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establishing exact traveling wave solutions of nonlinear partial differential equations. Exact traveling
wave solutions in terms of hyperbolic, trigonometric and rational functions to the cubic nonlinear
Klein-Gordon equation via this method are obtained in this article. The efficiency of this method for
finding exact solutions and traveling wave solutions has been demonstrated. It is shown that the novel
(G'|G)-expansion method is a simple and valuable mathematical tool for solving nonlinear evolution
equations (NLEEs) in applied mathematics, mathematical physics and engineering.
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1. Introduction

In the recent years, the exact solutions of nonlinear partial dif-
ferential equations have been investigated by many researchers
who are involved in nonlinear phenomena which exist in all fields
including either the systematic works or engineering fields, such
as, plasma physics, fluid mechanics, chemical physics, chemical
kinematics, elastic media, optical fibers, solid state physics, biol-
ogy, atmospheric and oceanic phenomena and so on. The research
of traveling wave solutions of some nonlinear evolution equations
derived from such fields played an important role in the analysis of
these phenomena. To obtain traveling wave solutions, many effec-
tive methods have been presented in the literature, such as, the
exp(—@(n))-expansion method [1,2], the (G'/G,1/G)-expansion
method [3], the (G'/G)-expansion method [4-10], the inverse scat-
tering transform method [11], the Exp-function method [12,13],
the Cole-Hopf transformation method [14], the Adomian decom-
position method [15], the homotopy perturbation method [16],
the Kudryashov method [17], the new approach of generalized
(G'/|G)-expansion method [18-20], the improved (G'/G)-expansion
method [21], the tanh-function method [22], the tanh-coth method
[23] and so on.

Kudryashov [24] substantiated that the (G'/G)-expansion
method together with the linear ordinary differential equation
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G' -G — uG=0,1, 4 € R is equivalent to the well known tanh-
method. Recently, Alam et al. [25,26] established extremely valu-
able extension of the (G'/G)- expansion method, called the novel
(G'|G)-expansion method to obtain exact traveling wave solutions
of NLEEs. According to nonlinear ordinary differential equation
GG" = JGG + u G* + v(G')?, the novel (G'/G)-expansion method con-
structs twenty five explicit solutions to the NLEEs and it can be
shown that the novel (G'/G)-expansion method is not identical to
the tanh-function method. The methods mention in refs. [4-10]
are only special cases of the novel (G'/G)-expansion method.

The Klein-Gordon (KG) equations are an important class of
NLEEs that arise in relativistic quantum mechanics and quantum
field theory, which is also of great importance for the high energy
particle physics and is used to model many types of phenomena,
including the propagation of dislocations in crystals and the behav-
ior of elementary particles. There is an amount of paper [27-33],
where the various types of nonlinear KG equations are studied.
Chowdhury and Biswas [32] studied the singular solitons and
numerical analysis of the Phi-four equation q; — k?qw = aq + bq®
that appears in relativistic quantum mechanics. The Phi-four
equation is a special case of the Klein-Gordon equations that is
studied with several forms of nonlinearity that includes quadratic
nonlinearity, power law nonlinearity, as well as log law nonlinear-
ity. Biswas et al. [33] also studied the solitons and conservation
law of the KG equation with power law and log law nonlinearities.
It is primarily the perturbation theory, numerical simulation, and
integrability issues that have been addressed thus far in such
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models. Ifwesetk =1,a = —o, b = —p, then the Phi-four equation can
be reduced to the KG equation with cubic nonlinearity ug — uy, +
o + pu® = 0 which is found in the literature [34,35]. The cubic non-
linear Klein-Gordon (KG) equation also appeared in relativistic
quantum mechanics, field theory, and particle physics as physical
model equation for describing many different phenomena, includ-
ing the propagation of dislocations in crystals and the behavior of
elementary particles. The aim of this article is to explore a new study
linking to the novel (G'/G)-expansion method for solving the famous
cubic nonlinear Klein-Gordon equation to demonstrate the correct-
ness and truthfulness of the method.

The advantage of the proposed method over the existing
method is that it provides new exact traveling wave solutions
together with additional free parameters. The exact solutions have
great values to unveil the inner structure of the physical phenom-
ena. Apart from the physical significance, the close-form solutions
of nonlinear evolution equations help the numerical solvers to
compare the correctness of their results and help them in the sta-
bility analysis. Algebraic manipulation of the proposed scheme
with the help of Maple is much easier than the other methods.

