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Abstract 

This paper describes a Multi-Argument 

Classification (MAC) approach to Seman-

tic Role Labeling.  The goal is to exploit 

dependencies between semantic roles by 

simultaneously classifying all arguments as 

a pattern.  Argument identification, as a 

pre-processing stage, is carried at using the 

improved Predicate-Argument Recognition 

Algorithm (PARA) developed by Lin and 

Smith (2006).  Results using standard 

evaluation metrics show that multi-

argument classification, achieving 76.60 in 

F1 measurement on WSJ 23, outperforms 

existing systems that use a single parse tree 

for the CoNLL 2005 shared task data.  This 

paper also describes ways to significantly 

increase the speed of multi-argument clas-

sification, making it suitable for real-time 

language processing tasks that require se-

mantic role labeling. 

1 Introduction 

The Conference on Natural Language Learning 

(CoNLL) has organized different shared tasks 

since 1999, including syntactic chunking, clause 

identification, name entity recognition, semantic 

role labeling (SRL), and multi-lingual dependency 

parsing.  The goal of the problem of SRL as posed 

for CoNLL 2005 (Carreras and Marquez, 2005) is 

to recognize all the arguments of given predicates 

in a sentence and label them with appropriate se-

mantic roles.  Arguments related to a predicate are 

typically phrases in the sentence that form a rela-

tionship with the predicate.  This relationship is 

called a semantic role.  Generally speaking, SRL is 

a two step process (though some existing systems 

address it as a single task).  Firstly, all arguments 

for a predicate must be identified with exact word 

spans—so-called argument identification.  Sec-

ondly, these arguments must be labelled with cor-

rect semantic roles—referred to as  argument clas-

sification.   

Existing systems for semantic role labeling use 

machine learning methods to assign roles one-at-a-

time to candidate arguments.  There are several 

drawbacks to this general approach.  First, more 

than one candidate can be assigned the same role, 

which is undesirable.  Second, the search for each 

candidate argument is exponential with respect to 

the number of words in the sentence.  Third, sin-

gle-role assignment cannot take advantage of de-

pendencies known to exist between semantic roles 

of predicate arguments, such as their relative jux-

taposition.  And fourth, execution times for exist-

ing algorithms are excessive, making them unsuit-

able for real-time use. 

This paper seeks to obviate these problems by 

approaching semantic role labeling as a multi-

argument classification process.  It observes that 

the only valid arguments to a predicate are unem-

bedded constituent phrases that do not overlap the 

predicate.  Given that semantic role labeling occurs 

after parsing, this paper uses the Predicate-

Argument Recognition Algorithm (PARA) by Lin 

and Smith (2006) that systematically traverses the 

parse tree when looking for arguments, thereby 

eliminating the vast majority of impossible candi-

dates. 
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2 Syntax-Driven Argument Identification 

Conventional argument identifiers, such as the one 

developed by Gildea and Palmer (2002), take all 

nodes in a parse tree, including each word in a 

sentence, as potential arguments (pa).  Whether a 

potential argument is classified as a valid semantic 

argument depends on a probability estimation such 

as that given by Gildea and Palmer, (2002) or 

similar.  Such a recognizer is a binary classifier, 

utilizing the distribution observed in the training 

data to learn how to predict future novel semantic 

arguments.  Information from a parse tree is 

forwarded as features to the argument recognizer 

to help formulate a model to make correct 

predictions.  The most-frequently used features for 

semantic arguments are the Path, Headword, 

Phrase type, and Predicate itself, as summarized in 

Table 1. 

 

Predicate (pr) – The given predicate lemma (an 

uninflected, untensed verb). 

Path (path) – The syntactic path through the 

parse tree from the constituent to the given pre-

dicate. 

Head Word (hw) – The syntactic head of the 

phrase.  (The head is normally simply the last 

noun of the rightmost subordinate noun phrase). 

Table 1.  Features used in semantic argument iden-

tification. 

 

The statistical argument recognizer from Palmer 

et al. (2005) utilizes the following formula to esti-

mate the probability of a potential argument:  
 

P(pa| path, hw, predicate) = 

λ1 * P(pa | path) + 

λ2 * P(pa | path, predicate) + 

λ3 * P(pa | hw, predicate) 
 

where Σi λi = 1. 

