
Single-tree GMM training

Ryan R. Curtin

May 27, 2015

1 Introduction

In this short document, we derive a tree-independent single-tree algorithm for
Gaussian mixture model training, based on a technique proposed by Moore [8].
Here, the solution we provide is tree-independent and thus will work with any
type of tree and any type of traversal; this is more general than Moore’s original
formulation, which was limited to mrkd-trees. This allows us to develop a
flexible, generic implementation for GMM training of the type commonly found
in the mlpack machine learning library [3].

A better introduction to Gaussian mixture models, their uses, and their
training is given by both [9] and [2]; readers unfamiliar with GMMs should con-
sult those references, as this minor discussion is intended as more of a refresher
and also for terminology establishment.

Before describing the single-tree algorithm, assume that we are given a
dataset S = {p0, p1, . . . , pn}, and we wish to fit a Gaussian mixture model
with m components to this data. Each component in our Gaussian mixture
model θ is described as cj = (φj , µj ,Σj) for j ∈ [0,m), where φj = P (cj |θ) is
the mixture weight of component j, µj is the mean of component j, and Σj is
the covariance of component j. Then, the probability of a point arising from
the GMM θ may be calculated as

P (pi|θ) =

m∑
j=1

ωj(2π‖Σj‖)−1/2e−
1
2 (pi−µj)T Σ−1

j (pi−µj). (1)

We may also define the probability of a point pi arising from a particular
component in the mixture as

aij := P (pi|cj , θ) = ωj(2π‖Σj‖)−1/2e−
1
2 (pi−µj)T Σ−1

j (pi−µj). (2)

Then, we may use Bayes’ rule to define

ωij := P (cj |pi, θ) =
aijφj∑
k aikφk

. (3)

Often, GMMs are trained using an iterative procedure known as the EM
(expectation maximization) algorithm, which proceeds in two steps. In the first

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/77095256?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

step, we will compute the probability of each point pi ∈ S arising from each
component (so, we calculate aij = P (pi|cj , θ) for all pi ∈ S and cj ∈ M). We
can then calculate ωij using the current parameters of the model θ and the
already-calculated aij . Then, in the second step, we update the parameters of
the model θ according to the following rules:

φj ← 1

n

n∑
i=0

ωij , (4)

µj ← 1∑n
i=0 ωij

n∑
i=0

ωijpi, (5)

Σj ← 1∑n
i=0 ωij

n∑
i=0

ωij(pi − µj)(pi − µj)T . (6)

Implemented naively and exactly, we must calculate aij for each pi and cj ,
giving O(nm) operations per iteration. We can do better with trees, although
we will introduce some level of approximation.

2 Trees and single-tree algorithms

In scribing this algorithm, we do not want to restrict our description to a single
type of tree; for instance, Moore’s original formulation is restricted to themrkd-
tree [8]. So, instead, we will (re-)introduce a host of definitions that will allow
us to describe our algorithm without considering the type of tree, or how it is
traversed. These definitions are taken from Curtin et. al. [5].

Definition 1. A space tree on a dataset S ∈ <N×D is an undirected, con-
nected, acyclic, rooted simple graph with the following properties:

• Each node (or vertex), holds a number of points (possibly zero) and is
connected to one parent node and a number of child nodes (possibly zero).

• There is one node in every space tree with no parent; this is the root node
of the tree.

• Each point in S is contained in at least one node.

• Each node N has a convex subset of <D containing each point in that
node and also the convex subsets represented by each child of the node.

We will use the same notation for trees:

• The set of child nodes of a node Ni is denoted C (Ni) or Ci.

• The set of points held in a node Ni is denoted P(Ni) or Pi.

2

• The set of descendant nodes of a node Ni, denoted Dn(Ni) or Dn
i , is the

set of nodes C (Ni) ∪ C (C (Ni)) ∪ . . . 1.

• The set of descendant points of a node Ni, denoted Dp(Ni) or Dp
i , is the

set of points { p : p ∈P(Dn(Ni)) ∪P(Ni) }2.

• The parent of a node Ni is denoted Par(Ni).

It is often useful to cache particular information in each node of the tree3.
For the task of Gaussian mixture model training, we will cache the following
quantities:

• The number of descendant points of a node. For a node Ni, this is denoted
|Dp
i |, in accordance with the notation above.

