6 research outputs found

    Orientation-Constrained Rectangular Layouts

    Full text link
    We construct partitions of rectangles into smaller rectangles from an input consisting of a planar dual graph of the layout together with restrictions on the orientations of edges and junctions of the layout. Such an orientation-constrained layout, if it exists, may be constructed in polynomial time, and all orientation-constrained layouts may be listed in polynomial time per layout.Comment: To appear at Algorithms and Data Structures Symposium, Banff, Canada, August 2009. 12 pages, 5 figure

    Area-Universal Rectangular Layouts

    Get PDF
    A rectangular layout is a partition of a rectangle into a finite set of interior-disjoint rectangles. Rectangular layouts appear in various applications: as rectangular cartograms in cartography, as floorplans in building architecture and VLSI design, and as graph drawings. Often areas are associated with the rectangles of a rectangular layout and it might hence be desirable if one rectangular layout can represent several area assignments. A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout. We identify a simple necessary and sufficient condition for a rectangular layout to be area-universal: a rectangular layout is area-universal if and only if it is one-sided. More generally, given any rectangular layout L and any assignment of areas to its regions, we show that there can be at most one layout (up to horizontal and vertical scaling) which is combinatorially equivalent to L and achieves a given area assignment. We also investigate similar questions for perimeter assignments. The adjacency requirements for the rectangles of a rectangular layout can be specified in various ways, most commonly via the dual graph of the layout. We show how to find an area-universal layout for a given set of adjacency requirements whenever such a layout exists.Comment: 19 pages, 16 figure

    Steinitz Theorems for Orthogonal Polyhedra

    Full text link
    We define a simple orthogonal polyhedron to be a three-dimensional polyhedron with the topology of a sphere in which three mutually-perpendicular edges meet at each vertex. By analogy to Steinitz's theorem characterizing the graphs of convex polyhedra, we find graph-theoretic characterizations of three classes of simple orthogonal polyhedra: corner polyhedra, which can be drawn by isometric projection in the plane with only one hidden vertex, xyz polyhedra, in which each axis-parallel line through a vertex contains exactly one other vertex, and arbitrary simple orthogonal polyhedra. In particular, the graphs of xyz polyhedra are exactly the bipartite cubic polyhedral graphs, and every bipartite cubic polyhedral graph with a 4-connected dual graph is the graph of a corner polyhedron. Based on our characterizations we find efficient algorithms for constructing orthogonal polyhedra from their graphs.Comment: 48 pages, 31 figure

    Uniform random sampling of planar graphs in linear time

    Get PDF
    This article introduces new algorithms for the uniform random generation of labelled planar graphs. Its principles rely on Boltzmann samplers, as recently developed by Duchon, Flajolet, Louchard, and Schaeffer. It combines the Boltzmann framework, a suitable use of rejection, a new combinatorial bijection found by Fusy, Poulalhon and Schaeffer, as well as a precise analytic description of the generating functions counting planar graphs, which was recently obtained by Gim\'enez and Noy. This gives rise to an extremely efficient algorithm for the random generation of planar graphs. There is a preprocessing step of some fixed small cost. Then, the expected time complexity of generation is quadratic for exact-size uniform sampling and linear for approximate-size sampling. This greatly improves on the best previously known time complexity for exact-size uniform sampling of planar graphs with nn vertices, which was a little over O(n7)O(n^7).Comment: 55 page

    Combinatoire des cartes et polynome de Tutte

    Get PDF
    Les cartes sont les plongements, sans intersection d'arêtes, des graphes dans des surfaces. Les cartes constituent une discrétisation naturelle des surfaces et apparaissent aussi bien en informatique (codage d'informations visuelles) quén physique (surfaces aléatoires de la physique statistique et quantique). Nous établissons des résultats énumératifs pour de nouvelles familles de cartes. En outre, nous définissons des bijections entre les cartes et des classes combinatoires plus simples (chemins planaires, couples d'arbres). Ces bijections révèlent des propriétés structurelles importantes des cartes et permettent leur comptage, leur codage et leur génération aléatoire. Enfin, nous caractérisons un invariant fondamental de la théorie des graphes, le polynôme de Tutte, en nous appuyant sur les cartes. Cette caractérisation permet d'établir des bijections entre plusieurs structures (arbres cou- vrant, suites de degrés, configurations du tas de sable) comptées par le polynôme de Tutte.A map is a graph together with a particular (proper) embedding in a surface. Maps are a natural way of representing discrete surfaces and as such they appear both in computer science (encoding of visual data) and in physics (random lattices of statistical physics and quantum gravity). We establish enumerative results for new classes of maps. Moreover, we define several bijections between maps and simpler combinatorial classes (planar walks, pairs of trees). These bijections highlight some important structural properties and allows one to count, sample randomly and encode maps efficiently. Lastly, we give a new characterization of an important graph invariant, the Tutte polynomial, by making use of maps. This characterization allows us to establish bijections between several structures (spanning trees, sandpile configurations, outdegree sequences) counted by the Tutte polynomial
    corecore