182 research outputs found

    Achievable Energy Efficiency and Spectral Efficiency of Large‐ Scale Distributed Antenna Systems

    Get PDF
    In the large‐scale distributed antenna system (LS‐DAS), a large number of antenna elements are densely deployed in a distributed way over the coverage area, and all the signals are gathered at the cloud processor (CP) via dedicated fiber links for globally joint processing. Intuitively, the LS‐DAS can inherit the advantage of both large‐scale multiple‐input‐multiple‐output (MIMO) and network densification; thus, it offers enormous gains in terms of both energy efficiency (EE) and spectral efficiency (SE). However, as the number of distributed antenna elements (DAEs) increases, the overhead for acquiring the channel state information (CSI) will increase accordingly. Without perfect CSI at the CP, which is the majority situation in practical applications due to limited overhead, the claimed gain of LS‐DAS cannot be achieved. To solve this problem, this chapter considers a more practical case with only the long‐term CSI including the path loss and shadowing known at the CP. As the long‐term channel fading usually varies much more slowly than the short‐term part, the system overhead can be easily controlled under this framework. Then, the EE‐oriented and SE‐oriented power allocation problems are formulated and solved by fractional programming (FP) and geometric programming (GP) theories, respectively. It is observed that the performance gain with only long‐term CSI is still noticeable and, more importantly, it can be achieved with a practical system cost

    A Mixed-Integer Programming Approach to Interference Exploitation for Massive-MIMO

    Get PDF
    A novel low-complexity transmission scheme for Massive Multiuser Multi-Input Multi-Output (M-MU-MIMO) is proposed, where Transmit Antenna Selection (TAS) and beam-forming are jointly performed to exploit multiuser interference. Two separate solutions to the deriving optimization problem are proposed: a mixed-integer programming approach that can optimally solve the TAS-beamforming problem and a heuristic convex approach, based on the assumption of matched filtering beamforming. Numerical results prove that the proposed multiuser interference exploiting approaches are able to greatly outperform previous state-of-the-art schemes, where TAS and beamforming are disjointedly solved

    Antenna selection in massive mimo based on matching pursuit

    Get PDF
    As wireless services proliferate, the demand for available spectrum also grows. As a result, the spectral efficiency is still an issue addressed by many researchers looking for solutions to provide quality of service to a growing number of users. massive MIMO is an attractive technology for the next wireless systems since it can alleviate the expected spectral shortage. This work proposes two antenna selection strategies to be applied in the downlink of a massive MIMO system, aiming at reducing the transmission power. The proposed algorithms can also be employed to select a subset of active sensors in centralized sensor networks. The proposed strategy to select the antennas is inspired by the matching pursuit technique. The presented results show that an efficient selection can be obtained with reduced computational complexity.Com a proliferação de serviços wireless, a demanda por espectro disponível também cresce. Logo, a eficiência espectral é um assunto de grande interesse na comunidade científica, que procura por meios para fornecer qualidade de serviço ao crescente número de usuários. massive MIMO é uma técnica repleta de atrativos a ser empregada na futura geração wireless, já que aproveita o espectro existente eficientemente. Este trabalho propõe duas estratégias de seleção de antenas para serem empregadas no downlink de um sistema massive MIMO, visando a redução da potência de transmissão. Os algoritmos propostos podem também ser usados para selecionar um subconjunto de sensores ativos em uma rede centralizada de sensores. A estratégia proposta para seleção de antenas é inspirada na técnica matching pursuit. Os resultados apresentados indicam que uma seleção eficiente pode ser obtida com baixa complexidade computacional

    Massive MIMO in Real Propagation Environments: Do All Antennas Contribute Equally?

    Full text link
    Massive MIMO can greatly increase both spectral and transmit-energy efficiency. This is achieved by allowing the number of antennas and RF chains to grow very large. However, the challenges include high system complexity and hardware energy consumption. Here we investigate the possibilities to reduce the required number of RF chains, by performing antenna selection. While this approach is not a very effective strategy for theoretical independent Rayleigh fading channels, a substantial reduction in the number of RF chains can be achieved for real massive MIMO channels, without significant performance loss. We evaluate antenna selection performance on measured channels at 2.6 GHz, using a linear and a cylindrical array, both having 128 elements. Sum-rate maximization is used as the criterion for antenna selection. A selection scheme based on convex optimization is nearly optimal and used as a benchmark. The achieved sum-rate is compared with that of a very simple scheme that selects the antennas with the highest received power. The power-based scheme gives performance close to the convex optimization scheme, for the measured channels. This observation indicates a potential for significant reductions of massive MIMO implementation complexity, by reducing the number of RF chains and performing antenna selection using simple algorithms.Comment: Submitted to IEEE Transactions on Communication

    Joint Design of Wireless Fronthaul and Access Links in Massive MIMO CRANs

    Get PDF
    Cloud radio access network (CRAN) has emerged as a promising mobile network architecture for the current 5th generation (5G) and beyond networks. This thesis focuses on novel architectures and optimization approaches for CRAN systems with massive multiple-input multiple-output (MIMO) enabled in the wireless fronthaul link. In particular, we propose a joint design of wireless fronthaul and access links for CRANs and aim to maximize the network spectral efficiency (SE) and energy efficiency (EE). Regarding downlink transmission in massive MIMO CRANs, the precoding designs of the access link are optimized by accounting for both perfect instantaneous channel state information (CSI) and stochastic CSI of the access link separately. The system design adopts a decompress-and-forward (DCF) scheme at the remote radio heads (RRHs), with optimization of the multivariate compression covariance noise. Constrained by the maximum power budgets set for the central unit (CU) and RRHs, we aim to maximize the network sum-rate and minimize the total transmit power for all user equipments (UEs). Moreover, we present a separate optimization design and compare its performance, feasibility, and computational efficiency with the proposed joint design. Considering the uplink transmission, we utilize a compress-and-forward (CF) scheme at the RRHs. Assuming that perfect CSI is available at the CU, our objective is to optimize the precoding matrix of the access link while adopting conventional precoding methods for the fronthaul link. This thesis also proposes an unmanned aerial vehicle (UAV)-enabled CRAN architecture with a massive MIMO CU as a supplement system to the terrestrial communication networks. The locations of UAVs are optimized along with compression noise, precoding matrices, and transmit power. To tackle the non-convex optimization problems described above, we employ efficient iterative algorithms and conduct a thorough exploration of practical simulations, yielding promising results that outperform benchmark schemes. In summary, this thesis explores future wireless CRAN architectures, leveraging promising technologies including massive MIMO and UAV-enabled communications. Furthermore, this work presents comprehensive optimization designs aimed at further enhancing the network efficiency
    corecore