• The empirical centroid of a node’s descendant points. This can be calcu-
lated recursively:

µ(Ni) =
1

|Dp
i |

 ∑
pj∈Pi

pj +
∑

Nc∈Ci

|Dp
c |µ(Nc)

 . (7)

• The empirical covariance of a node’s descendant points. This can also be
calculated recursively:

C(Ni) =
1

|Dp
i |

 ∑
pj∈Pi

(pj − µi)(pj − µi)T+

∑
Nc∈Ci

|Dp
c |
(
C(Nc) +

(
µ(Nc)− µ(Ni)

)(
µ(Nc)− µ(Ni)

)T))
. (8)

Also, we introduce a few notions relating to distance:

Definition 2. The minimum distance between two nodes Ni and Nj is de-
fined as

dmin(Ni,Nj) = min
{
‖pi − pj‖ , pi ∈ Dp

i , pj ∈ Dp
j

}
.

We assume that we can calculate a lower bound on dmin(·, ·) quickly (i.e.
without checking every descendant point of Ni).

1By C (C (Ni)) we mean all the children of the children of node Ni: C (C (Ni)) = {C (Nc) :
Nc ∈ C (Nq)}.

2The meaning of P(Dn(Ni)) is similar to C (C (Ni)).
3This is the fundamental concept behind the mrkd-tree: see [6].

3

Definition 3. The maximum descendant distance of a node Ni is defined
as the maximum distance between the centroid µ(Ni) and points in Dp

i :

λ(Ni) = max
p∈Dp

i

‖Ci − p‖.

Next, we must describe the way the tree we build will be traversed. A
specification of the below definition might be a depth-first or a breadth-first
traversal (or some combination of the two).

Definition 4. A pruning single-tree traversal is a process that, given a
space tree, will visit nodes in the tree and perform a computation to assign a
score to that node (call this the Score() function). If the score is above some
bound, the node is “pruned” and none of its descendants will be visited; otherwise,
a computation is performed on any points contained within that node (call this
the BaseCase() function). If no nodes are pruned, then the traversal will visit
each node in the tree once.

Now, we may describe a single-tree algorithm simply by supplying a type of
tree, a pruning single-tree traversal, and BaseCase() and Score() functions.
Thus, we may devote the rest of the paper to devising a suitable BaseCase()
and Score() function, and proving its correctness.

3 The single-tree algorithm

Note that for any pi ∈ S, there is likely to be some component (or many
components) cj such that P (pi|cj , θ) (and therefore P (cj |pi, θ)) is quite small.
Because P (cj |pi, θ) never decays to 0 for finite ‖pi−µj‖, we may not avoid any
calculations of ωij if we want to perform the exact EM algorithm.

However, if we allow some amount of approximation, and can determine (for
instance) that ωij < ε, then we can avoid empirically calculating ωij and simply
approximate it as 0. Further, if we can place a bound such that ζ − ε < ωij <
ζ + ε, then we can simply approximate ωij as ζ.

Now, note that for some node Ni, we may calculate amax
j for some component

j, which is an upper bound on the value of aij for any point pi ∈ Dp(Ni):

amax
j = (2π‖Σj‖)−1/2ed

M
min(Ni,µj ,Σ

−1
j) (9)

In the equation above, dM (·, ·,Σ−1) is the Mahalanobis distance:

dM (pi, pj ,Σ
−1) = (pi − pj)TΣ−1(pi − pj) (10)

and dMmin(·, ·,Σ−1) is a generalization of dmin(·, ·) to the Mahalanobis distance:

dMmin(Ni, pj ,Σ
−1) = min

{
(pi − pj)TΣ−1(pi − pj) , pi ∈ Dp

i

}
. (11)

We again assume that we can quickly calculate a lower bound on dMmin(·, ·, ·)
without checking every descendant point in the tree node. Now, we may use this

4

Algorithm 1 GMM training BaseCase().
1: Input: model θ = {(φ0, µ0,Σ0), . . . , (φm−1, µm−1,Σm−1)}, point pi, partial

model θ′ = {(µ′0,Σ′0), . . . , (µ′m−1,Σ
′
m−1)}, weight estimates (ωt0, . . . , ω

t
m−1)

2: Output: updated partial model θ′

3: {Some trees hold points in multiple places; ensure we don’t double-count.}
4: if point pi already visited then return

5: {Calculate all aij .}
6: for all j in [0,m) do
7: aij ← (2π‖Σj‖)−1/2e−1/2(pi−µj)T Σ−1

j (pi−µj)

8: end for
9: asum ←

∑
k aikφk

10: {Calculate all ωij and update model.}
11: for all j in [0,m) do
12: ωij ← aijφi

asum

13: ωtj ← ωtj + ωij

14: µj ← µj + ωijpi
15: Σj ← Σj + ωij(pip

T
i)

