
Multi-Argumgumgumgument Classification for Semantic Role Labeling

Chi-San Althon Lin

Department of Computer Science

Waikato University

Hamilton, New Zealand

cl123@cs.waikato.ac.nz

Tony C. Smith

Department of Computer Science

Waikato University

Hamilton, New Zealand

tcs@cs.waikato.ac.nz

Abstract

This paper describes a Multi-Argument

Classification (MAC) approach to Seman-

tic Role Labeling. The goal is to exploit

dependencies between semantic roles by

simultaneously classifying all arguments as

a pattern. Argument identification, as a

pre-processing stage, is carried at using the

improved Predicate-Argument Recognition

Algorithm (PARA) developed by Lin and

Smith (2006). Results using standard

evaluation metrics show that multi-

argument classification, achieving 76.60 in

F1 measurement on WSJ 23, outperforms

existing systems that use a single parse tree

for the CoNLL 2005 shared task data. This

paper also describes ways to significantly

increase the speed of multi-argument clas-

sification, making it suitable for real-time

language processing tasks that require se-

mantic role labeling.

1 Introduction

The Conference on Natural Language Learning

(CoNLL) has organized different shared tasks

since 1999, including syntactic chunking, clause

identification, name entity recognition, semantic

role labeling (SRL), and multi-lingual dependency

parsing. The goal of the problem of SRL as posed

for CoNLL 2005 (Carreras and Marquez, 2005) is

to recognize all the arguments of given predicates

in a sentence and label them with appropriate se-

mantic roles. Arguments related to a predicate are

typically phrases in the sentence that form a rela-

tionship with the predicate. This relationship is

called a semantic role. Generally speaking, SRL is

a two step process (though some existing systems

address it as a single task). Firstly, all arguments

for a predicate must be identified with exact word

spans—so-called argument identification. Sec-

ondly, these arguments must be labelled with cor-

rect semantic roles—referred to as argument clas-

sification.

Existing systems for semantic role labeling use

machine learning methods to assign roles one-at-a-

time to candidate arguments. There are several

drawbacks to this general approach. First, more

than one candidate can be assigned the same role,

which is undesirable. Second, the search for each

candidate argument is exponential with respect to

the number of words in the sentence. Third, sin-

gle-role assignment cannot take advantage of de-

pendencies known to exist between semantic roles

of predicate arguments, such as their relative jux-

taposition. And fourth, execution times for exist-

ing algorithms are excessive, making them unsuit-

able for real-time use.

This paper seeks to obviate these problems by

approaching semantic role labeling as a multi-

argument classification process. It observes that

the only valid arguments to a predicate are unem-

bedded constituent phrases that do not overlap the

predicate. Given that semantic role labeling occurs

after parsing, this paper uses the Predicate-

Argument Recognition Algorithm (PARA) by Lin

and Smith (2006) that systematically traverses the

parse tree when looking for arguments, thereby

eliminating the vast majority of impossible candi-

dates.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29201793?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Syntax-Driven Argument Identification

Conventional argument identifiers, such as the one

developed by Gildea and Palmer (2002), take all

nodes in a parse tree, including each word in a

sentence, as potential arguments (pa). Whether a

potential argument is classified as a valid semantic

argument depends on a probability estimation such

as that given by Gildea and Palmer, (2002) or

similar. Such a recognizer is a binary classifier,

utilizing the distribution observed in the training

data to learn how to predict future novel semantic

arguments. Information from a parse tree is

forwarded as features to the argument recognizer

to help formulate a model to make correct

predictions. The most-frequently used features for

semantic arguments are the Path, Headword,

Phrase type, and Predicate itself, as summarized in

Table 1.

Predicate (pr) – The given predicate lemma (an

uninflected, untensed verb).

Path (path) – The syntactic path through the

parse tree from the constituent to the given pre-

dicate.

Head Word (hw) – The syntactic head of the

phrase. (The head is normally simply the last

noun of the rightmost subordinate noun phrase).

Table 1. Features used in semantic argument iden-

tification.

The statistical argument recognizer from Palmer

et al. (2005) utilizes the following formula to esti-

mate the probability of a potential argument:

P(pa| path, hw, predicate) =

λ1 * P(pa | path) +

λ2 * P(pa | path, predicate) +

λ3 * P(pa | hw, predicate)

where Σi λi = 1.