The rest of the article is organized as follows: In Section 2, the
description of the novel (G'/G)-expansion method is given. In Sec-
tion 3, we apply this method to the nonlinear evolution equation
pointed out above. The physical explanations and graphical repre-
sentations of the obtained solutions are presented in Section 4. In
Sections 5, we draw our conclusions.

2. Description of the method

Consider a general nonlinear partial differential equation of the
form,

P(u, e, Uy, Uge, Ugy, Uny, - -) = 0, (1)

where, u = u(x,t) is an unknown function, P is a polynomial in u(x,t)
and its partial derivatives in which the higher order partial deriva-
tives and the nonlinear terms are involved.

By combining the real variables x and t by a compound variable
&, we suppose that

ux,t)y=u(¢), &¢=x+tVt (2)

where V is the speed of the traveling wave. The transformation Eq.
(2) transforms Eq. (1) into an ordinary differential equation (ODE)
for u=u(é):

Q(u7 u/'ﬁ u”'/ u/”7...) = 07 (3)
where Q is a function of u(¢) and its derivatives.

Suppose the solution of Eq. (3) can be expressed by a polyno-
mial in (¢):

u(&) = o)y (4)
j=-n

where

Y& =d+ % (5)

The unknown constants o_, or o, may be zero, but both of them
could not be zero simultaneously. o; (j=0, #1, £2,--- ,#N) and d
are constants to be determined later and (G'/G) satisfies the second
order nonlinear ODE:

GG' = JGG + uG* +v(G'y’ (6)

where prime denotes the derivative with respect ¢ and 4,  and v
are real parameters.

The Cole-Hopf transformation ®(¢) = GG
following equation:

((‘)) reduces Eq. (6) to the

D'(&) = u+ 20(8) + (v — DD(E) (7)

Eq. (7) has individual twenty five solutions (see Zhu [36] for details).
The value of the positive integer n can be determined by balanc-
ing the higher order linear terms with nonlinear terms of the high-
est order occurring in Eq. (3).
Substituting Eq. (4) along with Egs. (5) and (6) into Eq. (3), we
c@) and (d+52) ", (=0,1,2,-,
N). Collecting the coefficients of the resulted polynomials to zero,
yields an over-determined set of algebraic equations for o; (j=0,
t1, £2,---, =N), d and V. Solving the resulting algebraic system by
using symbolic computation, such as, Maple, we obtained the value
of the constants o; (j=0,%1,%2,---,%N),d and V. Substituting the
values of the constants together with the solutions of Eq. (7), we
obtain new and comprehensive exact traveling wave solutions of
the nonlinear evolution Eq. (1).

obtain polynomials in <d+

Remark 1. It is worth mentioning to observe that if we replace 4
by — Zand u by —pu and put v =0 in Eq. (6), then the novel (G'/G)-
expansion overlaps with the Akbar et al.’s [8] generalized and
improved (G'/G)-expansion method. On the other hand, if we put
d=0in Eq. (5) and v=0 in Eq. (6) then the method is identical to
the improved (G'/G)-expansion method presented by Zhang et al.
[7]. Again if we set d=0, v=0 and negative indices of (G'/G) are
zero in Eq. (4), then the method rotates into the basic (G'/G)-
expansion method introduced by Wang et al. [4]. Finally, if we put
v=0in Eq. (6) and o; (j=1, 2,3,---,N) are functions of x and ¢
instead of constants then the method is transformed into the
generalized the (G'/G)-expansion method developed by Zhang et al.
[9]. Thus the methods presented in the Refs. [4,7-9] are only
special cases of the novel (G’/G)-expansion method.

3. Applications of the novel (G'/G) -expansion method

In this section, we apply the novel (G'/G)-expansion method to
obtain some new and more general exact traveling wave solutions
of the cubic nonlinear Klein-Gordon equation.

Consider the cubic nonlinear Klein—-Gordon equation [34,35]

Upe — Uxx + 0lU + ﬁug =0. (8)

Here, u(x,t) represents the particle wave profile at any varied
instances and «, 8 are nonzero real constants. Eq. (8) has appeared
as a model equation for describing the propagation of dislocations
within crystals, the Blochwall motion of magnetic crystals, the
propagation of a splay wave along a lied membrane, the unitary
theory for elementary particles and the propagation of magnetic
flux on a Josephson line, etc.