16: end for

17: return aij

lower bound to calculate the upper bound amax
j . We may similarly calculate a

lower bound amin
j :

amin
j = (2π‖Σj‖)−1/2ed

M
max(Ni,µj ,Σ

−1
j) (12)

with dMmax(·, ·, ·) defined similarly to dMmin(·, ·, ·). Finally, we can use Bayes’ rule
to produce the bounds ωmin

j and ωmax
j (see Equation 3):

ωmin
j =

amin
j φj

amin
j φj +

∑
k 6=j a

max
k φk

, (13)

ωmax
j =

amax
j φj

amax
j φj +

∑
k 6=j a

min
k φk

. (14)

Note that in each of these, we must approximate the term
∑
k aikφk, but we

do not know the exact values aik. Thus, for ωmin
j , we must take the bound aik ≤

amax
k , except for when j = k, where we can use the tighter amin

j . Symmetric
reasoning applies for the case of ωmax

j .
Now, following the advice of Moore [8], we note that a decent pruning rule

is to prune if, for all components j, ωmax
j − ωmin

j < τωtj , where ωtj is a lower
bound on the total weight that component j has.

5

Using that intuition, let us define the BaseCase() and Score() functions
that will define our single-tree algorithm. During our single-tree algorithm, we
will have the current model θ and a partial model θ′, which will hold unnor-
malized means and covariances of components. After the single-tree algorithm
runs, we can normalize θ′ to produce the next model θ.

Algorithm 1 defines the BaseCase() function and Algorithm 2 defines the
Score() function. At the beginning of the traversal, we initialize the weight es-
timates ωt0, . . . , ωtm all to 0 and the partial model θ′ = {(µ′0,Σ′0), . . . , (µ′m,Σ

′
m)}

to 0. At the end of the traversal, we will generate our new model as follows, for
each component j ∈ [0,m):

φj ← 1

n
ωtj (15)

µj ← 1

ωtj
µ′j (16)

Σj ← 1

ωtj
Σ′j (17)

After this, the array of φj values will need to be normalized to sum to 1;
this is necessary because each ωtj may be approximate.

To better understand the algorithm, let us first consider the BaseCase()
function. Given some point pi, our goal is to update the partial model θ′ with
the contribution of pi. Therefore, we first calculate aij for every component
(φj , µj ,Σj). This allows us to then calculate ωij for each component, and then
we may update ωtj (our lower bound on the total weight of component j) and
our partial model components µ′j and Σ′j . Note that in the BaseCase() function
there is no approximation; if we were to call BaseCase() with every point in
the dataset, we would end up with µ′j equal to the result of Equation 5 and
Σ′j equal to the result of Equation 6. In addition, ωtj would be an exact lower
bound.

Now, let us consider Score(), which is where the approximation happens.
When we visit a node Ni, our goal is to determine whether or not we can
approximate the contribution of all of the descendant points of Ni at once. As
stated earlier, we prune if ωmax

j − ωmin
j < τωtj for all components j. Thus, the

Score() function must calculate ωmax
j and ωmin

j (lines 4–11) and make sure ωtj
is updated.

Keeping ωtj correct requires a bit of book-keeping. Remember that ωtj is a
lower bound on

∑
i ωij ; we maintain this bound by using the lower bound ωmin

j

for each descendant point of a particular node. Therefore, when we visit some
node Ni, we must remove the parent’s lower bound before adding the lower
bound produced with the ωmin

j value for Ni (lines 13–16).
Because we have defined our single-tree algorithm as only a BaseCase() and

Score() function, we are left with a generic algorithm. We may use any tree
and any traversal (so long as it satisfies the definitions given earlier).

6

Algorithm 2 GMM training Score().
1: Input: model θ = {(φ0, µ0,Σ0), . . . , (φm−1, µm−1,Σm−1)}, node Ni, weight

estimates (ωt0, . . . , ω
t
m−1), pruning tolerance τ

2: Output: ∞ if Ni can be pruned, score for recursion priority otherwise

3: {Calculate bounds on aij for each component.}
4: for all j in [0,m) do
5: amin

j ← (2π‖Σj‖)−1/2e−1/2(dMmax(Ni,µj ,Σ
−1
j))

6: amax
j ← (2π‖Σj‖)−1/2e−1/2(dMmin(Ni,µj ,Σ

−1
j))