Traditional argument recognizers have to spend

time on each phrase and word to find possible se-

mantic arguments. In order to reduce computa-

tional time, Xue and Palmer (2004) describe a

pruning strategy to filter out constituents that are

clearly not semantic arguments to the predicate.

Then they classify the candidates derived from the

pruning strategy as either semantic arguments or

non-arguments. Finally they use a role classifier to

label candidate arguments with semantic roles

(Xue and Palmer, 2004). This pruning strategy has

been widely used by systems in CoNLL2005

(Punyakanok et al., 2005; Tsai et al., 2005) to re-

duce training and testing time. Results (like Tsai et

al. 2005) show this pruning strategy helps elimi-

nate large portions of the training data (about 61%

in Tsai et al. 2005) without sacrificing overall per-

formance. Tsai et al. (2005) claim their systems

with the pruning strategy achieve 93% of the cor-

rect arguments (or coverage) in training sets.

Generally speaking, valid arguments are non-

overlapping and not embedded within each other.

State-of-the-art syntactic parsers such as Collins

(1999) or Charniak (2000) already solve the over-

lapping problem and their output provides an ideal

structure for finding arguments. The residual prob-

lem is to select valid semantic arguments from

these non-overlapping constituents of the parse

trees. Cursory examination of hand-corrected

parses reveals that upper-most nodes that do not

include predicates are all valid potential arguments.

PARA (Lin and Smith, 2006) was developed in

accordance with this observation. The hypothesis

is that upper-most nodes in the parse tree that do

not include predicates are the potentially valid ar-

guments and need not be rediscovered during ar-

gument identification.
PARA has been slightly modified so that it now

ignores phrasal nodes that contain just punctuation

symbols (an occasional error produced by auto-

matic parsers). This turns out to improve PARA’s

performance quite significantly, as the following

results for the CoNLL 2005 data demonstrate.

Approach P R F1

PARA-Imp 82.90 82.30 82.60

Moschitti 83.38 81.31 82.33

Palmer 81.30 80.62 80.96

Surdeanu 84.91 76.28 80.36

PARA 82.45 73.94 77.96

Table 2. Comparison of argument identification.

Table 2 shows comparison of argument identifi-

cation on WSJ23 for four different approaches and

the modified PARA (PARA-Imp). These results
1

are based on the official evaluation script
2
 offered

for the CoNLL shared tasks. The table shows the

modification to PARA improves performance from

1
 All arguments are labeled with A0 except predicates.

2
 http://www.lsi.upc.edu/~srlconll/home.html

F1: 77.96 to 82.60. The improved PARA also out-

performs existing approaches using the same syn-

tactic parses as input. It achieves the goal of a di-

rect mapping from syntactic parses to unlabelled

semantic arguments without the need for training

by utilizing the output from a state-of-art parser,

such as Charniak’s (2000). The new PARA is fast

and accurate, and can be used as a stand-alone pre-

processor for the problem of Predicate-Argument

Recognition or joined with other ML recognizers

to increase the overall performance.

Utilizing the new PARA for argument identifi-

cation, the following section introduces a new

technique for multi-argument classification—one

that outperforms existing systems in the SRL

shared task, given single syntactic information (i.e.

one parse tree per sentence).

3 Multi-Argument Classification

Approaches to argument classification are de-

scribed in detail in the proceedings of CoNLL

2004 and CoNLL 2005 shared tasks. Many ad-

dress argument classification using Machine

Learning (ML) approaches; as with the SNoW

learning architecture (Punyakanok et al., 2004,

2005), Support Vector Machines (Moschitti et al.,

2005), and so on. The general trend is to try to

increase performance by adding more features.

In contrast, this paper applies the concept of

Multi-Argument Classification (MAC) to achieve

better performance without additional features.

MAC is based on the idea of exploiting relation-

ships between roles in predicate-argument struc-

tures (e.g. [A0 V A1], [A1 V], etc). Such a rela-

tionship is called a semantic role dependency.

The relationship in the predicate-argument struc-

ture exhibits semantic role dependency manifest

in the sequential order, count and juxtaposition of

different core roles (like A0, or A1) in the predi-

cate-argument list. Generally speaking, there is

only one core role in each predicate structure
3
.

This can serve as useful information for role classi-

fication, as demonstrated in the following classifi-

cation model.

