3 research outputs found

    An Empirical Study of Link Quality Assessment in Wireless Sensor Networks applicable to Transmission Power Control Protocols

    Get PDF
    Transmission Power Control (TPC) protocols are poised for wide spread adoption in Wireless Sensor Networks (WSNs) to address energy constraints. Identifying the optimum transmission power is a significant challenge due to the complex and dynamic nature of the wireless transmission medium and this has resulted in several previous TPC protocols reporting poor reliability and energy efficiency in certain scenarios. In line with current studies, this study presents an empirical characterisation of the transmission medium in typical WSN environments. Through this, the sources of link quality degradation are identified and extensive empirical evidence of their effects are presented. The results highlight that low power wireless links are significantly affected by spatio-temporal factors with the severity of these factors being heavily dependent on environment

    Impact of Transmission Power Control in multi-hop networks

    Get PDF
    Many Transmission Power Control (TPC) algorithms have been proposed in the past, yet the conditions under which they are evaluated do not always reflect typical Internet-of-Things (IoT) scenarios. IoT networks consist of several source nodes transmitting data simultaneously, possibly along multiple hops. Link failures are highly frequent, causing the TPC algorithm to kick-in quite often. To this end, in this paper we study the impact that frequent TPC actions have across different layers. Our study shows how one node’s decision to scale its transmission power can affect the performance of both routing and MAC layers of multiple other nodes in the network, generating cascading packet retransmissions and forcing far too many nodes to consume more energy. We find that crucial objectives of TPC such as conserving energy and increasing network capacity are severely undermined in multi-hop networks

    Reliable transmission power control for Internet of Things

    Get PDF
    corecore