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Abstract
The cover tree data structure speeds up exact
nearest neighbor queries over arbitrary metric
spaces (Beygelzimer et al., 2006). This paper
makes cover trees even faster. In particular, we
provide

1. A simpler definition of the cover tree that
reduces the number of nodes from O(n) to
exactly n,

2. An additional invariant that makes queries
faster in practice,

3. Algorithms for constructing and querying
the tree in parallel on multiprocessor sys-
tems, and

4. A more cache efficient memory layout.

On standard benchmark datasets, we reduce the
number of distance computations by 10–50%.
On a large-scale bioinformatics dataset, we re-
duce the number of distance computations by
71%. On a large-scale image dataset, our parallel
algorithm with 16 cores reduces tree construction
time from 3.5 hours to 12 minutes.

1. Introduction
Data structures for fast nearest neighbor queries are most
often used to speed up the k-nearest neighbor classifica-
tion algorithm. But many other learning tasks also re-
quire neighbor searches, and cover trees can speed up these
tasks as well: localized support vector machines (Segata
& Blanzieri, 2010), dimensionality reduction (Lisitsyn
et al., 2013), and reinforcement learning (Tziortziotis et al.,
2014). Making cover trees faster—the main contribution of
this paper—also makes these other tasks faster.

Given a space of points X , a dataset X ⊆X , a data point
p ∈X , and a distance function d : X ×X →R, the near-
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est neighbor of p in X is defined as

pnn = argmin
q∈X−{p}

d(p,q)

The naive method for computing pnn involves a linear scan
of all the data points and takes time θ(n), but many data
structures have been created to speed up this process. The
kd-tree (Friedman et al., 1977) is probably the most fa-
mous. It is simple and effective in practice, but it can only
be used on Euclidean spaces. We must turn to other data
structures when given an arbitrary metric space. The sim-
plest and oldest of these structures is the ball tree (Omo-
hundro, 1989). Although attractive for its simplicity, it pro-
vides only the trivial runtime guarantee that queries will
take time O(n). Subsequent research focused on provid-
ing stronger guarantees, producing more complicated data
structures like the metric skip list (Karger & Ruhl, 2002)
and the navigating net (Krauthgamer & Lee, 2004). Be-
cause these data structures were complex and had large
constant factors, they were mostly of theoretical interest.
The cover tree (Beygelzimer et al., 2006) simplified nav-
igating nets while maintaining good run time guarantees.
Further research has strengthened the theoretical runtime
bounds provided by the cover tree (Ram et al., 2010). Our
contributions make the cover tree faster in practice.

The cover tree as originally introduced is simpler than re-
lated data structures, but it is not simple. The original ex-
planation required an implicit tree with an infinite number
of nodes; but a smaller, explicit tree with O(n) nodes ac-
tually gets implemented. We refer to this presentation as
the original cover tree. In the remainder of this paper we
introduce the simplified cover tree and the nearest ancestor
cover tree; parallel construction and querying algorithms;
and a cache-efficient layout suitable for all three cover
trees. We conclude with experiments showing: on stan-
dard benchmark datasets we outperform both the original
implementation (Beygelzimer et al., 2006) and MLPack’s
implementation (Curtin et al., 2013a); on a large bioinfor-
matics dataset, our nearest ancestor tree uses 71% fewer
distance comparisons than the original cover tree; and on a
large image data set, our parallelization algorithm reduces
tree construction time from 3.5 hours to 12 minutes.
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2. Simplified cover trees
Definition 1. Our simplified cover tree is any tree where:
(a) each node p in the tree contains a single data point
(also denoted by p); and (b) the following three invariants
are maintained.

1. The leveling invariant. Every node p has an associ-
ated integer level(p). For each child q of p

level(q) = level(p)−1 .

2. The covering invariant. For every node p, define the
function covdist(p) = 2level(p). For each child q
of p

d(p,q)≤ covdist(p) .