Making use of the traveling wave transformation ¢ =x — Vt, Eq.
(8) is reducing into the following ODE:

(V2= 1)u" +au + pu? = 0. 9)

Inserting (4) in (9) and balancing the higher order derivative u” with
the nonlinear term of the highest order u?, we obtain n=1.
Therefore, the solution of Eq. (9) takes the form,

u(d) = o (W(&) " + oo + o (Y(£)). (10)
Inserting Eq. (10) into Eq. (9), the left hand side is transformed into

polynomials of (d + GG(())

) and (d + %) 1. Equating the coefficients
of like power of these polynomials to zero, we obtain a set of alge-
braic equations (for minimalism we leave out to display the equa-
tions) for og, a4, « _1, d and V. Solving the obtaining set of
algebraic equations by using the symbolic computation software,
such as, Maple 13, we obtain
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Set 1:

oo = (1 —2d(v — 1)) /m, )

2
ded, Vi\/4,u(v—1)—2 ”—22057
4umv—-1) -2

2(v-1)va
4upo —1)— 22

where o, g, d, /4, 1, and v are arbitrary constants.
Set 2:

oo = +(/ —2d(v — 1))m7

iZ(dz(v— 1)+ p—id)va
4up(o —1) - 2°p
d Zd7 a = 07

V:i\/4,u(vl)/12 fZZcx a2)
4uv—-1)—-2

=+ (11)

o1 =

)

where o, g, d, 4, i, and v are arbitrary constants.
Set 3:

o jE\/Su(n 1) - W?Z,
8u(v—1)-22
a(dp(v — 1) —72)

4(v - 1)VB

deo ™ oy O-DVE (13)

4upo —1) - 2

where o, g, d, 4, i, and v are arbitrary constants.
Set 4:

o =00,=7F

4u—1)+o— 2
4uv—-1)—2*
1

B A T
2(v-1) Apo(v-1)-7%a

de A — (v-1)vV-2u 7 (14)

0-1) appo —1) - 22f

where o, g, d, /, i, and v are arbitrary constants.
Substituting (11)-(14) into solution Eq. (10), we obtain

V==«

0:07

01 =%

_*x
4upo —1) - 2p

(d+(G/G)) (15)

Uy (%, 1) = £(7 — 2d(v — 1))

20— 1)V
4upo—1)—’p

where ¢ =xF /%ﬁ‘t, and «, §, d, 4, p, and v are arbitrary

constants.

+

%

4upo —1) =22

iZ(dz(u ~1)+pu- ).d)\/&(d+
4upo —1) =22

4pv-1)-2 20
4u(v—1)—42

Up(X,t) = F(4—2d(v—1))

(G/G)" (16)

where ¢ =xF
constants.

t, and o, B, d, 4, i, and v are arbitrary

us(x,t) =+

(v—1)val i ,
+(G/G)
4B —1) - 28 <2(” -1 )

a(dp(o —1) = 2)

) T

4(v -1)v/B
where ¢ =xF %t and o, f, d, 4, u, and v are arbitrary
constants.
us(x,t) = + (0= Dv—22 (2 d 5+ (G’/G))
aupo—1) 220 =1
- ! (3o=5+ (G//G))fl (18)
-2 2(b-1
2v-1) Apo(v-1)-72a ( )

4u(v—1)+o—?

where ¢ =xF o7

constants.

Substituting the value of (G'/G) into Eq. (15) and simplifying, we
obtained multiple explicit solutions of the Klein-Gordon as
follows:

When Q=42 —4uv+4u>0and A (v—1)#0 (or u(v —1)#0),

t, and a, B, d, 4, &, and v are arbitrary

wy, (x,£) = +(4 — 2d(v — 1)) x

App—1) - 72p
L 20-1)/3
4up —1) - 2p
« {d—ﬁ(?ﬁ\/ﬁtanh (%J(x))} (19)

o

Uy, (%, t) = +(4 - 2d(v — 1)) aupo—1)- 28
2(0-1)Vo

4ppv —1) - 2°p
x{dfﬁOJr\/ﬁcoth G\/ﬁc»} (20)

o

4upo —1) - 2*p

+

Ug, (X, t) = £(2—2d(v - 1))
2(v = 1)Va
Appo—1) - 2p

<[ g {2 VA (tanh (V) sisecn(vaR)) )] @1

+

o

U, (X, £) = £(2—2d(v - 1)) appo—1)- 228
20— 1)

