91 research outputs found

    Cyclic Prefix-Free MC-CDMA Arrayed MIMO Communication Systems

    No full text
    The objective of this thesis is to investigate MC-CDMA MIMO systems where the antenna array geometry is taken into consideration. In most MC-CDMA systems, cyclic pre xes, which reduce the spectral e¢ ciency, are used. In order to improve the spectral efficiency, this research study is focused on cyclic pre x- free MC-CDMA MIMO architectures. Initially, space-time wireless channel models are developed by considering the spatio-temporal mechanisms of the radio channel, such as multipath propaga- tion. The spatio-temporal channel models are based on the concept of the array manifold vector, which enables the parametric modelling of the channel. The array manifold vector is extended to the multi-carrier space-time array (MC-STAR) manifold matrix which enables the use of spatio-temporal signal processing techniques. Based on the modelling, a new cyclic pre x-free MC- CDMA arrayed MIMO communication system is proposed and its performance is compared with a representative existing system. Furthermore, a MUSIC-type algorithm is then developed for the estimation of the channel parameters of the received signal. This proposed cyclic pre x-free MC-CDMA arrayed MIMO system is then extended to consider the effects of spatial diffusion in the wireless channel. Spatial diffusion is an important channel impairment which is often ignored and the failure to consider such effects leads to less than satisfactory performance. A subspace-based approach is proposed for the estimation of the channel parameters and spatial spread and reception of the desired signal. Finally, the problem of joint optimization of the transmit and receive beam- forming weights in the downlink of a cyclic pre x-free MC-CDMA arrayed MIMO communication system is investigated. A subcarrier-cooperative approach is used for the transmit beamforming so that there is greater flexibility in the allocation of channel symbols. The resulting optimization problem, with a per-antenna transmit power constraint, is solved by the Lagrange multiplier method and an iterative algorithm is proposed

    INTERFERENCE MANAGEMENT IN LTE SYSTEM AND BEYOUND

    Get PDF
    The key challenges to high throughput in cellular wireless communication system are interference, mobility and bandwidth limitation. Mobility has never been a problem until recently, bandwidth has been constantly improved upon through the evolutions in cellular wireless communication system but interference has been a constant limitation to any improvement that may have resulted from such evolution. The fundamental challenge to a system designer or a researcher is how to achieve high data rate in motion (high speed) in a cellular system that is intrinsically interference-limited. Multi-antenna is the solution to data on the move and the capacity of multi-antenna system has been demonstrated to increase proportionally with increase in the number of antennas at both transmitter and receiver for point-to-point communications and multi-user environment. However, the capacity gain in both uplink and downlink is limited in a multi-user environment like cellular system by interference, the number of antennas at the base station, complexity and space constraint particularly for a mobile terminal. This challenge in the downlink provided the motivation to investigate successive interference cancellation (SIC) as an interference management tool LTE system and beyond. The Simulation revealed that ordered successive interference (OSIC) out performs non-ordered successive interference cancellation (NSIC) and the additional complexity is justified based on the associated gain in BER performance of OSIC. The major drawback of OSIC is that it is not efficient in network environment employing power control or power allocation. Additional interference management techniques will be required to fully manage the interference.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Investigation of Channel Reciprocity for OFDM TDD Systems

    Get PDF
    This dissertation investigates the assumption of channel reciprocity in orthogonal frequency division multiplexing (OFDM) systems using time-division duplex (TDD) access. Within TDD systems uplink and downlink transmission share the same channel, and so channel state at the transmitter (CSIT) can be inherently obtained through uplink channel estimation assuming that the channel is reciprocal and static over a few packet transmissions. For both closed-loop SISO-OFDM (single-input single-output) and MIMO-OFDM (multiple-input multiple-output) systems, the availability of CSIT enables the transmitter to apply adaptive modulation and coding (AMC) to improve throughput or signal processing and precoding algorithms in order to obtain a spatial diversity and/or multiplexing gain. This results in improved performance as compared to open-loop MIMO systems in which the channel state is not known at the transmitter. However, signi cant deviations between transmitter and receiver channel state information may result in degradation of performance, as precoding at the transmitter will be based on erroneous channel state information. In this work, we observe the assumption of channel reciprocity using a real-time OFDM-PHY FPGA prototype wireless communications system and we look at possible factors that contribute to deviations between uplink and downlink channel estimates. We also look at common linear precoding schemes to compensate for channel non-reciprocity. Of all the possible factors that contribute to channel reciprocity deviations, we nd that the dominant factor comes from imperfections in the RF front-end components which result in signi cant channel phase response deviations across subcarriers between the uplink and downlink