3. The separating invariant. For every node p, define the
function sepdist(p) = 2level(p)−1. For all distinct
children q1 and q2 of p

d(q1,q2)> sepdist(p)

Throughout this paper, we will use the functions
children(p) and descendants(p) to refer to the set
of nodes that are children or descendants of p respectively.
We also define the function maxdist as

maxdist(p) = argmax
q∈descendants(p)

d(p,q)

In words, this is the greatest distance from p to any of its
descendants. This value is upper bounded by 2level(p)+1,
and its exact value can be cached within the data structure.1

In order to query a cover tree (any variant), we use the
generic “space tree” framework developed by Curtin et
al. (2013). This framework provides fast algorithms for
finding the k-nearest neighbors, points within a specified
distance, kernel density estimates, and minimum spanning
trees. Each of these algorithms has two variants: a single
tree algorithm for querying one point at a time, and a dual
tree algorithm for querying many points at once. Our faster
cover tree algorithms speed up all of these queries; but for
simplicity, in this paper we focus only on the single tree
nearest neighbor query. The pseudocode is shown in Algo-
rithm 1.

Analysis of the cover tree’s runtime properties is done us-
ing the data-dependent doubling constant c: the minimum
value c such that every ball in the dataset can be covered by
c balls of half the radius. We state without proof two facts:

1As in the original cover tree, practical performance is
improved on most datasets by redefining covdist(p) =
1.3level(p) and sepdist(p) = 1.3level(p)−1. All of our exper-
iments use this modified definition.

Algorithm 1 Find nearest neighbor
function findNearestNeighbor(cover tree p, query
point x, nearest neighbor so far y)

1: if d(p,x)< d(y,x) then
2: y← p
3: for each child q of p sorted by distance to x do
4: if d(y,x)> d(y,q)−maxdist(q) then
5: y← findNearestNeighbor(q,x,y)
6: return y

Algorithm 2 Simplified cover tree insertion
function insert(cover tree p, data point x)

1: if d(p,x)> covdist(p) then
2: while d(p,x)> 2covdist(p) do
3: Remove any leaf q from p
4: p′← tree with root q and p as only child
5: p← p′

6: return tree with x as root and p as only child
7: return insert (p,x)

function insert (cover tree p, data point x)
prerequisites: d(p,x)≤ covdist(p)

1: for q ∈ children(p) do
2: if d(q,x)≤ covdist(q) then
3: q′← insert (q,x)
4: p′← p with child q replaced with q′

5: return p′

6: return p with x added as a child

(a) any node in the cover tree can have at most O(c4) chil-
dren; (b) the depth of any node in the cover tree is at most
O(c2 logn). These were proven for the original cover tree
(Beygelzimer et al., 2006) and the proofs for our simplified
cover tree are essentially the same. We can use these two
facts to show that the runtime of Algorithm 1 is O(c6 logn)
for both the original and simplified cover tree.

Algorithm 2 shows how to insert into the simplified cover
tree. It is divided into two cases. In the first case, we can-
not insert our data point x into the tree without violating
the covering invariant. So we raise the level of the tree p
by taking any leaf node and using that as the new root. Be-
cause maxdist(p) ≤ 2covdist(p), we are guaranteed
that d(p,x) ≤ covdist(x), and so we do not violate the
covering constraint. In the second case, the insert func-
tion recursively descends the tree. On each function call,
we search through children(p) to find a node we can in-
sert into without violating the covering invariant. If we find
such a node, we recurse; otherwise, we know we can add
x to children(p) without violating the separating invari-
ant. In all cases, exactly one node is added per data point,
so the resulting tree will have exactly n nodes. Since every
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Figure 1. Fraction of nodes required for the simplified cover tree.
Fewer nodes means less overhead from traversing the tree and
fewer distance comparisons. See Table 1 for information on the
datasets.

node can have at most O(c4) children and the depth of the
tree is bounded by O(c2 logn), the runtime is O(c6 logn).

The simplified cover tree has the same runtime bounds as
the original cover tree, but it has an improved constant fac-
tor, as it needs only n nodes. Fewer nodes reduces both the
overhead from traversing the data structure and the number
of required distance comparisons. The original cover tree’s
nesting invariant dictated these extra nodes. In our defini-
tions, the nesting invariant states that for every node p, if
p has any children, then p also has itself as a child (this
child need not satisfy the leveling invariant). The nesting
invariant comes from the presentation of the original cover
tree as an infinite data structure, but it does not play a key
role in the cover tree’s runtime analysis. Therefore, we can
discard it and maintain the runtime guarantees.

