3,822 research outputs found

    Transparent system call based performance debugging for cloud computing

    Get PDF
    Abstract Problem diagnosis and debugging in distributed environments such as the cloud and popular distributed systems frameworks has been a hard problem. We explore an evaluation of a novel way of debugging distributed systems, such as the MapReduce framework, by using system calls. Performance problems in such systems can be hard to diagnose and to localize to a specific node or a set of nodes. Additionally, most debugging systems often rely on forms of instrumentation and signatures that sometimes cannot truthfully represent the state of the system (logs or application traces for example). We focus on evaluating the performance debugging of these frameworks using a low level of abstraction -system calls. By focusing on a small set of system calls, we try to extrapolate meaningful information on the control flow and state of the framework, providing accurate and meaningful automated debugging

    SGXIO: Generic Trusted I/O Path for Intel SGX

    Full text link
    Application security traditionally strongly relies upon security of the underlying operating system. However, operating systems often fall victim to software attacks, compromising security of applications as well. To overcome this dependency, Intel introduced SGX, which allows to protect application code against a subverted or malicious OS by running it in a hardware-protected enclave. However, SGX lacks support for generic trusted I/O paths to protect user input and output between enclaves and I/O devices. This work presents SGXIO, a generic trusted path architecture for SGX, allowing user applications to run securely on top of an untrusted OS, while at the same time supporting trusted paths to generic I/O devices. To achieve this, SGXIO combines the benefits of SGX's easy programming model with traditional hypervisor-based trusted path architectures. Moreover, SGXIO can tweak insecure debug enclaves to behave like secure production enclaves. SGXIO surpasses traditional use cases in cloud computing and makes SGX technology usable for protecting user-centric, local applications against kernel-level keyloggers and likewise. It is compatible to unmodified operating systems and works on a modern commodity notebook out of the box. Hence, SGXIO is particularly promising for the broad x86 community to which SGX is readily available.Comment: To appear in CODASPY'1

    Securing Arm Platform: From Software-Based To Hardware-Based Approaches

    Get PDF
    With the rapid proliferation of the ARM architecture on smart mobile phones and Internet of Things (IoT) devices, the security of ARM platform becomes an emerging problem. In recent years, the number of malware identified on ARM platforms, especially on Android, shows explosive growth. Evasion techniques are also used in these malware to escape from being detected by existing analysis systems. In our research, we first present a software-based mechanism to increase the accuracy of existing static analysis tools by reassembleable bytecode extraction. Our solution collects bytecode and data at runtime, and then reassemble them offline to help static analysis tools to reveal the hidden behavior in an application. Further, we implement a hardware-based transparent malware analysis framework for general ARM platforms to defend against the traditional evasion techniques. Our framework leverages hardware debugging features and Trusted Execution Environment (TEE) to achieve transparent tracing and debugging with reasonable overhead. To learn the security of the involved hardware debugging features, we perform a comprehensive study on the ARM debugging features and summarize the security implications. Based on the implications, we design a novel attack scenario that achieves privilege escalation via misusing the debugging features in inter-processor debugging model. The attack has raised our concern on the security of TEEs and Cyber-physical System (CPS). For a better understanding of the security of TEEs, we investigate the security of various TEEs on different architectures and platforms, and state the security challenges. A study of the deploying the TEEs on edge platform is also presented. For the security of the CPS, we conduct an analysis on the real-world traffic signal infrastructure and summarize the security problems

    GiViP: A Visual Profiler for Distributed Graph Processing Systems

    Full text link
    Analyzing large-scale graphs provides valuable insights in different application scenarios. While many graph processing systems working on top of distributed infrastructures have been proposed to deal with big graphs, the tasks of profiling and debugging their massive computations remain time consuming and error-prone. This paper presents GiViP, a visual profiler for distributed graph processing systems based on a Pregel-like computation model. GiViP captures the huge amount of messages exchanged throughout a computation and provides an interactive user interface for the visual analysis of the collected data. We show how to take advantage of GiViP to detect anomalies related to the computation and to the infrastructure, such as slow computing units and anomalous message patterns.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017
    corecore