 

Traditional argument recognizers have to spend 

time on each phrase and word to find possible se-

mantic arguments.  In order to reduce computa-

tional time, Xue and Palmer (2004) describe a 

pruning strategy to filter out constituents that are 

clearly not semantic arguments to the predicate. 

Then they classify the candidates derived from the 

pruning strategy as either semantic arguments or 

non-arguments.  Finally they use a role classifier to 

label candidate arguments with semantic roles 

(Xue and Palmer, 2004).  This pruning strategy has 

been widely used by systems in CoNLL2005 

(Punyakanok et al., 2005; Tsai et al., 2005) to re-

duce training and testing time.  Results (like Tsai et 

al. 2005) show this pruning strategy helps elimi-

nate large portions of the training data (about 61% 

in Tsai et al. 2005) without sacrificing overall per-

formance.  Tsai et al. (2005) claim their systems 

with the pruning strategy achieve 93% of the cor-

rect arguments (or coverage) in training sets.   

Generally speaking, valid arguments are non-

overlapping and not embedded within each other. 

State-of-the-art syntactic parsers such as Collins 

(1999) or Charniak (2000) already solve the over-

lapping problem and their output provides an ideal 

structure for finding arguments.  The residual prob-

lem is to select valid semantic arguments from 

these non-overlapping constituents of the parse 

trees. Cursory examination of hand-corrected 

parses reveals that upper-most nodes that do not 

include predicates are all valid potential arguments.  

PARA (Lin and Smith, 2006) was developed in 

accordance with this observation.  The hypothesis 

is that upper-most nodes in the parse tree that do 

not include predicates are the potentially valid ar-

guments and need not be rediscovered during ar-

gument identification. 
PARA has been slightly modified so that it now 

ignores phrasal nodes that contain just punctuation 

symbols (an occasional error produced by auto-

matic parsers).  This turns out to improve PARA’s 

performance quite significantly, as the following 

results for the CoNLL 2005 data demonstrate. 
 

Approach P R F1 

PARA-Imp 82.90 82.30 82.60 

Moschitti 83.38 81.31 82.33 

Palmer 81.30 80.62 80.96 

Surdeanu 84.91 76.28 80.36 

PARA 82.45 73.94 77.96 

Table 2. Comparison of argument identification. 
 

Table 2 shows comparison of argument identifi-

cation on WSJ23 for four different approaches and 

the modified PARA (PARA-Imp).  These results
1
 

are based on the official evaluation script
2
 offered 

for the CoNLL shared tasks.  The table shows the 

modification to PARA improves performance from 

                                                 
1
 All arguments are labeled with A0 except predicates. 

2
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F1: 77.96 to 82.60.  The improved PARA also out-

performs existing approaches using the same syn-

tactic parses as input.  It achieves the goal of a di-

rect mapping from syntactic parses to unlabelled 

semantic arguments without the need for training 

by utilizing the output from a state-of-art parser, 

such as Charniak’s (2000).  The new PARA is fast 

and accurate, and can be used as a stand-alone pre-

processor for the problem of Predicate-Argument 

Recognition or joined with other ML recognizers 

to increase the overall performance.  

Utilizing the new PARA for argument identifi-

cation, the following section introduces a new 

technique for multi-argument classification—one 

that outperforms existing systems in the SRL 

shared task, given single syntactic information (i.e. 

one parse tree per sentence). 

3 Multi-Argument Classification 

Approaches to argument classification are de-

scribed in detail in the proceedings of CoNLL 

2004 and CoNLL 2005 shared tasks.  Many ad-

dress argument classification using Machine 

Learning (ML) approaches; as with the SNoW 

learning architecture (Punyakanok et al., 2004, 

2005), Support Vector Machines (Moschitti et al., 

2005), and so on.  The general trend is to try to 

increase performance by adding more features.   

In contrast, this paper applies the concept of 

Multi-Argument Classification (MAC) to achieve 

better performance without additional features. 

MAC is based on the idea of exploiting relation-

ships between roles in predicate-argument struc-

tures (e.g.  [A0 V A1], [A1 V], etc).  Such a rela-

tionship is called a semantic role dependency.  