Figure 1 shows the reduction in nodes by using the simpli-
fied cover tree on benchmark datasets taken from the ML-
Pack test suite (Curtin et al., 2013a). Section 6 contains
more details on these datasets, and Figure 3 in the same
section shows how this reduced node count translates into
improved query performance.

3. Nearest ancestor cover trees
In this section, we exploit a similarity between simplified
cover trees and binary search trees (BSTs). Insertion into
both trees follows the same procedure: Perform a depth
first search to find the right location to insert the point. In
particular, there is no rebalancing after the insertion. Many
alternatives to plain BSTs produce better query times by
introducing new invariants. These invariants force the in-
sertion algorithm to rebalance the tree during the insertion
step. Our definition of the simplified cover tree makes
adding similar invariants easy. We now introduce one pos-
sible invariant.
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Figure 2. Using the metric d(a,b) = |a− b|, both trees are valid
simplified cover trees; but only the right tree is a valid nearest
ancestor cover tree. Moving the 9 and 11 nodes reduces the value
of maxdist for their ancestor nodes. This causes pruning to
happen more often during nearest neighbor queries.

Definition 2. A nearest ancestor cover tree is a simplified
cover tree where every point p has the nearest ancestor in-
variant: If q1 is an ancestor of p and q2 is a sibling of q1,
then

d(p,q1)≤ d(p,q2)

In other words, the nearest ancestor cover tree ensures that
for every data point, each of its ancestors is the “best possi-
ble” ancestor for it at that level. Figure 2 shows a motivat-
ing one dimensional example.

Algorithm 3 shows how to insert a point into a nearest an-
cestor cover tree. It uses the same insert function as
2, but the helper function insert is slightly modified
in two ways (shown with an underline). First, we sort
children(p) according to their distance from the data
point x. This sorting ensures that our newly inserted point
will satisfy the nearest ancestor invariant. But this new
point x may cause other points to violate the nearest an-
cestor invariant. In particular, if x has a sibling q; q has
a descendent r; and d(r,x) < d(r,q); then r now violates
the nearest ancestor invariant. Our second step is to call
rebalance, which finds all these violating data points
and moves them underneath x.

Most of the work of the rebalance function happens in
the helper rebalance . rebalance returns a valid
nearest ancestor cover tree and a set of points that still need
to be inserted; rebalance just inserts those extra points.
rebalance takes two nearest ancestor cover trees p and
q (where p is an ancestor of q) and a point x. Its goal is to
“extract” all points from q that would violate the nearest an-
cestor invariant if x became a sibling of p. It returns three
values: a modified version of q, a set of points that can-
not remain in any point along the path from p to q called
the moveset, and a set of points that need to be reinserted
somewhere along the path from p to q called the stayset.
There are two cases. In the first case, the data point at node
q must move. We then filter the descendants of q into the
moveset or stayset as appropriate and return null for our
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modified q. In the second case, the data point at node q
must stay. We recursively apply rebalance to each of
q’s children; we use the results to update the correspond-
ing child, the moveset and the stayset variables. Finally, we
try to reinsert any nodes in stayset. If rebalance was
called with q a child of p, then the return value of stayset
will be empty; any children that could not be directly rein-
serted must be in the moveset.

The rebalance function loops over all O(c4) children
of a node, and the maximum depth of the recursion is
O(c2 logn). Therefore the overall runtime is O(c6 logn).
It may be called up to O(c4) times within rebalance, so
the body of the for loop on line 12 executes O(c10 logn)
times. Unfortunately, we have no bound on the size of
moveset, except to note that it is usually small in practice.
On the datasets in our experiments (see Table 1), the value
is usually zero or at worst in the single digits. Figure 3(a)
shows that nearest ancestor cover tree construction is not
that much slower in practice, and Figure 3(b) shows that
this slowdown is overshadowed by the resulting speedup in
nearest neighbor queries.