7: end for

8: {Calculate bounds on ωij for each component.}
9: for all j in [0,m) do

10: ωmin
j ← amin

j φj

amin
j φj+

∑
k 6=j a

max
k φk

11: ωmax
j ← amax

j φj

amax
j φj+

∑
k 6=j a

min
k φk

12: {Remove parent’s prediction for ωtj contribution from this node.}
13: if Ni is not the root then
14: ωpj ← the value of ωmin

j calculated by the parent
15: ωtj ← ωtj − |Dp(Ni)|ωpj
16: end if
17: end for

18: {Determine if we can prune.}
19: if ωmax

j − ωmin
j < τωtj for all j ∈ [0,m) then

20: {We can prune, so update µj and Σj .}
21: for all j in [0,m) do
22: ωavg

j ← 1/2(ωmax
j + ωmin

j)

23: ωtj ← ωtj + |Dp(Ni)|ωavg
j

24: ci ← centroid of Ni

25: µj ← µj + ωavg
j ci

26: Σj ← Σj + ωavg
j cic

T
i

27: end for
28: return ∞
29: end if

30: {Can’t prune; update ωtj and return.}
31: for all j ∈ [0,m) do
32: ωtj ← ωtj + |Dp(Ni)|ωmin

j

33: end for
34: return 1/(maxj∈[0,m) ω

max
j)

4 Conclusion

This document has demonstrated how GMM training can be performed approx-
imately with trees. This may be used as a black-box replacement to a single

7

iteration of the EM algorithm. The algorithm, as given, is generic and can be
used with any type of tree. Despite this, there are still several extensions and
improvements that may be performed but are not detailed here:

• A better type of approximation. We are only performing relative approx-
imation using the same heuristic as introduced by Moore [8]. But other
types of approximation exist: absolute-value approximation [5], or bud-
geting [7].

• Provable approximation bounds. In this algorithm, the user selects τ to
control the approximation, but there is no derived relationship between τ
and the quality of the results. A better user-tunable parameter might be
something directly related to the quality of the results; for instance, the
user might place a bound on the total mean squared error allowed in µj
and Σj for each j.

• Provable worst-case runtime bounds. Using cover trees, a relationship
between the properties of the dataset and the runtime may be derived,
similar to other tree-based algorithms which use the cover tree [1, 4].

• Caching during the traversal. During the traversal, quantities such as amin
j ,

amax
j , ωmin

j , and ωmax
j for a node Ni will have some geometric relation to

those quantities as calculated by the parent of Ni. These relations could
potentially be exploited in order to prune a node without evaluating those
quantities. This type of strategy is already in use for nearest neighbor
search and max-kernel search in mlpack.

References

[1] A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neigh-
bor. In Proceedings of the 23rd International Conference on Machine Learn-
ing (ICML ’06), pages 97–104, 2006.

[2] J.A. Bilmes. A gentle tutorial of the em algorithm and its application to
parameter estimation for gaussian mixture and hidden markov models. Tech-
nical report, Department of Electrical Engineering and Computer Science,
University of California, Berekeley.

[3] R.R. Curtin, J.R. Cline, N.P. Slagle, W.B. March, P. Ram, N.A. Mehta, and
A.G. Gray. mlpack: A scalable C++ machine learning library. Journal of
Machine Learning Research, 14:801–805, 2013.

[4] R.R. Curtin, D. Lee, W.B. March, and P. Ram. Plug-and-play dual-tree
algorithm runtime analysis. Journal of Machine Learning Research, 2015.

[5] R.R. Curtin, W.B. March, P. Ram, D.V. Anderson, A.G. Gray, and C.L.
Isbell Jr. Tree-independent dual-tree algorithms. In Proceedings of The 30th
International Conference on Machine Learning (ICML ’13), pages 1435–
1443, 2013.

8

[6] K. Deng and A.W. Moore. Multiresolution instance-based learning. In
Proceedings of the 1995 International Joint Conference on AI (IJCAI-95),
volume 95, pages 1233–1239, 1995.

[7] A.G. Gray and A.W. Moore. Nonparametric density estimation: Toward
computational tractability. In Proceedings of the 2003 SIAM International
Conference on Data Mining (SDM’03), pages 203–211, 2003.

[8] A.W. Moore. Very fast EM-based mixture model clustering using multires-
olution kd-trees. In Advances in Neural Information Processing Systems 11
(NIPS 1998), pages 543–549. 1999.

[9] D. Reynolds. Gaussian mixture models. In Encyclopedia of Biometrics,
pages 659–663. 2009.

9