3
 There is rare situation happened with more than one

core role.

3.1 Classification Model

Gildea and Jurafsky (2002) calculate the

probability of the optimal role assignment r* for

each sentence as follows.

r* = argmax r1 ... n P({r1…n} | predicate)Π

 i

P(ri | { fi}, predicate) is the probability of a con-

stituent’s role given the above features for the con-

stituent and the predicate. More detail is given in

Gildea and Jurasky (2002).

This is a typical ML approach for maximizing

the probability of the optimal role assignment to

assign roles for each sentence without utilizing role

dependency learned from the training data. In

Multi-Argument Classification, the optimal prob-

ability applied with the role dependency relation-

ship learned from the training data is as follows.

r* = argmax P({r1…n} | predicate)Π

{r1…n}
 i

where {r1…n} is a sequential role list learned from

the training data, {ri} is the i-th role in {r1…n},

P({r1…n} | predicate) represents the probability of

an overall assignment of the role list {r1…n} to each

of the n constituents or semantic arguments of a

sentence, given the predicate and the various fea-

tures {fi}of each of the constituents.

The role list {r1…n} denotes there are n argu-

ments in a test sentence; but the number of argu-

ments in any training sentence may vary. To com-

pare instances of different lengths, we add a map-

ping function to convert the role list {r1…m} of a

training sentence to the role list {r1…n} of a test

sentence as follows:

M: {r1…m}j � {r1…n}

where {r1…m }j is the role list with m arguments of

a training sentence j and {r1…n} is the role list with

n arguments of the test (i.e. query) sentence. The

basic principle of this mapping function is to map

m arguments of a training sentence to n arguments

of the query.

By replacing {r1…n} with M{r1…m}j and {ri} with

{rki} in the previous formula, the probability for-

mula for MAC is shown as follows.

r* = argmax P(M{r1…m}j | predicate)Π

M{r1…m} j
i

 P(ri |{ fi}, predicate)

 P(ri | predicate)

P({ri}| { fi}, predicate)

P({ri}| predicate)

P({rkj}| { fi}, predicate)

P({rkj}| predicate)

where M{r1…m} j is the role list generated by the

mapping function M from the j-th training sen-

tences with m arguments of the training data to the

role list {r1…n} for the test sentence with n argu-

ments, and {rki} denotes the k-th role of {r1…m} j

(1<= k <= m) corresponding to the i-th argument

of {r1…n}. The details of the mapping algorithm

are described in the next section.

3.2 Mapping Algorithm

There are four considerations essential to the func-

tion that maps a knowledge pattern learned from

the training data to a new query sentence: i) where

to start matching two patterns; ii) how to deal with

different numbers of arguments between the

knowledge and query patterns, iii) how to compute

similarity between an argument in a knowledge

pattern and an argument in a query pattern, and iv)

how to measure the quality of the matching.

i) Where to start
The first consideration is solved by looking for

the most common instance in a knowledge pattern

and a query one, given the predicate. In this dis-

cussion, an instance is an argument in a predicate-

argument structure.

ii) Mapping of different arguments

Empirically there is very low coverage or recall

(about 0.46) to match query sentences with training

sentences that have the same number of arguments.

This paper proposes an alternative way to increase

the coverage. The principle is based on semantic

role dependency, in which core roles (like A0 or

A1) are regarded as more essential than adjuncts

(like AM-TMP, or AM-LOC). We need to esti-

mate similarity between an argument (i.e. instance)

in a knowledge pattern and an argument in the

query. If two instances (one in the knowledge pat-

tern and the other in the query) are considered

highly similar (Case 1), we can try to match the

next instances in both patterns. If two instances

are not similar, there are two kinds of situation.

One is to match the current instance in the knowl-

edge pattern with the next instance in the query

(Case 2). The other is to match the next instance in

the knowledge pattern with the current instance in

the query (Case 3). The two final circumstances

are unmatched instances in the query (Case 4), and

unmatched instances in the knowledge pattern

(Case 5). These five cases are more formally de-

scribed as follows:

Case 1: if there exists a query instance i and a

corresponding knowledge instance j, and both in-

stances are similar (or their similarity is no less

than a threshold), try to match the next instance in

the knowledge pattern with the next instance in the

query. This is the case when two instances are

considered highly similar, then try to match the

next instances in the query and knowledge patterns.

