84,471 research outputs found

    Tree-Independent Dual-Tree Algorithms

    Full text link
    Dual-tree algorithms are a widely used class of branch-and-bound algorithms. Unfortunately, developing dual-tree algorithms for use with different trees and problems is often complex and burdensome. We introduce a four-part logical split: the tree, the traversal, the point-to-point base case, and the pruning rule. We provide a meta-algorithm which allows development of dual-tree algorithms in a tree-independent manner and easy extension to entirely new types of trees. Representations are provided for five common algorithms; for k-nearest neighbor search, this leads to a novel, tighter pruning bound. The meta-algorithm also allows straightforward extensions to massively parallel settings.Comment: accepted in ICML 201

    QDR-Tree: An Efcient Index Scheme for Complex Spatial Keyword Query

    Full text link
    With the popularity of mobile devices and the development of geo-positioning technology, location-based services (LBS) attract much attention and top-k spatial keyword queries become increasingly complex. It is common to see that clients issue a query to find a restaurant serving pizza and steak, low in price and noise level particularly. However, most of prior works focused only on the spatial keyword while ignoring these independent numerical attributes. In this paper we demonstrate, for the first time, the Attributes-Aware Spatial Keyword Query (ASKQ), and devise a two-layer hybrid index structure called Quad-cluster Dual-filtering R-Tree (QDR-Tree). In the keyword cluster layer, a Quad-Cluster Tree (QC-Tree) is built based on the hierarchical clustering algorithm using kernel k-means to classify keywords. In the spatial layer, for each leaf node of the QC-Tree, we attach a Dual-Filtering R-Tree (DR-Tree) with two filtering algorithms, namely, keyword bitmap-based and attributes skyline-based filtering. Accordingly, efficient query processing algorithms are proposed. Through theoretical analysis, we have verified the optimization both in processing time and space consumption. Finally, massive experiments with real-data demonstrate the efficiency and effectiveness of QDR-Tree

    Distributed algorithms for optimal power flow problem

    Get PDF
    Optimal power flow (OPF) is an important problem for power generation and it is in general non-convex. With the employment of renewable energy, it will be desirable if OPF can be solved very efficiently so that its solution can be used in real time. With some special network structure, e.g. trees, the problem has been shown to have a zero duality gap and the convex dual problem yields the optimal solution. In this paper, we propose a primal and a dual algorithm to coordinate the smaller subproblems decomposed from the convexified OPF. We can arrange the subproblems to be solved sequentially and cumulatively in a central node or solved in parallel in distributed nodes. We test the algorithms on IEEE radial distribution test feeders, some random tree-structured networks, and the IEEE transmission system benchmarks. Simulation results show that the computation time can be improved dramatically with our algorithms over the centralized approach of solving the problem without decomposition, especially in tree-structured problems. The computation time grows linearly with the problem size with the cumulative approach while the distributed one can have size-independent computation time.postprin

    On Randomized Algorithms for Matching in the Online Preemptive Model

    Full text link
    We investigate the power of randomized algorithms for the maximum cardinality matching (MCM) and the maximum weight matching (MWM) problems in the online preemptive model. In this model, the edges of a graph are revealed one by one and the algorithm is required to always maintain a valid matching. On seeing an edge, the algorithm has to either accept or reject the edge. If accepted, then the adjacent edges are discarded. The complexity of the problem is settled for deterministic algorithms. Almost nothing is known for randomized algorithms. A lower bound of 1.6931.693 is known for MCM with a trivial upper bound of 22. An upper bound of 5.3565.356 is known for MWM. We initiate a systematic study of the same in this paper with an aim to isolate and understand the difficulty. We begin with a primal-dual analysis of the deterministic algorithm due to McGregor. All deterministic lower bounds are on instances which are trees at every step. For this class of (unweighted) graphs we present a randomized algorithm which is 2815\frac{28}{15}-competitive. The analysis is a considerable extension of the (simple) primal-dual analysis for the deterministic case. The key new technique is that the distribution of primal charge to dual variables depends on the "neighborhood" and needs to be done after having seen the entire input. The assignment is asymmetric: in that edges may assign different charges to the two end-points. Also the proof depends on a non-trivial structural statement on the performance of the algorithm on the input tree. The other main result of this paper is an extension of the deterministic lower bound of Varadaraja to a natural class of randomized algorithms which decide whether to accept a new edge or not using independent random choices

    Distributed Algorithms for Scheduling on Line and Tree Networks

    Full text link
    We have a set of processors (or agents) and a set of graph networks defined over some vertex set. Each processor can access a subset of the graph networks. Each processor has a demand specified as a pair of vertices , along with a profit; the processor wishes to send data between uu and vv. Towards that goal, the processor needs to select a graph network accessible to it and a path connecting uu and vv within the selected network. The processor requires exclusive access to the chosen path, in order to route the data. Thus, the processors are competing for routes/channels. A feasible solution selects a subset of demands and schedules each selected demand on a graph network accessible to the processor owning the demand; the solution also specifies the paths to use for this purpose. The requirement is that for any two demands scheduled on the same graph network, their chosen paths must be edge disjoint. The goal is to output a solution having the maximum aggregate profit. Prior work has addressed the above problem in a distibuted setting for the special case where all the graph networks are simply paths (i.e, line-networks). Distributed constant factor approximation algorithms are known for this case. The main contributions of this paper are twofold. First we design a distributed constant factor approximation algorithm for the more general case of tree-networks. The core component of our algorithm is a tree-decomposition technique, which may be of independent interest. Secondly, for the case of line-networks, we improve the known approximation guarantees by a factor of 5. Our algorithms can also handle the capacitated scenario, wherein the demands and edges have bandwidth requirements and capacities, respectively.Comment: Accepted to PODC 2012, full versio

    Distributed and Parallel Algorithms for Set Cover Problems with Small Neighborhood Covers

    Get PDF
    In this paper, we study a class of set cover problems that satisfy a special property which we call the {\em small neighborhood cover} property. This class encompasses several well-studied problems including vertex cover, interval cover, bag interval cover and tree cover. We design unified distributed and parallel algorithms that can handle any set cover problem falling under the above framework and yield constant factor approximations. These algorithms run in polylogarithmic communication rounds in the distributed setting and are in NC, in the parallel setting.Comment: Full version of FSTTCS'13 pape

    Thresholded Covering Algorithms for Robust and Max-Min Optimization

    Full text link
    The general problem of robust optimization is this: one of several possible scenarios will appear tomorrow, but things are more expensive tomorrow than they are today. What should you anticipatorily buy today, so that the worst-case cost (summed over both days) is minimized? Feige et al. and Khandekar et al. considered the k-robust model where the possible outcomes tomorrow are given by all demand-subsets of size k, and gave algorithms for the set cover problem, and the Steiner tree and facility location problems in this model, respectively. In this paper, we give the following simple and intuitive template for k-robust problems: "having built some anticipatory solution, if there exists a single demand whose augmentation cost is larger than some threshold, augment the anticipatory solution to cover this demand as well, and repeat". In this paper we show that this template gives us improved approximation algorithms for k-robust Steiner tree and set cover, and the first approximation algorithms for k-robust Steiner forest, minimum-cut and multicut. All our approximation ratios (except for multicut) are almost best possible. As a by-product of our techniques, we also get algorithms for max-min problems of the form: "given a covering problem instance, which k of the elements are costliest to cover?".Comment: 24 page
    • …
    corecore