12,109 research outputs found

    Detection Techniques for Trapped Ions

    Full text link
    Various techniques are used to detect the presence of charged particles stored in electromagnetic traps, their energy, their mass, or their internal states. Detection methods can rely on the variation of the number of trapped particles (destructive methods) or the use of the ion's interaction with electromagnetic radiation as a non-destructive tool to probe the trapped particles. This review gives an introduction into various methods, discussing the basic mode of operation completed by the description of recent realizations

    Cooling Techniques for Trapped Ions

    Full text link
    This book chapter gives an introduction to, and an overview of, methods for cooling trapped ions. The main addressees are researchers entering the field. It is not intended as a comprehensive survey and historical account of the extensive literature on this topic. We present the physical ideas behind several cooling schemes, outline their mathematical description, and point to relevant literature useful for a more in-depth study of this topic.Comment: Part of the Proceedings of the Les Houches Winter School on the Physics with Trapped Charged Particles held in January 2012. References updated in mid 201

    Reliable teleportation in trapped ions

    Full text link
    We study a method for the implementation of a reliable teleportation protocol (theoretically, 100% of success) of internal states in trapped ions. The generation of the quantum channel (any of four Bell states) may be done respecting technical limitations on individual addressing and without claiming the Lamb-Dicke regime. An adequate Bell analyzer, that transforms unitarily the Bell basis into a completely disentangled one, is considered. Probable sources of error and fidelity estimations of the teleportation process are studied. Finally, we discuss experimental issues, proposing a scenario in which the present scheme could be implemented.Comment: 8 Latex pages with five (ps,eps) figures included (EPJ style also included). Accepted for publication in European Physical Journal

    A quantum phase gate implementation for trapped ions in thermal motion

    Full text link
    We propose a novel scheme to implement a quantum controlled phase gate for trapped ions in thermal motion with one standing wave laser pulse. Instead of applying the rotating wave approximation this scheme makes use of the counter-rotating terms of operators. We also demonstrate that the same scheme can be used to generate maximally entangled states of NN trapped ions by a single laser pulse

    Simplified quantum logic with trapped ions

    Full text link
    We describe a simplified scheme for quantum logic with a collection of laser-cooled trapped atomic ions. Building on the scheme of Cirac and Zoller, we show how the fundamental controlled-NOT gate between a collective mode of ion motion and the internal states of a single ion can be reduced to a single laser pulse, and the need for a third auxiliary internal electronic state can be eliminated.Comment: 8 pages, PostScript, submitted to Physical Review A, Rapid Communication
    • …
    corecore