23,268 research outputs found

    Edge-transitivity of Cayley graphs generated by transpositions

    Full text link
    Let SS be a set of transpositions generating the symmetric group SnS_n. The transposition graph of SS is defined to be the graph with vertex set {1,…,n}\{1,\ldots,n\}, and with vertices ii and jj being adjacent in T(S)T(S) whenever (i,j)∈S(i,j) \in S. In the present note, it is proved that two transposition graphs are isomorphic if and only if the corresponding two Cayley graphs are isomorphic. It is also proved that the transposition graph T(S)T(S) is edge-transitive if and only if the Cayley graph Cay(Sn,S)Cay(S_n,S) is edge-transitive

    Disjoint Hamilton cycles in transposition graphs

    Get PDF
    Most network topologies that have been studied have been subgraphs of transposition graphs. Edge-disjoint Hamilton cycles are important in network topologies for improving fault-tolerance and distribution of messaging traffic over the network. Not much was known about edge-disjoint Hamilton cycles in general transposition graphs until recently Hung produced a construction of 4 edge-disjoint Hamilton cycles in the 5-dimensional transposition graph and showed how edge-disjoint Hamilton cycles in (n + 1)-dimensional transposition graphs can be constructed inductively from edge-disjoint Hamilton cycles in n-dimensional transposition graphs. In the same work it was conjectured that n-dimensional transposition graphs have n βˆ’ 1 edge-disjoint Hamilton cycles for all n greater than or equal to 5. In this paper we provide an edge-labelling for transposition graphs and, by considering known Hamilton cycles in labelled star subgraphs of transposition graphs, are able to provide an extra edge-disjoint Hamilton cycle at the inductive step from dimension n to n + 1, and thereby prove the conjecture

    The spectra of finite 3-transposition groups

    Get PDF
    We calculate the spectrum of the diagram for each finite 33-transposition group. Such graphs with a given minimal eigenvalue have occurred in the context of compact Griess subalgebras of vertex operator algebras

    Error Graphs and the Reconstruction of Elements in Groups

    Get PDF
    Packing and covering problems for metric spaces, and graphs in particular, are of essential interest in combinatorics and coding theory. They are formulated in terms of metric balls of vertices. We consider a new problem in graph theory which is also based on the consideration of metric balls of vertices, but which is distinct from the traditional packing and covering problems. This problem is motivated by applications in information transmission when redundancy of messages is not sufficient for their exact reconstruction, and applications in computational biology when one wishes to restore an evolutionary process. It can be defined as the reconstruction, or identification, of an unknown vertex in a given graph from a minimal number of vertices (erroneous or distorted patterns) in a metric ball of a given radius r around the unknown vertex. For this problem it is required to find minimum restrictions for such a reconstruction to be possible and also to find efficient reconstruction algorithms under such minimal restrictions. In this paper we define error graphs and investigate their basic properties. A particular class of error graphs occurs when the vertices of the graph are the elements of a group, and when the path metric is determined by a suitable set of group elements. These are the undirected Cayley graphs. Of particular interest is the transposition Cayley graph on the symmetric group which occurs in connection with the analysis of transpositional mutations in molecular biology. We obtain a complete solution of the above problems for the transposition Cayley graph on the symmetric group.Comment: Journal of Combinatorial Theory A 200

    Reconstruction of permutations distorted by single transposition errors

    Get PDF
    The reconstruction problem for permutations on nn elements from their erroneous patterns which are distorted by transpositions is presented in this paper. It is shown that for any nβ‰₯3n \geq 3 an unknown permutation is uniquely reconstructible from 4 distinct permutations at transposition distance at most one from the unknown permutation. The {\it transposition distance} between two permutations is defined as the least number of transpositions needed to transform one into the other. The proposed approach is based on the investigation of structural properties of a corresponding Cayley graph. In the case of at most two transposition errors it is shown that 32(nβˆ’2)(n+1)\frac32(n-2)(n+1) erroneous patterns are required in order to reconstruct an unknown permutation. Similar results are obtained for two particular cases when permutations are distorted by given transpositions. These results confirm some bounds for regular graphs which are also presented in this paper.Comment: 5 pages, Report of paper presented at ISIT-200
    • …
    corecore