The relationship in the predicate-argument struc-

ture exhibits semantic role dependency manifest 

in the sequential order, count and juxtaposition of 

different core roles (like A0, or A1) in the predi-

cate-argument list.  Generally speaking, there is 

only one core role in each predicate structure
3
.  

This can serve as useful information for role classi-

fication, as demonstrated in the following classifi-

cation model. 

                                                 
3
 There is rare situation happened with more than one 

core role. 

3.1 Classification Model 

Gildea and Jurafsky (2002) calculate the 

probability of the optimal role assignment r* for 

each sentence as follows. 

r* = argmax r1 ... n P({r1…n} | predicate)Π 
   

                          i 

P(ri | { fi}, predicate) is the probability of a con-

stituent’s role given the above features for the con-

stituent and the predicate.  More detail is given in 

Gildea and Jurasky (2002).   

This is a typical ML approach for maximizing 

the probability of the optimal role assignment to 

assign roles for each sentence without utilizing role 

dependency learned from the training data. In 

Multi-Argument Classification, the optimal prob-

ability applied with the role dependency relation-

ship learned from the training data is as follows. 

r* = argmax P({r1…n} | predicate)Π      

{r1…n}                    
            i

 
 

where {r1…n} is a sequential role list learned from 

the training data, {ri} is the i-th role in {r1…n}, 

P({r1…n} | predicate) represents the probability of 

an overall assignment of the role list {r1…n} to each 

of the n constituents or semantic arguments of a 

sentence, given the predicate and the various fea-

tures {fi}of each of the constituents. 

The role list {r1…n} denotes there are n argu-

ments in a test sentence; but the number of argu-

ments in any training sentence may vary.  To com-

pare instances of different lengths, we add a map-

ping function to convert the role list {r1…m} of a 

training sentence to the role list {r1…n} of a test 

sentence as follows: 
 

M: {r1…m}j � {r1…n} 
 

where {r1…m }j is the role list with m arguments of 

a training sentence j and {r1…n} is the role list with 

n arguments of the test (i.e. query) sentence.  The 

basic principle of this mapping function is to map 

m arguments of a training sentence to n arguments 

of the query.  

By replacing {r1…n} with M{r1…m}j and {ri} with 

{rki} in the previous formula, the probability for-

mula for MAC is shown as follows. 
 

r* = argmax P(M{r1…m}j | predicate)Π      

M{r1…m} j                              
i
 

 P(ri |{ fi}, predicate) 

 P(ri | predicate) 

P({ri}| { fi}, predicate) 

P({ri}| predicate) 

P({rkj}| { fi}, predicate) 

P({rkj}| predicate) 



where M{r1…m} j is the role list generated by the 

mapping function M from the j-th training sen-

tences with m arguments of the training data to the 

role list {r1…n} for the test sentence with n argu-

ments, and {rki} denotes the k-th role of {r1…m} j 

( 1<= k <= m) corresponding to the i-th argument 

of {r1…n}.  The details of the mapping algorithm 

are described in the next section. 

3.2 Mapping Algorithm 

There are four considerations essential to the func-

tion that maps a knowledge pattern learned from 

the training data to a new query sentence: i) where 

to start matching two patterns; ii) how to deal with 

different numbers of arguments between the 

knowledge and query patterns, iii) how to compute 

similarity between an argument in a knowledge 

pattern and an argument in a query pattern, and iv) 

how to measure the quality of the matching.  

i) Where to start 
The first consideration is solved by looking for 

the most common instance in a knowledge pattern 

and a query one, given the predicate.  In this dis-

cussion, an instance is an argument in a predicate-

argument structure. 

ii) Mapping of different arguments 

Empirically there is very low coverage or recall 

(about 0.46) to match query sentences with training 

sentences that have the same number of arguments. 

This paper proposes an alternative way to increase 

the coverage.  The principle is based on semantic 

role dependency, in which core roles (like A0 or 

A1) are regarded as more essential than adjuncts 

(like AM-TMP, or AM-LOC).  We need to esti-

mate similarity between an argument (i.e. instance) 

in a knowledge pattern and an argument in the 

query.  If two instances (one in the knowledge pat-

tern and the other in the query) are considered 

highly similar (Case 1), we can try to match the 

next instances in both patterns.  If two instances 

are not similar, there are two kinds of situation. 