Case 2: if there exists a query instance i and a

corresponding knowledge instance j, both instances

are not similar (or their similarity is below a

threshold) and the role of the knowledge instance j

appears to be one of the core roles (i.e. A0 to A5

and AA), as opposed to a non-core or adjunctive

role, try to match the current instance in this

knowledge pattern with the next instance in the

query. The reason to keep the current knowledge

instance is to try to increase the coverage. It is rare

to have two patterns match exactly due to inherent

data sparseness. For example, a query sentence

“They will come” and a training sentence, “They

come” is not matched due to different number of

arguments. But they can be considered highly

similar if the second argument “will” in the query

sentence is skipped during matching. Such a

skipped argument can be labeled latter by other

approaches.

Case 3: if there exists a query instance i and a

corresponding knowledge instance j, both instances

are not similar and the role of the instance j in the

knowledge pattern appears to be a non-core label

(e.g. AM-MOD AM-NEG or AM-DIS), try to

match the next instance in the knowledge pattern

with the current instance in the query. Such non-

i

j

Sim(i,j) >= Threshold

Next i

Next j

i

 j (A0…)

Sim(i,j) ＜ Threshold

Next i

core roles are optional to a query pattern—which is

to say that not all sentences have them. This means

they can be skipped. This is the complement situa-

tion to Case 2 where all non-core or adjunctive

roles in the knowledge pattern can be skipped in

order to increase coverage.

Case 4: if there does not exist an argument j in

the knowledge pattern, keep a default probability

to query instance i to avoid zero frequency.

Case 5: skip all extra corresponding knowledge

arguments.

After mapping, all patterns from the pattern base

are compared to role lists with the same number of

arguments as the query. It remains now to measure

the similarity of each argument in the query role

list with each corresponding argument in the role

list of each pattern from the knowledge base.

iii) Similarity Function

The calculation of similarity between an in-

stance in the knowledge pattern and its correspond-

ing instance in the query is based on the feature

space. The distance between two points (i.e. in-

stances in the feature space) is estimated by

Euclidean distance as follows.

Distance metric (Euclidean distance):

D(xi, xj) = √Σ(ar(xi))-ar(xj))
2

for r =1 to n (i.e. n different classifications), where

ar(x) means the r-th feature of an instance x. (Fea-

tures used are described in Section 3.5.) If in-

stances, xi and xj, are identical, then D(xi , xj)=0;

Otherwise, D(xi , xj) represents the vector distance

between xi and xj. xi is an instance in the query and

xj is an instance in the knowledge pattern.

Therefore the similarity function is defined as

Sim(i, j) = (number of features - D(i, j)) / (number

of features)

If all features are the same between two in-

stances, D(i, j) is zero and Sim(i, j) is 1.0. If there

are different features between two instances (for

example two features are not the same), the score

of similarity by Sim(i, j) will be less than 1.0. For

example, if there are five features for calculation

and two different, D(i, j) is two and Sim(i, j) is 0.6,

which is (5 – 2) / 5. The threshold utilized in the

first three cases is initially set to 1.0, which means

all features in the knowledge instance must be the

same with the ones of the query pattern. The

threshold value was arrived at through trial and

error.

iv) What is the quality estimation
The fourth issue mentioned early in this section

is to find the quality of a match between a pattern

in a training sentence and a query pattern in the

query sentence by the formula given in Section 3.1,

except that argument maximization is not used.

Once all quality probabilities for patterns in the

training data are calculated, the system selects the

pattern from the training sentence with the highest

quality probability.

3.3 Unlabeled Arguments

MA is designed for matching two patterns with

different arguments. It helps to increase the over-

all coverage from 0.46 (if only marching patterns

with the same number of arguments) to 0.78. This

is still not good enough compared to statistical sin-

gular-argument classifiers (SAC). The cause of

low coverage is sparseness of data. For example, a

skipped argument like “will” in the query of Case

2 can be labeled by other approaches (i.e. existing

classifiers). Thus we propose a simple argument

labeler to fill unlabeled arguments.

 argmax P(r | {f}, predicate)

 r

where P(r | {f}, predicate) represents the probabil-

ity of an assignment of role r (excluding any core

role that already appears in the label list to avoid

duplication of core roles) to each of the unlabeled

arguments of a sentence after MA, given the predi-

cate and the features {f} (including headword, dis-

tance, voice, preposition, phrase type and path) of

the argument. By handling unmatched arguments

with this simple argument labeler, the recall rises

from 0.78 to 0.86.

