27,431 research outputs found

    Multi-argument classification for semantic role labeling

    Get PDF
    This paper describes a Multi-Argument Classification (MAC) approach to Semantic Role Labeling. The goal is to exploit dependencies between semantic roles by simultaneously classifying all arguments as a pattern. Argument identification, as a pre-processing stage, is carried at using the improved Predicate-Argument Recognition Algorithm (PARA) developed by Lin and Smith (2006). Results using standard evaluation metrics show that multi-argument classification, archieving 76.60 in F₁ measurement on WSJ 23, outperforms existing systems that use a single parse tree for the CoNLL 2005 shared task data. This paper also describes ways to significantly increase the speed of multi-argument classification, making it suitable for real-time language processing tasks that require semantic role labelling

    Structural Data Recognition with Graph Model Boosting

    Get PDF
    This paper presents a novel method for structural data recognition using a large number of graph models. In general, prevalent methods for structural data recognition have two shortcomings: 1) Only a single model is used to capture structural variation. 2) Naive recognition methods are used, such as the nearest neighbor method. In this paper, we propose strengthening the recognition performance of these models as well as their ability to capture structural variation. The proposed method constructs a large number of graph models and trains decision trees using the models. This paper makes two main contributions. The first is a novel graph model that can quickly perform calculations, which allows us to construct several models in a feasible amount of time. The second contribution is a novel approach to structural data recognition: graph model boosting. Comprehensive structural variations can be captured with a large number of graph models constructed in a boosting framework, and a sophisticated classifier can be formed by aggregating the decision trees. Consequently, we can carry out structural data recognition with powerful recognition capability in the face of comprehensive structural variation. The experiments shows that the proposed method achieves impressive results and outperforms existing methods on datasets of IAM graph database repository.Comment: 8 page

    Learning the Semantics of Manipulation Action

    Full text link
    In this paper we present a formal computational framework for modeling manipulation actions. The introduced formalism leads to semantics of manipulation action and has applications to both observing and understanding human manipulation actions as well as executing them with a robotic mechanism (e.g. a humanoid robot). It is based on a Combinatory Categorial Grammar. The goal of the introduced framework is to: (1) represent manipulation actions with both syntax and semantic parts, where the semantic part employs λ\lambda-calculus; (2) enable a probabilistic semantic parsing schema to learn the λ\lambda-calculus representation of manipulation action from an annotated action corpus of videos; (3) use (1) and (2) to develop a system that visually observes manipulation actions and understands their meaning while it can reason beyond observations using propositional logic and axiom schemata. The experiments conducted on a public available large manipulation action dataset validate the theoretical framework and our implementation
    corecore