4upo—1) - g

i gty (e va(eom (vae) socn(vae)) | @2

o

U (%, t) = +(2 — 2d(v — 1)) aupo—1)- 28

200 - 1)Va
4upo—1) - 22p

oot 2 vaann (1) com (1)) )|
(23)
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o

o o175

+(i-2d(v—1))

2(0-1)ya
4upo—1)—2°p

1 +1/Q(A* +B) Afcosh(fg)
x |d+ —A+ . (29)
2(v-1) A51nh(fg>+B

+

o

()= aupo—1)—2f

+(2—2d(v—1))

2(0-1)Va
4upo—1)—-2’p

1
X [CH_Z(D—]) {—2—&-

where A and B are real non-zero constants.

+

Asinh (x/ﬁg) +B

+1/Q(A2 + B?) + AVQcosh (\/ﬁé) H 25

)= +(i—2d(v—1
Ui, (%,1) = %( (v-1)) A1)~ T
xJd+ Zpcosh }0) . (26)
vQsinh (%\/ﬁé) — Acosh (%\/ﬁf)
) ==x(1-2d(v-1
Uy (X, 1) = & ( (v-1)) A1) o7
2usinh (3v/Q
x{d+ psinh ({/6%) . (27)
VQcosh (%\/ﬁé) — /sinh (% \/§é>
U, (4,6) = +(2— 2d(v—1))

Appo—1)—

21cosh (\/ﬁf)
x < d+
{ vQsinh (\/ﬁg) — Jcosh (\/ﬁé) il\/ﬁ}

4upo—1)—-2’p

(28)

U, (0,6 = £(1—2d(v—1)) :
tn ) 4upo—1)-7*p VAuBL 1) -
2u51nh(\/—£>
x (29)
fcosh(fé)—mmh(x/?)i«/ﬁ
When Q=72 —4uv+4u<0and 4 (v—1)#0 (or u(v — 1) #0),
2(v-1)va
) =+(—2dv—1
U, (X, £) = £( (v-1)) a0 1) T
1 ) 1 P
x {d+m(—A+mtan <i@g>) } (30)

U, (X,0) =+(2—2d(v—1))

App =1 =26 Jaupw—1)-2p

X{d’z(ul 1)<’+\/—C°t< \/Ef))} Gl
Uy, (x,t)=%(2—2d(v-1)) Ao - 1 )ﬂ 4uﬁv N
o /H-\/_(tan(\/_c)isec(\/_q))}] (32)

Uy, (X,t) =%(21—2d

w0075 Japo—1)- 75

x[d 2(011{A+\/——(cot(\/ﬁg)icsc(\/——g>)}} (33)

Uy, (X, £) =%(2—2d(v—-1))

x[d+ﬁ{fza+ﬁ<tan<zﬁg>7cot<zfé>)}]. (34)

— () _ o oa(v—1)
Uy (%,8) = +(4—-2d(v 1))%#&/5(071)722ﬁi2\/4ﬂ/j<07]>7izﬁ

; { ) i,/Q(Azsz)A\/_Qcos(\/_Qg)}_
20-1)) '

Asin (mg) +B
Uy, (%,£) = +(2—2d(v— 1))

x |d+

4upo-1)=2F " Jappw-1)-

X'd+ ; {}“+i1/—Q(A2—BZ)+Amcos(m£)}-.

20-1)) Asin(@é)JrB

(36)

where A and B are arbitrary constants such that A> — B> 0.