3.4 Complete PM Model

The complete model for Pattern-Matching (PM) is

thus a combination of MAC and SAC. PM tries to

find all suitable patterns from the training data us-

ing the mapping algorithm described in Section 3.2,

i

j (AM-NEG…)

Sim(i,j) ＜ Threshold

Next j

selects the best one from the pattern base according

to the quality probabilities from the mapping algo-

rithm using MAC, and classifies any unlabelled

arguments in the best pattern with SAC like a sim-

ple argument labeler in Section 3.3.

Procedure of Pattern-Matching with SAC
For all knowledge patterns

apply Mapping Algorithm for the query and

knowledge patterns

Select the best knowledge pattern according to

their quality probabilities

Use SAC to classify the unlabelled arguments

Figure 1. Procedure of the PM model and SAC.

The goal of selection is to find the knowledge

patterns with the highest Quality, calculated by

MA described in Section 3.2. The procedure for

PM is shown in Figure 1.

In the testing stage for the system, PARA is

used as an argument recognizer to identify predi-

cates and arguments related to predicates. It for-

wards the predicates and their arguments to classi-

fication. Argument classification in the system in-

cludes two role classifiers, a multi-argument classi-

fier, Pattern-Matching (PM) described and a statis-

tical singular argument classifier modified from

Palmer et al. (2005). The modification includes

two extra features, preposition and distance de-

scribed as follows.

3.5 Features

Features used in this paper are predicate, voice,

phrase type, distance, headword, path and preposi-

tion, as shown in Figure 2.

Predicate

Voice

Phrase Type

– The given predicate lemma.

– Whether the predicate is real-

ized as an active or passive con-

struction.

– The syntactic category (NP, PP,

S, etc.) of the phrase corre-

sponding to the semantic argu-

ment.

Distance

– The relative displacement from

the predicate, measured in inter-

vening constituents (negative if

the constituent is to the left of or

prior to, positive if it is to the

right of or after, the predicate).

Head Word

Path

Preposition

– The syntactic head of the

phrase.

– The syntactic path through the

parse tree, from the parse con-

stituent to the predicate being

classified.

– The preposition of an argument

in a PP such as during, at, with,

and so on.

Figure 2. Features used for experimentation..

4 Experiments and Results

Data used in this chapter is that released on March

2005 for CoNLL-2005
4

, which includes Wall

Street Journal sections with Charniak’s (2000) and

Collins’ (1999) parse-trees. Charniak’s parse tree

is accepted as input to the system due to its better

performance on WSJ (Carreras and Marquez,

2005). Evaluation is carried out using the official

evaluation script from CoNLL 2005, srl-eval.pl

which provides precision, recall and F1 measure of

the predicated arguments. Predicates are given in

the CoNLL shared tasks.

Table 3 shows the results for several approaches,

when used with known arguments (i.e. the systems

are given the correct arguments for role classifica-

tion). All training data (WSJ02-21) with

Charniak’s parses are included. The modified ver-

sion of the classifier from Palmer et al. (2005)

(Palmer-Imp) provides 85.59 in F1 and the per-

formance of the basic model (PM without Palmer)

estimation is F1: 1.16 improved compared to

Palmer itself. The complete model (PM), com-

bined with Palmer, achieves the best results on

Precision (88.89), Recall (87.65), and F1 measure-

ment (88.27) and offers the best solution on all test

datasets compared to Palmer-Imp. It suggests PM,

utilizing role dependencies existing in semantic

roles, helps to increase F1 by 3.0 over Palmer-Imp.

Table 4 shows the result using all features (ALL),

and the contribution of each feature in Precision

(P), Recall (R), and F1 measurements.

Approach P R F1

Pamler-Imp 85.53 85.65 85.59

PM without Palmer-Imp 87.67 85.85 86.75

PM 88.89 87.65 88.27

Table 3. Results obtained by different algo-

rithms on WSJ Section 24 with known arguments.

4
 http://www.lsi.upc.edu/~srlconll/soft.html

 P R F1

ALL 88.89 87.65 88.27

- Preposition 84.77 83.03 83.89

- Phrase Type 85.21 83.03 84.11

- Head Word 85.52 83.93 84.72

- Path 87.12 85.89 86.50

- Voice 88.52 87.02 87.77

- Distance 88.81 87.56 88.18

Table 4. Contribution of each feature on WSJ

24, with known arguments.

