22,128 research outputs found

    Traveling wave solutions of nonlinear partial differential equations

    Get PDF
    We propose a simple algebraic method for generating classes of traveling wave solutions for a variety of partial differential equations of current interest in nonlinear science. This procedure applies equally well to equations which may or may not be integrable. We illustrate the method with two distinct classes of models, one with solutions including compactons in a class of models inspired by the Rosenau-Hyman, Rosenau-Pikovsky and Rosenau-Hyman-Staley equations, and the other with solutions including peakons in a system which generalizes the Camassa-Holm, Degasperis-Procesi and Dullin-Gotwald-Holm equations. In both cases, we obtain new classes of solutions not studied before.Comment: 5 pages, 2 figures; version to be published in Applied Mathematics Letter

    Wave Solutions

    Full text link
    In classical continuum physics, a wave is a mechanical disturbance. Whether the disturbance is stationary or traveling and whether it is caused by the motion of atoms and molecules or the vibration of a lattice structure, a wave can be understood as a specific type of solution of an appropriate mathematical equation modeling the underlying physics. Typical models consist of partial differential equations that exhibit certain general properties, e.g., hyperbolicity. This, in turn, leads to the possibility of wave solutions. Various analytical techniques (integral transforms, complex variables, reduction to ordinary differential equations, etc.) are available to find wave solutions of linear partial differential equations. Furthermore, linear hyperbolic equations with higher-order derivatives provide the mathematical underpinning of the phenomenon of dispersion, i.e., the dependence of a wave's phase speed on its wavenumber. For systems of nonlinear first-order hyperbolic equations, there also exists a general theory for finding wave solutions. In addition, nonlinear parabolic partial differential equations are sometimes said to posses wave solutions, though they lack hyperbolicity, because it may be possible to find solutions that translate in space with time. Unfortunately, an all-encompassing methodology for solution of partial differential equations with any possible combination of nonlinearities does not exist. Thus, nonlinear wave solutions must be sought on a case-by-case basis depending on the governing equation.Comment: 22 pages, 3 figures; to appear in the Mathematical Preliminaries and Methods section of the Encyclopedia of Thermal Stresses, ed. R.B. Hetnarski, Springer (2014), to appea

    Symbolic computation of hyperbolic tangent solutions for nonlinear differential-difference equations

    Full text link
    A new algorithm is presented to find exact traveling wave solutions of differential-difference equations in terms of tanh functions. For systems with parameters, the algorithm determines the conditions on the parameters so that the equations might admit polynomial solutions in tanh. Examples illustrate the key steps of the algorithm. Parallels are drawn through discussion and example to the tanh-method for partial differential equations. The new algorithm is implemented in Mathematica. The package DDESpecialSolutions.m can be used to automatically compute traveling wave solutions of nonlinear polynomial differential-difference equations. Use of the package, implementation issues, scope, and limitations of the software are addressed.Comment: 19 pages submitted to Computer Physics Communications. The software can be downloaded at http://www.mines.edu/fs_home/wherema

    An Extended Auxiliary Function Method and Its Application in mKdV Equation

    Get PDF
    An extended auxiliary function method is presented for constructing exact traveling wave solutions to nonlinear partial differential equations. The main idea of this method is to take full advantage of the solutions to the elliptic equation to construct exact traveling wave solutions for nonlinear partial differential equations. mKdV equation is chosen to illustrate the application of the extended auxiliary function method. Consequently, more new exact traveling wave solutions are derived that are not obtained by the previously known methods

    Exact traveling wave solutions to the Klein–Gordon equation using the novel (G′/G)-expansion method

    Get PDF
    AbstractThe novel (G′/G)-expansion method is one of the powerful methods that appeared in recent times for establishing exact traveling wave solutions of nonlinear partial differential equations. Exact traveling wave solutions in terms of hyperbolic, trigonometric and rational functions to the cubic nonlinear Klein–Gordon equation via this method are obtained in this article. The efficiency of this method for finding exact solutions and traveling wave solutions has been demonstrated. It is shown that the novel (G′/G)-expansion method is a simple and valuable mathematical tool for solving nonlinear evolution equations (NLEEs) in applied mathematics, mathematical physics and engineering
    • …
    corecore