Uy, (X,t) =£(2—2d(v—1))

Appo—1) -

2pcos (%\/—Qé)
x<{d— .
{ V—Qsin (%\/—Qg“) +/.cos (%\/—m)}

Aupo—1)-2p

37)

+£(2-2d(v-1))

Uy, (X, 1) = aupo—1)—2p \/W

2pusin (%\/Eq)
xqd+ : (38)
V=Qcos (%mg) —/sin <%\/—_Q§>
1 (66) = £(2 Nawso 075" Jaggo 1)
2/1cos (\/Eé)
dd . (39)
V=Qsin (@5) +/.cos (\/:ﬁc) +V/-Q

U, (X,8) = +(/ ) A1)~ PRTTEETIT
Al 2usin (%\/_Qf) 40
V=0cos (1v=0¢) - isin (}v=09¢) + V=0
When g=0and A(v—1)#0
U, (x,t) =x(A—2d(v-1)) A1) 1)
upo—1)—
X {d* (v—1){k+cosh(7¢) —sinh().é)}}' (41)

Uy, (X, t) = £(4

1
N ango—1)- 4upo—1)- 722

A{cosh(4¢) +sinh(4¢)}
X {d “(—1){k+cosh(i&) +sinh().é)}}’

where k is an arbitrary constant.

Again, substituting the value of (¢’/G) into Eq. (16) and simpli-
fying, we achieve the following multiple explicit solutions:

When Q=2 —4uv+4u>0and 4 (v — 1)+ 0 (or u(v — 1) # 0),

(42)
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2(d*(0-1)+pu— ;d)f

i 00) = 200 1), [ T
X{d—ﬁ@—s—\/ﬁtanh(—\/ﬁé))} . (43)
s, (%,6) = (2~ 2d(0— 1)) m 2<d2;L;U+f id) /7
x{d_ﬁ(ﬂfcoth( fg))} . (44)
iy, (0,6) = F(1—2d(v—1)) m Z(dzfﬂ;;f /d) /o
x{d 76T ){i+\/—(tanh(\/—§):tlsech(ff))}] , (45)

The other families of exact solutions of Eq. (8) are omitted for
convenience.

When Q=42 —4uv+4u<0and A (v—1)#0 (or u(v — 1)+ 0),

o

a0 = appo—1)- 75

(A-2d(v-1))

iZ(dz(v—l)Jrufid)\/&
4up(o—1)-7°p
-1

x{d+ﬁ<fi+@tan G@g))} . (46)

o

o= appo—1)- 75

(A-2d(v-1))

i2(d2(0—1)+u—zd)¢&
4upo—1)-2*p

x{d—z(vl ])<)+\/—cot< @5))}71. (47)

The other families of exact solutions of Eq. (8) are omitted for
convenience.
When p=0and (v —1)#0,

o
4pupo —1) - g
N 2(d* (0= 1)+ u— ad)Va

4upo —1) - i’p

Uz,, (X, t) = :F(; - 2d(l) - 1))

4 2k -
X { " - 1){k+ cosh(i&) — sinh(}.é)}} '
where k is an arbitrary constant.

The other families of exact solutions of Eq. (8) are omitted for
convenience.

Again, substituting the value of (¢’/G) into Eq. (17) and simpli-
fying, we achieve the following solutions:

When Q=42 —4uv+4u>0and 4 (v—1)+ 0 (or u(v — 1) # 0),

(v-1)Va
4upo —1) - 22p
J++vQtanh (%\/ﬁg))}

(48)

us, (x,t) ==+

J 1
) {2<v—1>’2<v—1> (
o(du —1) — 2?2
4(v-1)VB

oy gty (¢ Ve (%mg))}] (49)

U3Z(X,t) = iM
4pupv—1)— 2B
2 1 1 . a(4po —1) = 22)
X{2<v—1>’2(v—1>(“mc"t%@))}i A0-1)VF

x {ﬁ—ﬁ(ﬂ-&-\/ﬁcoth GJ()@))}A. (50)

The other families of exact solutions of Eq. (8) are omitted for
convenience.
When Q=42 — 4uv +4u <0 and

(v-1)Va
appo 1) - 2

. {2<vi— 5351 (‘“ v-aan G@é»}

o(du(v —1) —22)
40— 1)\/p

A(v—=1)#0 (or u(v —1)+#0),

us, (x,t) =+

-1

x{ﬁ+ﬁ(—i+@tan (%@é))} . (51)
W —1)a

4upv —1) - 22p

7+ V—-Qcot G\/Eg))}

Uz, (x,t) =+

A 1
) {2(0—1>‘2<v—1)(
a(dp(o —1) = 22
4v-1)vB

) {zwi—n"

The other families of exact solutions of Eq. (8) are omitted for
convenience.
When p=0and (v — 1) #0,

(v 1)V
4ppo —1) = 2°p

50T (H@cot (%@5))}4. (52)

Uz, (X, t) =+

A 2k
* {2(0 —1) " (= 1){k+ cosh(z&) — sinh(if)}}

o(4uv —1) -2
4v-1)VB

y L Jk !
2(b—=1) (v—1){k+ cosh(1&) — sinh(4¢)}
(33)

where k is an arbitrary constant.

