋‹ค. ์ฒซ์งธ, ๋‹ค์ค‘ ํ™‰ ๋„คํŠธ์›Œํฌ ์ƒํ™ฉ์—์„œ์˜ ๋ธ”๋ฃจํˆฌ์Šค ์ €์ „๋ ฅ๊ณผ Wi-Fi ๋„คํŠธ์›Œํฌ๋ฅผ ๊ฒฐํ•ฉ ํ•œ ์ƒˆ๋กœ์šด ๊ตฌ์กฐ์˜ ๊ณ„์ธต์  ๋„คํŠธ์›Œํฌ ์‹œ์Šคํ…œ์„ ์„ค๊ณ„ํ•˜๊ณ  ์ด์— ๊ธฐ๋ฐ˜ํ•œ ์—๋„ˆ์ง€ ํšจ์œจ์ ์ธ ์ „์†ก ์†๋„ ํ–ฅ์ƒ ๋ฐ ์ €์ „๋ ฅ ์ƒํ™ฉ์—์„œ์˜ ์ „์†ก ๋ฒ”์œ„ํ™•์žฅ์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆ๋œ ์‹œ์Šคํ…œ์€ Linux ์ปค๋„์— ๊ตฌํ˜„ํ•˜์—ฌ ์‹ค๋‚ด ํ…Œ์ŠคํŠธ๋ฒ ๋“œ๋ฅผ ํ†ตํ•ด ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•œ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ์ œ์•ˆ ํ•œ ๊ธฐ๋ฒ•์ด ๋‹ค์ค‘ ํ™‰ ์ƒํ™ฉ์—์„œ ๊ธฐ์กด ๋ธ”๋ฃจํˆฌ์Šค ์ €์ „๋ ฅ/Wi-Fi ๋‹จ์ผ ad-hoc ๋„คํŠธ์›Œํฌ์™€ ๋น„๊ตํ•˜์—ฌ ๋†’์€ ๋ฐ์ดํ„ฐ ํŠธ๋ž˜ํ”ฝ์„ ์ง€์›ํ•˜๋ฉฐ, ํ…Œ์ŠคํŠธ๋ฒ ๋“œ์—์„œ์˜ ํ‰๊ท  ์ „๋ ฅ ์†Œ๋น„๋ฅผ ์ค„ ์ด๋Š” ๊ฒƒ์„ ํ™•์ธํ•œ๋‹ค. ๋‘˜์งธ, Cross-technology Communication (CTC)๊ณผ ์ฑ„๋„ ๊ฐ€์ค‘์น˜๋ฅผ ํ†ตํ•œ ๋ธ”๋ฃจํˆฌ์Šค ์ €์ „๋ ฅ์˜ Adaptive Frequency Hopping (AFH) ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•œ๋‹ค. ์ตœ์ข…์ ์œผ๋กœ ๋ธ”๋ฃจํˆฌ์Šค ์ €์ „๋ ฅ ๊ธฐ๊ธฐ๊ฐ€ ์‚ฌ์šฉํ•˜๋Š” ์ฑ„๋„์— ๊ฐ€์ค‘์น˜๋ฅผ ๋‘๋Š” AFH ๊ธฐ๋ฒ•์„ ์„ค๊ณ„ํ•˜์—ฌ Wi-Fi ์™€ ๋ธ”๋ฃจํˆฌ์Šค ์ €์ „๋ ฅ ๊ธฐ๊ธฐ๊ฐ€ ๋ชจ๋‘ ํ˜ผ์žกํ•œ ๋Œ€์—ญ์—์„œ์˜ ์‹ ๋ขฐ์„ฑ์„ ํ–ฅ์ƒํ•œ๋‹ค. ํ”„๋กœํ† ํƒ€์ž… ์‹คํ—˜๊ณผ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ์ œ์•ˆํ•œ ๊ธฐ๋ฒ•์ด ๊ธฐ์กด์˜ AFH ๊ธฐ๋ฒ•๊ณผ ๋น„๊ตํ•˜์—ฌ ํ˜ผ์žกํ•œ ISM ๋Œ€์—ญ์—์„œ ๋ธ”๋ฃจํˆฌ์Šค ์ €์ „๋ ฅ์˜ ํŒจํ‚ท ์ˆ˜์‹ ์œจ์„ ์ฆ๊ฐ€์‹œํ‚ค๋Š” ๊ฒƒ์„ ํ™•์ธํ•œ๋‹ค.1 Introduction 1 1.1 Motivation 1 1.2 Contributions and Outline 2 2 Wi-BLE: On Cooperative Operation of Wi-Fi and Bluetooth Low Energy under IPv6 4 2.1 Introduction 4 2.2 Related Work 7 2.2.1 Multihop Connectivity for Wi-Fi or BLE 7 2.2.2 Multi-radio Operation 11 2.3 System Overview 13 2.3.1 Control Plane 13 2.3.2 Data Plane 16 2.3.3 Overall Procedure 16 2.4 MABLE: AODV Routing over BLE 17 2.4.1 BLE Channel Utilization 17 2.4.2 Joint Establishment of Route and Connection 20 2.4.3 Link Quality Metric for BLE Data Channels 22 2.4.4 Bi-directional Route Error Propagation 25 2.5 Wi-BLE: Wi-Fi Ad-hoc over BLE 27 2.5.1 Radio Selection 27 2.5.2 Routing and Radio Wake-up for Wi-Fi 30 2.6 Evaluation 32 2.6.1 BLE Routing 33 2.6.2 Wi-Fi Routing over BLE 35 2.6.3 Radio Selection 38 2.7 Summary 40 3 WBC-AFH: Direct Wi-Fi to BLE Communication based AFH 41 3.1 Introduction 41 3.2 Background 45 3.2.1 Frequency hopping in BLE 45 3.2.2 Cross Technology Communication 47 3.3 Proposed AFH 49 3.3.1 CTC based informing 50 3.3.2 Weighted channel select 51 3.3.3 Hopping set size optimization 52 3.3.4 WBC-AFH 54 3.4 Evaluation 57 3.4.1 Setup 57 3.4.2 Robustness 60 3.4.3 Reliability 61 3.5 Future Work 65 3.6 Summary 66 4 Conclusion 67๋ฐ•

    Multihop relay techniques for communication range extension in near-field magnetic induction communication systems

    Full text link
    In this paper, multihop relaying in RF-based com munications and near field magnetic induction communication (NFMIC) is discussed. Three multihop relay strategies for NFMIC are proposed: Non Line of Sight Magnetic Induction Relay (NLoS-MI Relay), Non Line of Sight Master/Assistant Magnetic Induction Relay1 (NLoS-MAMI Relay1) and Non Line of Sight Master/Assistant Magnetic Induction Relay2 (NLoSMAMI Relay2). In the first approach only one node contributes to the communication, while in the other two techniques (which are based on a master-assistant strategy), two relaying nodes are employed. This paper shows that these three techniques can be used to overcome the problem of dead spots within a body area network and extend the communication range without increasing the transmission power and the antenna size or decreasing receiver sensitivity. The impact of the separation distance between the nodes on the achievable RSS and channel data rate is evaluated for the three techniques. It is demonstrated that the technique which is most effective depends on the specific network topology. Optimum selection of nodes as relay master and assistant based on the location of the nodes is discussed. The paper also studies the impact of the quality factor on achievable data rate. It is shown that to obtain the highest data rate, the optimum quality factor needs to be determined for each proposed cooperative communication method. ยฉ 2013 ACADEMY PUBLISHER
    • โ€ฆ
    corecore