One is to match the current instance in the knowl-

edge pattern with the next instance in the query 

(Case 2).  The other is to match the next instance in 

the knowledge pattern with the current instance in 

the query (Case 3).  The two final circumstances 

are unmatched instances in the query (Case 4), and 

unmatched instances in the knowledge pattern 

(Case 5).  These five cases are more formally de-

scribed as follows: 

Case 1: if there exists a query instance i and a 

corresponding knowledge instance j, and both in-

stances are similar (or their similarity is no less 

than a threshold), try to match the next instance in 

the knowledge pattern with the next instance in the 

query.  This is the case when two instances are 

considered highly similar, then try to match the 

next instances in the query and knowledge patterns. 

 

 

 

 

 

 

 

 

Case 2: if there exists a query instance i and a 

corresponding knowledge instance j, both instances 

are not similar (or their similarity is below a 

threshold) and the role of the knowledge instance j 

appears to be one of the core roles (i.e. A0 to A5 

and AA), as opposed to a non-core or adjunctive 

role, try to match the current instance in this 

knowledge pattern with the next instance in the 

query.  The reason to keep the current knowledge 

instance is to try to increase the coverage.  It is rare 

to have two patterns match exactly due to inherent 

data sparseness.  For example, a query sentence 

“They will come” and a training sentence, “They 

come” is not matched due to different number of 

arguments.  But they can be considered highly 

similar if the second argument “will” in the query 

sentence is skipped during matching.  Such a 

skipped argument can be labeled latter by other 

approaches. 
 

 

 

 

 

 

 

 

 

Case 3: if there exists a query instance i and a 

corresponding knowledge instance j, both instances 

are not similar and the role of the instance j in the 

knowledge pattern appears to be a non-core label 

(e.g. AM-MOD AM-NEG or AM-DIS), try to 

match the next instance in the knowledge pattern 

with the current instance in the query.  Such non-

i 

j 

Sim(i,j) >= Threshold 

Next i 

Next j 

i 

 j (A0…) 

Sim(i,j) ＜ Threshold 

Next i 



core roles are optional to a query pattern—which is 

to say that not all sentences have them. This means 

they can be skipped.  This is the complement situa-

tion to Case 2 where all non-core or adjunctive 

roles in the knowledge pattern can be skipped in 

order to increase coverage. 
 

 

 

 

 

 

 

 

 

Case 4: if there does not exist an argument j in 

the knowledge pattern, keep a default probability 

to query instance i to avoid zero frequency. 

Case 5: skip all extra corresponding knowledge 

arguments. 

After mapping, all patterns from the pattern base 

are compared to role lists with the same number of 

arguments as the query.  It remains now to measure 

the similarity of each argument in the query role 

list with each corresponding argument in the role 

list of each pattern from the knowledge base. 

iii) Similarity Function 

The calculation of similarity between an in-

stance in the knowledge pattern and its correspond-

ing instance in the query is based on the feature 

space.  The distance between two points (i.e. in-

stances in the feature space) is estimated by 

Euclidean distance as follows. 
 

Distance metric (Euclidean distance): 

D(xi, xj) = √Σ(ar(xi))-ar(xj))
2
  

   

for r =1 to n (i.e. n different classifications), where 

ar(x) means the r-th feature of an instance x.  (Fea-

tures used are described in Section 3.5.) If in-

stances, xi and xj, are identical, then D(xi , xj )=0; 

Otherwise, D(xi , xj ) represents the vector distance 

between xi and xj. xi is an instance in the query and 

xj is an instance in the knowledge pattern. 

Therefore the similarity function is defined as  

Sim(i, j) = (number of features - D(i, j) ) / (number 

of features)  

If all features are the same between two in-

stances, D(i, j) is zero and Sim(i, j) is 1.0.  If there 

are different features between two instances (for 

example two features are not the same), the score 

of similarity by Sim(i, j) will be less than 1.0.  For 

example, if there are five features for calculation 

and two different, D(i, j) is two and Sim(i, j) is 0.6, 

which is (5 – 2) / 5.  The threshold utilized in the 

first three cases is initially set to 1.0, which means 

all features in the knowledge instance must be the 

same with the ones of the query pattern.  The 

threshold value was arrived at through trial and 

error. 

iv) What is the quality estimation 
The fourth issue mentioned early in this section 

is to find the quality of a match between a pattern 

in a training sentence and a query pattern in the 

query sentence by the formula given in Section 3.1, 

except that argument maximization is not used. 