4. Parallel cover tree
In this section we discuss parallelism on shared-memory,
multiprocessor machines. Querying in parallel is easy.
Since the results of neighbor queries for a data point do
not depend on other data points, we can: divide the points
among the processors; then each processor traverses the
tree independently. More difficult is constructing the tree
in parallel. Our strategy is to split the data, create one
cover tree on each processor, then merge these trees to-
gether. Previous work on parallelizing cover trees applied
only to the GPU (Kumar & Ramareddy, 2010). Our ap-
proach is suitable for any shared-memory multiprocessor
machine. We give a detailed description for merging sim-
plified cover trees and discuss at a high level how to extend
this procedure to nearest ancestor cover trees.

Algorithm 4 shows the merging procedure. The merge
function’s main purpose is to satisfy the prerequisites for
mergeHelper, which has two phases. First, we find all
the subtrees of q that can be inserted directly into p without
violating any invariants, and we insert them. Second, we
insert the remaining nodes from q into p directly via the
insert function.

The mergeHelper function returns a partially merged
tree and a set of nodes called the leftovers that still need
to be inserted into the tree. The first phase uses the for loop
starting on line 3 to categorize the children of q into three
disjoint sets. The uncovered set contains all of q’s children
that would violate the covering invariant if inserted into p.
The sepcov set contains all of q’s children that would not

Algorithm 3 Nearest ancestor cover tree insertion
function insert (cover tree p, data point x)

1: for q ∈ children(p) sorted by distance to x do
2: if d(q,x)≤ covdist(q) then
3: q′← insert (q,x)
4: p′← p with child q replaced with q′

5: return p′

6: return rebalance(p, x)

function rebalance(cover trees p, data point x)
prerequisites: x can be added as a child of p without vio-
lating the covering or separating invariants

1: create tree x′ with root node x at level level(p)−1 x′

contains no other points
2: p′← p
3: for q ∈ children(p) do
4: (q′,moveset,stayset)← rebalance (p,q,x)
5: p′← p′ with child q replaced with q′

6: for r ∈ moveset do
7: x′← insert(x′,r)
8: return p′ with x′ added as a child

function rebalance (cover trees p and q, point x)
prerequisites: p is an ancestor of q

1: if d(p,q)> d(q,x) then
2: moveset,stayset← /0
3: for r ∈ descendants(q) do
4: if d(r, p)> d(r,x) then
5: moveset← moveset ∪{r}
6: else
7: stayset← stayset ∪{r}
8: return (null,moveset,stayset)
9: else

10: moveset′,stayset′← /0
11: q′← q
12: for r ∈ children(q) do
13: (r′,moveset,stayset)←rebalance (p,r,x)
14: moveset′← moveset∪moveset′

15: stayset′← stayset∪ stayset′

16: if r′ = null then
17: q′← q with the subtree r removed
18: else
19: q′← q with the subtree r replaced by r′

20: for r ∈ stayset ′ do
21: if d(r,q)′ ≤ covdist(q)′ then
22: q′← insert(q′,r)
23: stayset′← stayset′−{r}
24: return (q′,moveset ′,stayset ′)

violate the separating or covering invariants when inserted
into p. Both of these sets are unused in the second phase of
mergeHelper. Every child of q that is not inserted into
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the uncovered or sepcov sets gets merged with a suitable
node in children(p). This is done by recursively calling
the mergeHelper function. Any points that could not be
inserted into the results of mergeHelper get added to the
leftovers set.

In the second phase of mergeHelper, we insert as many
nodes as possible into our merged tree p′. First update the
children with the subtrees in sepcov. Then insert the root of
q. We know that d(p,q) ≤ covdist(p), so this insertion
is guaranteed not to change the level of p′. Finally, we
loop over the elements in leftovers and insert them into p′

only if it would not change the level of p′. Any elements
of leftovers that cannot be inserted into p′ get inserted into
leftovers′ and returned. It is important to do this insertion
of leftovers at the lowest level possible (rather than wait
until the recursion ends and have the insertion performed
in merge) to avoid unnecessary distance computations.

