30,309 research outputs found

    Towards the Evolution of Multi-Layered Neural Networks: A Dynamic Structured Grammatical Evolution Approach

    Full text link
    Current grammar-based NeuroEvolution approaches have several shortcomings. On the one hand, they do not allow the generation of Artificial Neural Networks (ANNs composed of more than one hidden-layer. On the other, there is no way to evolve networks with more than one output neuron. To properly evolve ANNs with more than one hidden-layer and multiple output nodes there is the need to know the number of neurons available in previous layers. In this paper we introduce Dynamic Structured Grammatical Evolution (DSGE): a new genotypic representation that overcomes the aforementioned limitations. By enabling the creation of dynamic rules that specify the connection possibilities of each neuron, the methodology enables the evolution of multi-layered ANNs with more than one output neuron. Results in different classification problems show that DSGE evolves effective single and multi-layered ANNs, with a varying number of output neurons

    A Genetic Programming Problem Definition Language Code Generator for the EpochX Framework

    Get PDF
    There are many different genetic programming (GP) frameworks that can be used to implement algorithms to solve a particular optimization problem. In order to use a framework, users need to become familiar with a large numbers of source code before actually implementing the algorithm, adding a learning overhead. In some cases, this can prevent users from trying out different frameworks. This paper discusses the implementation of a code generator in the EpochX framework to facilitate the implementation of GP algorithms. The code generator is based on the GP defini- tion language (GPDL), which is a framework-independent language that can be used to specify GP problems

    Evaluating openEHR for storing computable representations of electronic health record phenotyping algorithms

    Get PDF
    Electronic Health Records (EHR) are data generated during routine clinical care. EHR offer researchers unprecedented phenotypic breadth and depth and have the potential to accelerate the pace of precision medicine at scale. A main EHR use-case is creating phenotyping algorithms to define disease status, onset and severity. Currently, no common machine-readable standard exists for defining phenotyping algorithms which often are stored in human-readable formats. As a result, the translation of algorithms to implementation code is challenging and sharing across the scientific community is problematic. In this paper, we evaluate openEHR, a formal EHR data specification, for computable representations of EHR phenotyping algorithms.Comment: 30th IEEE International Symposium on Computer-Based Medical Systems - IEEE CBMS 201
    • …
    corecore