Test dataset P R F1

WSJ 24 75.88 72.98 74.40

WSJ 23 78.04 75.20 76.60

Brown 69.33 63.44 66.25

Table 5. Results for different test datasets with

Charniak’s parses and PARA-Imp.

Test WSJ23 Precision Recall Fββββ=1
Overall 78.04% 75.20% 76.60
A0 84.31% 85.18% 84.74
A1 78.86% 76.98% 77.91
A2 70.83% 61.26% 65.70
A3 68.84% 54.91% 61.09
A4 66.67% 62.75% 64.65
A5 100.00% 60.00% 75.00
AM-ADV 59.07% 55.34% 57.14
AM-CAU 64.91% 50.68% 56.92
AM-DIR 35.53% 31.76% 33.54
AM-DIS 76.25% 76.25% 76.25
AM-EXT 50.00% 37.50% 42.86
AM-LOC 62.54% 51.52% 56.50
AM-MNR 59.33% 51.74% 55.28
AM-MOD 97.42% 95.83% 96.61
AM-NEG 95.18% 94.35% 94.76
AM-PNC 46.39% 39.13% 42.45
AM-PRD 0.00% 0.00% 0.00
AM-REC 0.00% 0.00% 0.00
AM-TMP 73.58% 72.49% 73.03
R-A0 85.84% 86.61% 86.22
R-A1 80.28% 73.08% 76.51
R-A2 80.00% 50.00% 61.54
R-A3 0.00% 0.00% 0.00
R-A4 0.00% 0.00% 0.00
R-AM-ADV 0.00% 0.00% 0.00
R-AM-CAU 0.00% 0.00% 0.00
R-AM-EXT 0.00% 0.00% 0.00
R-AM-LOC 73.68% 66.67% 70.00
R-AM-MNR 25.00% 16.67% 20.00
R-AM-TMP 62.69% 80.77% 70.59

Table 6. Details for each semantic role on WSJ

23, with Charniak’s parses and PARA.

Preposition, Phrase Type , and Head word are

the three features whose removal decreases the

performance of the complete system by a large

amount. The distance feature plays a key role in

overall performance of Palmer-Imp but is the least

influential in PM because of the usage of multi-

argument classification. When using PM, the re-

lated distance is implicitly included when matching

two patterns. The path feature is the fourth most

influential factor on performance for role classifi-

cation, and the voice feature has the least detrimen-

tal effect, along with the distance feature, on the

performance of this system. Both features (path

and voice) have the same influence in PM and

Palmer-Imp.

Table 5 shows performance (on WSJ 24, WSJ

23 and the Brown corpus) of the complete model

(PM) using auto parses (Charniak’s parser) and

PARA as the pre-processor to recognize all related

arguments. It also shows the results on WSJ 23 are

about F1:2.0 better than that by WSJ 24. This in-

crease is because the performance by PARA on

WSJ 23 is about F1:2.0 better than WSJ 24. The

results on the Brown corpus show the performance

drops by more than 10 points in F1 compared to

WSJ 23. This is caused by propagating process-

errors described in Carreras and Marquez, (2005).

Table 5 also shows such errors affect results even

more in the domain of the Brown corpus. Another

area for future work is to look for ways to mini-

mize the impact of different domains.

The results on WSJ 23 for each role are shown

in Table 6. Generally speaking, performance on

core roles is better than on adjuncts, except for the

modal, and negation tags. This is because there are

more training examples for core roles than for ad-

juncts.

Experimental results show that execution times

for PM and Palmer-Imp are about 3.0 and 0.8 sec-

onds per sentence respectively. To increase speed,

we introduce a controlling strategy called the

Maximum Suitable Pattern (MSP) number. MSP

limits how many suitable patterns must be found

for a query pattern before searching/comparing can

stop. The MSP formula is:

Suitable(j) <= MSP

r* = argmax P(M{r1…m}j | predicate)Π

M{r1…m} j
i

where Suitable(j) denotes the number of suitable

knowledge patterns found.

P({rkj}| {fi}, predicate)

P({rkj}| predicate)

Once PM has found enough suitable patterns

(Suitable(j) > MSP), PM stops matching knowl-

edge patterns in the pattern base. A knowledge

pattern with at least one instance that has similarity

probability greater than the threshold is defined as

a suitable one.