The other families of exact solutions of Eq. (8) are omitted for
convenience

Finally, substituting the value of (G'/G) into Eq. (18) and simpli-
fying, we achieve the following multiple explicit solutions:

When Q=2 —4uv+4u>0and 2 (v — 1)+ 0 (or u(v — 1) # 0),

(v—"1vV="2a
4upv —1)—72p

Aaw -z (e )
1

F
_ 2
2(!) 1) 4uo(v—1)—22p

oty (4 vatam (%@))} (54)

u41 (X7 t) =
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(v—1)vV=2a
4up—1) - 22p
(2+\/§coth(%\/ﬁf)>}

Uy, (x,t) = £

p 1
% {2(07 ) 20-1)
1
201,/ 2

4po(v—1)—i2a

:F

x{ﬁ—ﬁoﬂ/ﬁcothemg))}q. (55)

The other families of exact solutions of Eq. (8) are omitted for
convenience.
When Q=22 —4uv+4u<0and 2 (v—1)##0 (or u(v — 1) 0),

(v-1)V=2a
4upo—1) - 22p
(—z +v—-Qtan G @g))}

Uy, (X, ) =+

A
X {2(0—1)+2(v—1)

2(0-1) =26

4po(v—1)—i%a

7 1 ) 1 A\
X{2(0—1)+2(U—1) —A—&-\/——Qtan(i\/——ﬁg))} . (56)
(v—-1)v-2a
4upv 1) - 22p

Aotz (e )
1

_ =2
2(v-1) 4uo(v—1)—i2a

x {ﬁ—ﬁ(l—s—@cot G@:))}AA (57)

Uy, (X, 1) =+

:F

The other families of exact solutions of Eq. (8) are omitted for
convenience.
When p=0and (v —1)#0,

(v=1)V-2a

Uy, (X, t) =t
4ppo —1) - 2*p

A 2k
x {2(0 1) (- 1){k + cosh(i&) — sinh(),é)}}
1
2(v-1) =2f

4pa(v-1)-2%a

:F

A ik -
* {2(0 “1) (v—1){k+ cosh(2¢) — sinh(;.g)}} :
(58)

where k is an arbitrary constant.

The other families of exact solutions of Eq. (8) are omitted for
convenience.

The above determined solutions are very helpful to understand
the wave propagation in dislocations within crystals, the Blochwall
motion of magnetic crystals, the propagation of a splay wave along
a lied membrane, the particle wave propagation for spinless parti-
cles in phi-theory, the wave propagation of magnetic flux on a
Josephson line, etc.

10 10

Fig. 1. Topological kink type solitary wave, Shape of (19) with —10 <x, t < 10.

4. Physical explanations

In this section we will discuss the physical explanations and
graphical representation of the above determined four families of
the solutions.

The introduction of dispersion without introducing nonlinearity
destroys the solitary wave as different Fourier harmonics start
propagating at different group velocities. On the other hand, intro-
ducing nonlinearity without dispersion also prevents the formation
of solitary waves, because the pulse energy is frequently pumped
into higher frequency modes. However, if both dispersion and non-
linearity are present, solitary waves can be sustained. Similarly to
dispersion, dissipation can also give rise to solitary waves when
combined with nonlinearity. Hence it is more interesting to point
out that the delicate balance between the nonlinearity effect of u3
and the dissipative effect of u,, gives rise to solitons solitary waves,
that after a full interaction with others the solitons come back
retaining their identities with the same speed and shape. The
(1+1)-dimensional Klein-Gordon equation has solitary wave solu-
tions that have exponentially decaying wings. If two solitons of
the Klein—-Gordon equation collide, the solitons just pass through
each other and emerge unchanged. There are various types of trav-
eling wave solutions that are of particular interest in solitary wave
theory. The type of traveling waves depends on the variation of the
physical parameters. If the exact solutions of the Klein-Gordon
equation arise in a complex form according to the variations of
the physical parameters, then the wave propagation for any varied
instance is characterized by |u(x, t)|. For some special values of the

Fig. 2. Singular kink type solitary wave, Shape of (44) with —10 < x, t < 10.
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Fig. 3. Topological soliton solitary wave, Shape of (20) with —10 < x, t < 10.