Once all quality probabilities for patterns in the 

training data are calculated, the system selects the 

pattern from the training sentence with the highest 

quality probability.  

3.3 Unlabeled Arguments 

MA is designed for matching two patterns with 

different arguments.  It helps to increase the over-

all coverage from 0.46 (if only marching patterns 

with the same number of arguments) to 0.78.  This 

is still not good enough compared to statistical sin-

gular-argument classifiers (SAC).  The cause of 

low coverage is sparseness of data.  For example, a 

skipped argument like “will” in the query of Case 

2 can be labeled by other approaches (i.e. existing 

classifiers).  Thus we propose a simple argument 

labeler to fill unlabeled arguments. 
 

 argmax  P(r | {f}, predicate) 

      r 
 

where P(r | {f}, predicate) represents the probabil-

ity of an assignment of role r (excluding any core 

role that already appears in the label list to avoid 

duplication of core roles) to each of the unlabeled 

arguments of a sentence after MA, given the predi-

cate and the features {f} (including headword, dis-

tance, voice, preposition, phrase type and path) of 

the argument.  By handling unmatched arguments 

with this simple argument labeler, the recall rises 

from 0.78 to 0.86. 

3.4 Complete PM Model 

The complete model for Pattern-Matching (PM) is 

thus a combination of MAC and SAC.  PM tries to 

find all suitable patterns from the training data us-

ing the mapping algorithm described in Section 3.2, 

i 

j (AM-NEG…) 

Sim(i,j) ＜ Threshold 

Next j 



selects the best one from the pattern base according 

to the quality probabilities from the mapping algo-

rithm using MAC, and classifies any unlabelled 

arguments in the best pattern with SAC like a sim-

ple argument labeler in Section 3.3. 
 

Procedure of Pattern-Matching with SAC 
For all knowledge patterns 

apply Mapping Algorithm for the query and  

knowledge patterns  
 

Select the best knowledge pattern according to 

their quality probabilities  
 

Use SAC to classify the unlabelled arguments 

Figure 1. Procedure of the PM model and SAC. 
 

 

The goal of selection is to find the knowledge 

patterns with the highest Quality, calculated by 

MA described in Section 3.2. The procedure for 

PM is shown in Figure 1. 

In the testing stage for the system, PARA is 

used as an argument recognizer to identify predi-

cates and arguments related to predicates. It for-

wards the predicates and their arguments to classi-

fication. Argument classification in the system in-

cludes two role classifiers, a multi-argument classi-

fier, Pattern-Matching (PM) described and a statis-

tical singular argument classifier modified from 

Palmer et al. (2005). The modification includes 

two extra features, preposition and distance de-

scribed as follows. 

3.5 Features 

Features used in this paper are predicate, voice, 

phrase type, distance, headword, path and preposi-

tion, as shown in Figure 2. 

 

Predicate  

Voice 

 

 

Phrase Type 

 

 

 

– The given predicate lemma. 

– Whether the predicate is real-

ized as an active or passive con-

struction.   

– The syntactic category (NP, PP, 

S, etc.) of the phrase corre-

sponding to the semantic argu-

ment. 

Distance 

 

 

 

 

 

– The relative displacement from 

the predicate, measured in inter-

vening constituents (negative if 

the constituent is to the left of or 

prior to, positive if it is to the 

right of or after, the predicate). 

Head Word  

 

Path  
 

 

 

Preposition  

 

– The syntactic head of the 

phrase.   

– The syntactic path through the 

parse tree, from the parse con-

stituent to the predicate being 

classified. 

– The preposition of an argument 

in a PP such as during, at, with, 

and so on. 

Figure 2.  Features used for experimentation.. 

4 Experiments and Results 

Data used in this chapter is that released on March 

2005 for CoNLL-2005
4

, which includes Wall 

Street Journal sections with Charniak’s (2000) and 

Collins’ (1999) parse-trees.  Charniak’s parse tree 

is accepted as input to the system due to its better 

performance on WSJ (Carreras and Marquez, 

2005).  Evaluation is carried out using the official 

evaluation script from CoNLL 2005, srl-eval.pl 

which provides precision, recall and F1 measure of 

the predicated arguments. Predicates are given in 

the CoNLL shared tasks.  