    Millimetre wave frequency band as a candidate spectrum for 5G network architecture : a survey

    Get PDF
    In order to meet the huge growth in global mobile data traffic in 2020 and beyond, the development of the 5th Generation (5G) system is required as the current 4G system is expected to fall short of the provision needed for such growth. 5G is anticipated to use a higher carrier frequency in the millimetre wave (mm-wave) band, within the 20 to 90 GHz, due to the availability of a vast amount of unexploited bandwidth. It is a revolutionary step to use these bands because of their different propagation characteristics, severe atmospheric attenuation, and hardware constraints. In this paper, we carry out a survey of 5G research contributions and proposed design architectures based on mm-wave communications. We present and discuss the use of mm-wave as indoor and outdoor mobile access, as a wireless backhaul solution, and as a key enabler for higher order sectorisation. Wireless standards such as IEE802.11ad, which are operating in mm-wave band have been presented. These standards have been designed for short range, ultra high data throughput systems in the 60 GHz band. Furthermore, this survey provides new insights regarding relevant and open issues in adopting mm-wave for 5G networks. This includes increased handoff rate and interference in Ultra-Dense Network (UDN), waveform consideration with higher spectral efficiency, and supporting spatial multiplexing in mm-wave line of sight. This survey also introduces a distributed base station architecture in mm-wave as an approach to address increased handoff rate in UDN, and to provide an alternative way for network densification in a time and cost effective manner

    Semi-blind CFO estimation and ICA based equalization for wireless communication systems

    Get PDF
    In this thesis, a number of semi-blind structures are proposed for Orthogonal Frequency Division Multiplexing (OFDM) based wireless communication systems, with Carrier Frequency Offset (CFO) estimation and Independent Component Analysis (ICA) based equalization. In the first contribution, a semi-blind non-redundant single-user Multiple-Input Multiple-Output (MIMO) OFDM system is proposed, with a precoding aided CFO estimation approach and an ICA based equalization structure. A number of reference data sequences are carefully designed and selected from a pool of orthogonal sequences, killing two birds with one stone. On the one hand, the precoding based CFO estimation is performed by minimizing the sum cross-correlations between the CFO compensated signals and the rest of the orthogonal sequences in the pool. On the other hand, the same reference data sequences enable the elimination of permutation and quadrant ambiguities in the ICA equalized signals. Simulation results show that the proposed semi-blind MIMO OFDM system can achieve a Bit Error Rate (BER) performance close to the ideal case with perfect Channel State Information (CSI) and no CFO. In the second contribution, a low-complexity semi-blind structure, with a multi-CFO estimation method and an ICA based equalization scheme, is proposed for multiuser Coordinated Multi-Point (CoMP) OFDM systems. A short pilot is carefully designed offline for each user and has a two-fold advantage. On the one hand, using the pilot structure, a complex multi-dimensional search for multiple CFOs is divided into a number of low-complexity mono-dimensional searches. On the other hand, the cross-correlation between the transmitted and received pilots is explored to allow the simultaneous elimination of permutation and quadrant ambiguities in the ICA equalized signals. Simulation results show that the proposed semi-blind CoMP OFDM system can provide a BER performance close to the ideal case with perfect CSI and no CFO. In the third contribution, a semi-blind structure is proposed for Carrier Aggregation (CA) based CoMP Orthogonal Frequency Division Multiple Access (OFDMA) systems, with an ICA based joint Inter-Carrier Interference (ICI) mitigation and equalization scheme. The CFO-induced ICI is mitigated implicitly via ICA based equalization, without introducing feedback overhead for CFO correction. The permutation and quadrant ambiguities in the ICA equalized signals can be eliminated by a small number of pilots. Simulation results show that with a low training overhead, the proposed semi-blind equalization scheme can provide a BER performance close to the ideal case with perfect CSI and no CFO

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    Single carrier frequency domain equalization and energy efficiency optimization for MIMO cognitive radio.