The merge function does not maintain the nearest ances-
tor invariant. A modified version of merge that calls the
rebalance function appropriately could. But for space
reasons, we do not provide this modified algorithm. In our
experiments below, we use the provided merge function
in Algorithm 4 to parallelize both simplified and nearest
ancestor tree construction. In practice, this retains the ben-
efits of the nearest ancestor cover tree because the nearest
ancestor invariant is violated in only a few places.

Providing explicit bounds on the runtime of merge is dif-
ficult. But in practice it is fast. When parallelizing on two
processors, approximately 1% of the distance calculations
occur within merge. So this is not our bottleneck. In-
stead, the main bottleneck of parallelism is cache perfor-
mance. On modern desktop computers, last level cache is
shared between all cores on a CPU. Cover tree construction
results in many cache misses, and this effect is exaggerated
when the tree is constructed in parallel.

5. Cache efficiency
One of the biggest sources of overhead in the cover tree
is cache misses. Our last improvement is to make cover
trees more cache efficient. A simple way to reduce cache
misses for tree data structures is to use the van Emde Boas
tree layout (Frigo et al., 1999). This layout arranges nodes
in memory according to a depth first traversal of the tree.
This arrangement creates a cache oblivious data structure.
That is, the programmer does not need any special knowl-
edge about the cache sizes to obtain optimal speedup—the
van Embde Boas tree layout works efficiently on any cache
architecture. This layout has been known for a long time in
the data structures community, but it seems unused in ma-
chine learning libraries. Frigo (1999) provides a detailed
tutorial.

Algorithm 4 Merging cover trees
function merge(cover tree p, cover tree q)

1: if level(q) > level(p) then
2: swap p and q
3: while level(q) < level(p) do
4: move a node from the leaf of q to the root;
5: this raises the level of q by 1
6: (p, le f tovers)← mergeHelper(p,q)
7: for r ∈ le f tovers do
8: p← insert(p,r)
9: return p

function mergeHelper(cover tree p, cover tree q)
prereqs: level(p) = level(q), d(p,q)≤ covdist(p)

1: children′← children(p) . Phase 1
2: uncovered,sepcov, leftovers← /0
3: for r ∈ children(q) do
4: if d(p,r)< covdist(p) then
5: foundmatch←false
6: for s ∈ children′ do
7: if d(s,r)≤ sepdist(p) then
8: (s′, leftoverss)← mergeHelper(s,r)
9: children′← children′∪{s′}−{s}

10: leftovers← leftovers∪ leftoverss
11: foundmatch← true
12: break from inner loop
13: if not foundmatch then
14: sepcov← sepcov∪{r}
15: else
16: uncovered← uncovered∪{r}
17: children′← children′∪ sepcov . Phase 2
18: p′← tree rooted at p with children(p’)=children′

19: p′← insert(p′,q)
20: leftovers′← /0
21: for r ∈ leftovers do
22: if d(r, p)′ ≤ covdist(p)′ then
23: p′← insert(p′,r)
24: else
25: leftovers′← leftovers′∪{r}
26: return (p′, leftovers′∪uncovered)

Our implementation of the cache oblivious cover tree is
static. That is, we first construct the cover tree, then we
call a function pack that rearranges the tree in memory.
This means we do not get the reduced cache misses while
constructing the tree, but only while querying the tree. The
pack function is essentially free to run because it requires
only a single traversal through the dataset. Figure 4 shows
that the van Emde Boas tree layout reduces cache misses
by 5 to 20 percent. This results in a reduction of stalled
CPU cycles by 2 to 15 percent.
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Figure 3. (a) Constructing a nearest ancestor query tree usually takes longer than the original cover tree and the simplified cover tree.
(b) Construction plus querying is faster in the nearest ancestor cover tree. On most datasets, this faster query time more than offsets the
increased construction cost, giving an overall speedup.
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Figure 4. (a) Comparison of our packed nearest ancestor cover tree to our unpacked tree and other implementations, demonstrating better
cache performance. (b) A stalled CPU cycle is when the CPU does no work because it must wait for a memory access. Reducing the
number of cache misses results in fewer stalled cycles, and so faster run times. We used the Linux perf stat utility to measure the
cache-references, cache-misses, cycles, and stalled-cycles-frontend hardware counters. perf stat uses a
sampling strategy with negligible affect on program performance.
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Figure 5. Run times on the “all nearest neighbor” procedure for only those datasets that take more than 5 minutes. (a) Tree construction.
A single cover tree merge takes about 1% of the computation time; the main reason for the lack of perfect parallel speedup is the increased
number of cache misses caused by inserting into multiple trees simultaneously. (b) Comparison on total performance to reference and
MLPack implementations. Runtimes in both figures are divided by that of our single processor implementation (shown in parenthesis).
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dataset num data points num dimensions
yearpredict 515345 90
twitter 583250 78
tinyImages 100000 384
mnist 70000 784
corel 68040 32
covtype 581012 55
artificial40 10000 40
faces 10304 20