Fig. 4. Peakon type solitary wave, Shape of (26) with -5 <x, t < 5.

Fig. 5. 1-soliton solitary wave, Shape of (27) with -3 <x, t < 3.

Fig. 6. Anti 1-soliton solitary wave, Shape of (26) with -3 <x, t < 3.

Fig. 7. Periodic wave solution, Shape of (30) with —10 <x, t < 10.
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Fig. 8. Dark soliton solitary wave, Shape of (54) with —10 <x, t < 10.
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physical parameters, the traveling wave solutions originated from
the obtained exact explicit solutions as follows:

Solutions (19) and (43) corresponding to fixed values o =1,
p=1,u=-1,41=1,v=-1,d=1 with —10 <x, t < 10 represented
the exact solitary wave solutions of kink type. Again, according
to the values =1, =1, u=0, 2=1, v=-1,d=1 and —10 <x,
t < 10, solutions (41), (42), (48), (53) and (58) are also given the
exact solitary wave solutions of kink type. The exact kink type sol-
itary wave solution is shown in Fig. 1. For the fixed values o = 0.1,
=0.2,u=0.1,1=0.5,v=2,d=0and -3 <x, t < 3, the solution (44)
represents the solitary wave solution of singular kink type. The
solitary wave solution of singular kink type is shown in Fig. 2.

Solutions (20), (22)-(25), (44), (49), (50), (54), (55) and (58) rep-
resent exact solitary wave solutions of topological soliton type cor-
responding to the fixed values of the physical parameters o =1,
B=1,u=-1,4=1,v=-1,d=1. The soliton solution is a specially
localized solution, hence u/(¢), u”(&), u”(é) > 0as & —» too0, E=X—C
t. The graphical representation of topological soliton type solitary
wave is shown in Fig. 3. Fig. 4 shows the shape of exact solitary
wave solution of peakon type; obtained from the solution (26) cor-
responding to the fixed values o=0.5, § =04, u=-0.1, 1=0.5,
v=0.5,d=-0.5, -10< x, t < 10.

Solutions (26)-(29) have the exact anti 1-soliton and 1-soliton
type solitary wave solutions corresponding to a=1, =1, u=-1,
2=1, v=-1, d=1. The exact solutions of anti 1-soliton and
1-soliton type solitary wave solutions are shown graphically in
Fig. 5 and 6 respectively.

For the fixedvalues =1, =1, u=3,1=2,v =2,d=1, -10 <,
t < 10, solutions (30), (21), (32), (33), (35)-(38), (39), (45), (46),
(51), (56) and (57) represent periodic wave solutions. Periodic
solutions are traveling wave solutions that are periodic such as
cos(x — t). The exact periodic traveling wave solution is presented
graphically in Fig. 7. Solutions (31), (34), (44), (47), (52), (53),
(56) and (57) represent dark soliton type solitary wave solutions
according to the same fixed values. The solutions (54), (55) and
(58) also represent dark soliton type solitary wave solutions corre-
spondingtoa=1,8=1,u=-1,1=1,v=-1,d = 1. The dark soliton
type solitary wave solution is shown in Fig. 8.

5. Conclusions

The novel (G'/G)-expansion method is successfully applied to
establish traveling wave solutions to the famous Klein-Gordon
equation. The performance of this method is reliable, convincing
and can be used to other NLEEs in finding exact solutions. The
method gives more general solutions which contain further arbi-
trary constants and the arbitrary constants imply that these solu-
tions have rich local structures. It is important to notice that the
basic (G'/|G)-expansion method, the improved (G'/G)-expansion
and the generalized and improved (G'/G)-expansion method are
only special case of the novel (G'/G)-expansion method. By means
of this scheme, we found some fresh traveling wave solutions of
the above mentioned equation. Although the method is applied
to the celebrated Klein-Gordon equation it can be applied to many
other NLEEs, and this is our task in the future. The obtained solu-
tions can be utilized to further analyze by the physicists on varied
instance.
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