Table 3 shows the results for several approaches, 

when used with known arguments (i.e. the systems 

are given the correct arguments for role classifica-

tion). All training data (WSJ02-21) with 

Charniak’s parses are included. The modified ver-

sion of the classifier from Palmer et al. (2005) 

(Palmer-Imp) provides 85.59 in F1 and the per-

formance of the basic model (PM without Palmer) 

estimation is F1: 1.16 improved compared to 

Palmer itself.  The complete model (PM), com-

bined with Palmer, achieves the best results on 

Precision (88.89), Recall (87.65), and F1 measure-

ment (88.27) and offers the best solution on all test 

datasets compared to Palmer-Imp.  It suggests PM, 

utilizing role dependencies existing in semantic 

roles, helps to increase F1 by 3.0 over Palmer-Imp. 

Table 4 shows the result using all features (ALL), 

and the contribution of each feature in Precision 

(P), Recall (R), and F1 measurements. 
 

Approach P R F1 

Pamler-Imp 85.53 85.65 85.59 

PM without Palmer-Imp 87.67 85.85 86.75 

PM 88.89 87.65 88.27 

Table 3. Results obtained by different algo-

rithms on WSJ Section 24 with known arguments. 

                                                 
4
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 P R F1 

ALL 88.89 87.65 88.27 

- Preposition 84.77 83.03 83.89 

- Phrase Type 85.21 83.03 84.11 

- Head Word 85.52 83.93 84.72 

- Path 87.12 85.89 86.50 

- Voice 88.52 87.02 87.77 

- Distance 88.81 87.56 88.18 

Table 4. Contribution of each feature on WSJ 

24, with known arguments. 
 
 

Test dataset P R F1 

WSJ 24 75.88 72.98 74.40 

WSJ 23 78.04 75.20 76.60 

Brown 69.33 63.44 66.25 

Table 5. Results for different test datasets with 

Charniak’s parses and PARA-Imp. 

 
Test WSJ23 Precision Recall Fββββ=1 
Overall 78.04% 75.20% 76.60 
A0 84.31% 85.18% 84.74 
A1 78.86% 76.98% 77.91 
A2 70.83% 61.26% 65.70 
A3 68.84% 54.91% 61.09 
A4 66.67% 62.75% 64.65 
A5 100.00% 60.00% 75.00 
AM-ADV 59.07% 55.34% 57.14 
AM-CAU 64.91% 50.68% 56.92 
AM-DIR 35.53% 31.76% 33.54 
AM-DIS 76.25% 76.25% 76.25 
AM-EXT 50.00% 37.50% 42.86 
AM-LOC 62.54% 51.52% 56.50 
AM-MNR 59.33% 51.74% 55.28 
AM-MOD 97.42% 95.83% 96.61 
AM-NEG 95.18% 94.35% 94.76 
AM-PNC 46.39% 39.13% 42.45 
AM-PRD 0.00% 0.00% 0.00 
AM-REC 0.00% 0.00% 0.00 
AM-TMP 73.58% 72.49% 73.03 
R-A0 85.84% 86.61% 86.22 
R-A1 80.28% 73.08% 76.51 
R-A2 80.00% 50.00% 61.54 
R-A3 0.00% 0.00% 0.00 
R-A4 0.00% 0.00% 0.00 
R-AM-ADV 0.00% 0.00% 0.00 
R-AM-CAU 0.00% 0.00% 0.00 
R-AM-EXT 0.00% 0.00% 0.00 
R-AM-LOC 73.68% 66.67% 70.00 
R-AM-MNR 25.00% 16.67% 20.00 
R-AM-TMP 62.69% 80.77% 70.59 

Table 6. Details for each semantic role on WSJ 

23, with Charniak’s parses and PARA. 

 

Preposition, Phrase Type , and Head word are 

the three features whose removal decreases the 

performance of the complete system by a large 

amount. The distance feature plays a key role in 

overall performance of Palmer-Imp but is the least 

influential in PM because of the usage of multi-

argument classification. When using PM, the re-

lated distance is implicitly included when matching 

two patterns. The path feature is the fourth most 

influential factor on performance for role classifi-

cation, and the voice feature has the least detrimen-

tal effect, along with the distance feature, on the 

performance of this system. Both features (path 

and voice) have the same influence in PM and 

Palmer-Imp. 