Table 1. All MLPack benchmark datasets with at least 20 dimen-
sions and 10000 points, arranged in descending order by runtime
of all nearest neighbor search.

6. Experiments
We now validate our improvements empirically. Our
first experiments use the Euclidean distance on a standard
benchmark suite (described in Table 1). Our last exper-
iments use non-Euclidean metrics on data from bioinfor-
matics and computer vision. In each experiment, we use
the “all nearest neighbors” experimental setup. That is, we
first construct the cover trees on the dataset. Then, for each
point in the dataset, we find its nearest neighbor. This is a
standard technique for measuring the efficiency of nearest
neighbor algorithms.

6.1. Tree-type comparison

Our first experiment compares the performance of the three
types of cover trees: original, simplified, and nearest an-
cestor. We measure the number of distance comparisons
required to build the tree on a dataset in Figure 3(a) and
the number of distance comparisons required to find each
data point’s nearest neighbor in Figure 3(b) using Algo-
rithm 1. Distance comparisons are a good proxy measure
of runtime performance because the majority of the algo-
rithm’s runtime is spent computing distances, and it ignores
the possible unwanted confounding variable of varying op-
timization efforts. As expected, the simplified tree typically
outperforms the original tree, and the nearest ancestor tree
typically outperforms the simplified tree. We reiterate that
this reduced need for distance comparisons translates over
to all other queries provided by the space tree framework
(Curtin et al., 2013b).

6.2. Implementation comparison

We next compare our implementation against two good
cover tree implementations currently in widespread use:
the reference implementation used in the original paper
(Beygelzimer et al., 2006) and MLPack’s implementation
(Curtin et al., 2013a). Both of these programs were writ-
ten in C++ and compiled using g++ 4.4.7 with full op-
timizations. Our implementation was written in Haskell

and compiled with ghc 7.8.4 also with full optimiza-
tions.2 All tests were run on an Amazon Web Services
c3.8x-large instance with 60 GB of RAM and 32 In-
tel Xeon E5-2680 CPU cores clocked at 2.80GHz. Half
of those cores are hyperthreads, so for simplicity we only
parallelize out to 16 cores.

Since the reference implementation and MLPack only
come with the Euclidean distance built-in, we only use that
metric when comparing the three implementations. Figure
4 shows the cache performance of all three libraries. Figure
5 shows the runtime of all three libraries. Our implemen-
tation’s cache performance and parallelization speedup is
shown on the nearest ancestor cover tree. Neither the orig-
inal implementation nor MLPack support parallelization.

6.3. Graph kernels and protein function

An important problem in bioinformatics is to predict the
function of a protein based on its 3d structure. State of the
art solutions model the protein’s 3d structure as a graph and
use support vector machines (with a graph kernel) for pre-
diction. Computing graph kernels is relatively expensive,
however, so research has focused on making the graph ker-
nel computation faster (Vishwanathan et al., 2010; Sher-
vashidze et al., 2011). Such research makes graph kernels
scale to larger graphs, but does not help in the case where
there are more graphs. Our contribution is to use cover
trees to reduce the number of required kernel computations,
letting us scale to more graphs. The largest dataset in previ-
ous research contained about 1200 proteins. With our cover
tree, we perform nearest neighbor queries on all one hun-
dred thousand proteins currently registered in the Protein
Data Bank (Berman et al., 2000).