    Get PDF
    This dissertation studies two separate topics in wireless communication systems. One topic focuses on the Single Carrier Frequency Domain Equalization (SC-FDE), which is a promising technique to mitigate the multipath effect in the broadband wireless communication. Another topic targets on the energy efficiency optimization in a multiple input multiple output (MIMO) cognitive radio network. For SC-FDE, the conventional linear receivers suffer from the noise amplification in deep fading channel. To overcome this, a fractional spaced frequency domain (FSFD) receiver based on frequency domain oversampling (FDO) is proposed for SC-FDE to improve the performance of the linear receiver under deep fading channels. By properly designing the guard interval, a larger sized Discrete Fourier Transform (DFT) is equipped to oversample the received signal in frequency domain. Thus, the effect of frequency-selective fading can still be eliminated by a one-tap frequency domain filter. Two types of FSFD receivers are proposed based on the least square (LS) and minimum mean square error (MMSE) criterion. Both the semi-analytical analysis and simulation results are given to evaluate the performance of the proposed receivers. Another challenge in SC-FDE is the in-phase/quadrature phase (IQ) imbalance caused by unideal radio frequency (RF) front-end at the transmitter or the receiver. Most existing works in single carrier transmission employ linear compensation methods, such as LS and MMSE, to combat the interference caused by IQ imbalance. Actually, for single carrier transmissions, it is possible for the receivers to adopt advanced nonlinear compensation methods to improve the system performance under IQ imbalance. For such purpose, an iterative decision feedback receiver is proposed to compensate the IQ imbalance caused by unideal RF front-end in SC-FDE. Numerical results show that the proposed iterative IQ imbalance compensation can significantly improve the performance of SC-FDE system under IQ imbalance compared with the conventional linear method. For the energy efficiency optimization in the MIMO cognitive radio network, multiple secondary users (SUs) coexisting with a primary user (PU) adjust their antenna radiation patterns and power allocations to achieve energy-efficient transmission. The optimization problems are formulated to maximize the energy efficiency of a cognitive radio network in both distributed and centralized point of views. Also, constraints on the transmission power and the interference to PU are introduced to protect the PU’s transmission. In order to solve the non-convex optimization problems, convex relaxations are used to transform them into equivalent problems with better tractability. Then three optimization algorithms are proposed to find the energy-efficient transmission strategies. Simulation results show that the proposed energy-efficiency optimization algorithms outperform the existing algorithms

    Integrated Sensing and Communication Signals Toward 5G-A and 6G: A Survey

    Full text link
    Integrated sensing and communication (ISAC) has the advantages of efficient spectrum utilization and low hardware cost. It is promising to be implemented in the fifth-generation-advanced (5G-A) and sixth-generation (6G) mobile communication systems, having the potential to be applied in intelligent applications requiring both communication and high-accurate sensing capabilities. As the fundamental technology of ISAC, ISAC signal directly impacts the performance of sensing and communication. This article systematically reviews the literature on ISAC signals from the perspective of mobile communication systems, including ISAC signal design, ISAC signal processing algorithms and ISAC signal optimization. We first review the ISAC signal design based on 5G, 5G-A and 6G mobile communication systems. Then, radar signal processing methods are reviewed for ISAC signals, mainly including the channel information matrix method, spectrum lines estimator method and super resolution method. In terms of signal optimization, we summarize peak-to-average power ratio (PAPR) optimization, interference management, and adaptive signal optimization for ISAC signals. This article may provide the guidelines for the research of ISAC signals in 5G-A and 6G mobile communication systems.Comment: 25 pages, 13 figures, 8 tables. IEEE Internet of Things Journal, 202
    • …
    corecore