Table 7 shows different results for various val-

ues of Maximum-Suitable Pattern (MSP) and sug-

gests no improvement after 100 matches. Note

that all accuracy differences appear insignificant,

but the execution time per sentence (T) increases

as the MSP value does, suggesting an MSP be-

tween 10 and 20. All execution time are calculated

based on a P4 3.0 GHz CPU and 1G RAM Linux

machine.

MSP P R F1 T

30000 89.68 89.20 89.44 2.949
10000 89.68 89.20 89.44 2.943
1000 89.67 89.17 89.42 2.433
100 89.71 89.39 89.55 1.235
50 89.73 89.39 89.56 1.035
20 89.84 89.54 89.69 0.858
10 89.78 89.34 89.56 0.788
2 89.13 88.58 88.86 0.609

1 89.00 88.32 88.66 0.591

Table 7. Results for different MSP values ob-

tained on WSJ 23, with known arguments

System P R F1 NoF

PARA+PM 78.04 75.20 76.60 7

Surdeanu 80.32 72.95 76.46 31

Tsai 82.77 70.90 76.38 25

Moschitti 76.55 75.24 75.89 14

PARA+Palmer-Imp 71.18 70.90 73.49 7

Table 8. Results for different systems on WSJ

23 listed in the CoNLL 2005 shared task.

Table 8 shows comparative results for various

systems using the same input. Surdeanu et al.

(2005), Tsai et al. (2005), and Moschitti et al.

(2005) are systems only using Charniak’s parses

listed in CoNLL 2005 shared task. The modified

system (PARA+Palmer_Imp) is the combination of

PARA and Palmer-Modified. Even using fewer

features, the combination of PARA and PM offers a

more accurate system for SRL compared to sys-

tems using the same input. It also becomes one of

the top-performing systems in the CoNLL 2005

shared task compared to systems using far more

features and multiple parses. It suggests that ex-

ploiting role dependencies helps improve accuracy

in SRL.

References

Carreras, X. and Marquez, L. (2005). Introduction to the

CoNLL-2005 Shared Task: Semantic Role Labeling.

In Proceedings of CoNLL-2005.

Charniak, E. (2000). A Maximum-Entropy-Inspired

Parser. In Proceedings of NAACL-2000.

Collins, M. (1999). Head-Driven Statistical Models for

Natural Language Parsing. PhD Dissertation, Uni-

versity of Pennsylvania.

Gildea, D. and Jurafsky, D. (2002). Automatic Labeling

of Semantic Roles. Computational Linguistics,

28(3):245-288.

Gildea, D. and Palmer, M. (2002). The Necessity of

Parsing for Predicate Argument Recognition . In Pro-

ceedings of ACL 2002, Philadelphia, USA.

Lin, C.S. A. and Smith, T. C. (2006). A Tree-based Al-

gorithm for Predicate-Argument Recognition. In Bul-

letin of Association for Computing Machinery New

Zealand (ACM_NZ), volumn 2, issue 1.

Moschitti, A., Giuglea, A.-M., Coppola, B., and Basili,

R. (2005). Semantic role labeling using support vec-

tor machines. In Proceedings of CoNLL-2005.

Palmer, M., Gildea, D., abd Kingsbury, P., (2005). The

Propostin Bank: An Annotated Corpus of Semantic

Roles. In Proceedings of ACL: Volume 31, Number 1.

p72-105.

Punyakanok, V., Koomen, P., Roth, D., and Yih, W. T.

(2005). Generalized inference with multiple semantic

role labeling systems. In Proceedings of CoNLL-

2005.

Surdeanu, M. and Turmo, J. (2005). Semantic role la-

beling using complete syntactic analysis. In Proceed-

ings of CoNLL-2005.

Tsai, T.-H., Wu, C.-W., Lin, Y.-C. and Hsu, W.-L.

(2005). Exploiting Full Parsing Information to Label

Semantic Roles Using an Ensemble of ME and SVM

via Integer Linear Programming. In Proceedings of

CoNLL 2005.

Xue, N. and Palmer, M. (2004). Calibrating features for

semantic role labeling. In Proceedings of the Confer-

ence on Empirical Methods in Natural Language

Processing (EMNLP).