We use the random walk graph kernel in our experiment. It
performs well on protein classification and is conceptually
simple. See Vishwanathan et al. (2010) for more details.
A naive computation of this kernel takes time O(v6), where
v is the number of vertices in the graph. Vishwanathan et
al. present faster methods that take time only O(v3). While
considerably faster, it is still a relatively expensive distance
computation.

The Protein Data Bank (Berman et al., 2000) contains in-
formation on the 3d primary structure of approximately one
hundred thousand proteins. To perform our experiment, we
follow a procedure similar to that used by the PROTEIN
dataset used in the experiments in Viswanathan et al.. This
procedure constructs secondary structure graphs from the
primary structures in the Protein Data Bank using the tool
VLPG (Schäfer et al., 2012). The Protein Data Bank stores
the 3d structure of the atoms in the protein in a PDB file.

2Our code can be downloaded at http://github.com/
mikeizbicki/hlearn#covertree.
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Figure 6. The effect on runtime as we increase the number of data
points on the bionformatics data. The relationship is roughly lin-
ear, indicating protein graphs have a relatively low intrinsic di-
mensionality. As expected, the nearest ancestor cover tree per-
forms the best.

From this PDB file, we calculate the protein’s secondary
structure using the DSSP tool (Joosten et al., 2011). Then,
the tool VLPG (Schäfer et al., 2012) generates graphs from
the resulting secondary structure. Some PDB files con-
tain information for multiple graphs, and some do not con-
tain enough information to construct a graph. In total, our
dataset consists of 250,000 graphs, and a typical graph has
between 5-120 nodes and 0.1-3 edges per node. Figure 6
shows the scaling behavior of all three cover trees on this
dataset. On all of the data, the total construction and query
cost are 29% that of the original cover tree.

6.4. Earth mover’s distance

The Earth Mover’s Distance (EMD) is a distance metric be-
tween histograms designed for image classification (Rub-
ner et al., 1998). In our tests, we convert images into three
dimensional histograms of the pixel values in LabCIE color
space. LabCIE is a color space represents colors in three
dimensions. It is similar to the more familiar RGB and
CMYK color spaces, but the distances between colors more
accurately match what humans perceive color distances to
be. We construct the histogram such that each dimension
has 8 equally spaced intervals, for a total of 512 bins. We
then create a “signature” of the histogram by recording only
the 20 largest of the 512 bins.

Previous research on speeding up EMD focused on com-
puting EMD distances faster. The EMD takes a base dis-
tance as a parameter. For an arbitrary base distance, EMD
requires O(b3 logb) time where b is the size of the his-

number
of

cores

simplified tree nearest ancestor tree
construction construction

time speedup time speedup
1 70.7 min 1.0 210.9 min 1.0
2 36.6 min 1.9 94.2 min 2.2
4 18.5 min 3.8 48.5 min 4.3
8 10.2 min 6.9 25.3 min 8.3

16 6.7 min 10.5 12.0 min 17.6

Table 2. Parallel cover tree construction using the earth movers
distance. On this large dataset with an expensive metric, we see
better parallel speedup than on the datasets with the cheaper L2
metric. The nearest ancestor cover tree gets super-linear parallel
speedup because we are merging with Algorithm 4, which does
not attempt to rebalance.

togram signature. Faster algorithms exist for specific base
metrics. For example, with an L1 base metric the EMD can
be computed in time O(b2) (Ling & Okada, 2007); and if
the base metric is a so-called “thresholded metric,” we can
get an order of magnitude constant factor speed up (Pele &
Werman, 2009). We specifically chose the LabCIE color
space because there is no known faster EMD algorithm. It
will stress-test our cover tree implementation.

In this experiment, we use the Yahoo! Flickr Creative Com-
mons dataset. The dataset contains 1.5 million images in its
training set, and we construct simplified and nearest ances-
tor cover trees in parallel on this data. Construction times
are shown in Table 2. Using the cheap L2 distance with
smaller datasets, tree construction happens quickly and so
parallelization is less important. But with an expensive dis-
tance on this larger dataset, parallel construction makes a
big difference.

7. Conclusion
We’ve simplified the definition of the cover tree, and intro-
duced the new nearest ancestor invariant that speeds up the
cover tree in practice. It is possible that other invariants
exist that will balance the tree better, providing even more
speed improvements.
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