Table 5 shows performance (on WSJ 24, WSJ 

23 and the Brown corpus) of the complete model 

(PM) using auto parses (Charniak’s parser) and 

PARA as the pre-processor to recognize all related 

arguments. It also shows the results on WSJ 23 are 

about F1:2.0 better than that by WSJ 24. This in-

crease is because the performance by PARA on 

WSJ 23 is about F1:2.0 better than WSJ 24. The 

results on the Brown corpus show the performance 

drops by more than 10 points in F1 compared to 

WSJ 23.  This is caused by propagating process-

errors described in Carreras and Marquez, (2005). 

Table 5 also shows such errors affect results even 

more in the domain of the Brown corpus.  Another 

area for future work is to look for ways to mini-

mize the impact of different domains. 

The results on WSJ 23 for each role are shown 

in Table 6.  Generally speaking, performance on 

core roles is better than on adjuncts, except for the 

modal, and negation tags.  This is because there are 

more training examples for core roles than for ad-

juncts. 

Experimental results show that execution times 

for PM and Palmer-Imp are about 3.0 and 0.8 sec-

onds per sentence respectively.  To increase speed, 

we introduce a controlling strategy called the 

Maximum Suitable Pattern (MSP) number. MSP 

limits how many suitable patterns must be found 

for a query pattern before searching/comparing can 

stop.  The MSP formula is: 
 

Suitable(j) <= MSP  

r* = argmax P(M{r1…m}j | predicate)Π      

M{r1…m} j                             
i
 

 

where Suitable(j) denotes the number of suitable 

knowledge patterns found. 

P({rkj}| {fi}, predicate) 

P({rkj}| predicate) 



 

Once PM has found enough suitable patterns 

(Suitable(j) > MSP), PM stops matching knowl-

edge patterns in the pattern base.  A knowledge 

pattern with at least one instance that has similarity 

probability greater than the threshold is defined as 

a suitable one.  

Table 7 shows different results for various val-

ues of Maximum-Suitable Pattern (MSP) and sug-

gests no improvement after 100 matches.  Note 

that all accuracy differences appear insignificant, 

but the execution time per sentence (T) increases 

as the MSP value does, suggesting an MSP be-

tween 10 and 20.  All execution time are calculated 

based on a P4 3.0 GHz CPU and 1G RAM Linux 

machine. 
 

MSP P R F1 T  

30000 89.68 89.20 89.44 2.949 
10000 89.68 89.20 89.44 2.943 
1000 89.67 89.17 89.42 2.433 
100 89.71 89.39 89.55 1.235 
50 89.73 89.39 89.56 1.035 
20 89.84 89.54 89.69 0.858 
10 89.78 89.34 89.56 0.788 
2 89.13 88.58 88.86 0.609 

1 89.00 88.32 88.66 0.591 

Table 7. Results for different MSP values ob-

tained on WSJ 23, with known arguments 
 

System P R F1 NoF 

PARA+PM 78.04 75.20 76.60 7 

Surdeanu 80.32 72.95 76.46 31 

Tsai 82.77 70.90 76.38 25 

Moschitti 76.55 75.24 75.89 14 

PARA+Palmer-Imp 71.18 70.90 73.49 7 

Table 8. Results for different systems on WSJ 

23 listed in the CoNLL 2005 shared task. 
 

Table 8 shows comparative results for various 

systems using the same input.  Surdeanu et al. 

(2005), Tsai et al. (2005), and Moschitti et al. 

(2005) are systems only using Charniak’s parses 

listed in CoNLL 2005 shared task.  The modified 

system (PARA+Palmer_Imp) is the combination of 

PARA and Palmer-Modified.  Even using fewer 

features, the combination of PARA and PM offers a 

more accurate system for SRL compared to sys-

tems using the same input.  It also becomes one of 

the top-performing systems in the CoNLL 2005 

shared task compared to systems using far more 

features and multiple parses.  It suggests that ex-

ploiting role dependencies helps improve accuracy 

in SRL. 
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